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Abstract

In this paper we address the asynchronous multi-rate sampled-dataH
�
synthesis problem. Necessary and su$cient conditions are

given for the existence of a controller achieving the desired performance, and the problem is shown to be equivalent to a convex
optimization problem expressed in the form of linear operator inequalities. In the case where the sample and hold rates are
synchronous, these operator inequalities reduce to linear matrix inequalities, for which standard numerical software is
available. � 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In this paper we construct a solution for the multi-rate
sampled-dataH

�
synthesis problem, illustrated in Fig. 1.

Given a continuous-time system with multiple input and
output channels, we would like to control it using
a digital controller via multiple sample and hold devices,
each of which may be running at a di!erent rate.
The control objective is to minimize the induced norm

from the input w to the output z. In this paper, we give
necessary and su$cient conditions for the existence of
a controller achieving a given performance bound. We
show that the question of whether or not there exists such
a controller is equivalent to the question of whether or
not there exists a feasible solution to a convex optimiza-
tion problem, which can be expressed as a linear matrix
inequality (LMI). If there does exist such a controller,
then we give an explicit construction for it, again in terms
of LMIs.

The main purpose of this paper is to present a comput-
able solution to this multirate problem, with no unnec-
essary constraints on the original system data. The two
primary methods by which this is achieved are the use of
time-varying techniques, and the use of LMIs. Thus,
there are no restrictions on the zeros of the original
system, nor on its direct feedthrough terms, apart from
the fundamental constraint that D

��
"0, necessary to

ensure that the sampling operation is well de"ned. In
order to achieve these results we combine the jump
systems framework of Dullerud and Lall (1999a), and the
discrete-time time-varying synthesis of Dullerud and Lall
(1999b), to provide a computationally explicit solution
for multi-rate sampled-data controller synthesis in terms
of LMIs. For work closely related to Dullerud and Lall
(1999b), see the earlier LTV work by Ball, Gohberg, and
Kaashoek (1992), Halanay and Ionescu (1994), and
Iglesias (1996). This paper is a longer version of the
conference paper (Lall & Dullerud, 1997).
The work that is most closely related to the one pre-

sented here is that reported by Sagfors, Toivonen, and
Lennartson (1997c, 1998), where a Riccati equation ap-
proach is used to solve a similar multi-rate problem. The
Riccati method requires the nominal plant to satisfy the
rank constraints typically associated with Riccati-based
approaches; namely, the requirements that there be a suf-
"cient number of measurement noise sources, that the
control weighting be nonsingular, and that the plant
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Fig. 1. The multi-rate sampled-data problem.

have no imaginary axis zeros (suitably de"ned). The
controller obtained using the Riccati equation approach
satis"es a separation principle.
The development of a theory for control of multi-rate

systems originates in Kalman and Bertram (1959), and
Kranc (1957). More recent research has considered the
sampled-data LQG problem, as in Al-Rahmani and
Franklin (1990), Amit (1980), Amit and Powell (1981),
Berg, Amit, and Powell (1988), Chen and Francis (1991),
Colaneri and De Nicolao (1995), Glasson (1982), and
Lennartson (1988) and the parametrization of all stabiliz-
ing controllers as in Meyer (1990), and Ravi, Khar-
gonekar, Minto, and Nett (1990).
For the sampled-data H

�
synthesis problem in both

multi-rate and single-rate forms, various approaches
have been used. Solutions have been provided for the
single rate case in Bamieh and Pearson (1992), Bas7 ar
(1991), Bas7 ar and Bernhard (1995), Bernhard (1991),
Chen and Francis (1995, 1996), Hara and Kabamba
(1990), Kabamba and Hara (1993), Sun, Nagpal, and
Khargonekar (1993), Tadmor (1992), Toivonen (1992,
1995), Toivonen and Sagfors (1997), and Yamamoto
(1990). A complete solution to the asynchronous dual-
rate case is given in Sagfors and Toivonen (1997), and
Toivonen (1995). For general periodic multi-rate systems,
solutions are given in Chen and Qiu (1994), Lall and
Dullerud (1997), Sagfors, Toivonen, and Lennartson
(1997b,c, 1998) and Voulgaris and Bamieh (1993); fur-
thermore, the conditions and constructions in Lall and
Dullerud (1997) hold in the nonperiodic case but are
in"nite dimensional.
The sampled-data approaches used in Araki and Ito

(1993), Bamieh, Pearson, Francis, and Tannenbaum
(1991), Bamieh and Pearson (1992), Chen and Francis
(1995, 1996), Chen and Qiu (1994), Dullerud (1996), Hara
and Kabamba (1990), Kabamba and Hara (1993), Sag-
fors, Toivonen, and Lennartson (1997c), Toivonen (1992),
and Yamamoto (1990) make use of lifting, to map the
continuous signal spaces to discrete signal spaces, and
construct an equivalent discrete-time system for which
standard synthesis techniques can be used. This lifting is
time-invariant, in the sense that the continuous signal is
broken into segments of "xed duration.
In particular, the multirate solutions of Chen and Qiu

(1994), and Voulgaris and Bamieh (1993) are based on

time-invariant lifting, and develop a sequence of
transformations to construct a controller satisfying the
causality constraint, with the "nal solution reduced to
a structured H

�
model matching problem. This added

structure leads to signi"cant technical challenge in these
approaches (Meyer, 1990). Time-invariant lifting is also
used in Sagfors et al. (1997c).
The approaches of Bas7 ar and Bernhard (1995),

Bernhard (1991) are based on game-theory, and focus on
the "nite-horizon case. The solutions of Lall (1995),
Sagfors and Toivonen (1997), Sagfors et al. (1997b), Sun
et al. (1993) and Toivonen and Sagfors (1997) make use of
a direct approach to H

�
problems in the time-domain,

similar to that used for time-varying H
�
problems pre-

sented in Ravi, Nagpal, and Khargonekar (1991). A com-
parison of these approaches with the lifting technique is
given in Sagfors et al. (1998), Toivonen (1995), and
Toivonen and Sagfors (1997). The approach of Sagfors et
al. (1997c) is via the solution of full-information and
estimation problems. All of these approaches give results
in terms of Riccati equations; the solutions of Sagfors and
Toivonen (1997) and Sun et al. (1993), Toivonen (1995)
are in terms of Riccati di!erential equations with jumps,
and in Sagfors, Toivonen, and Lennartson (1997b,c,
1998), solutions are given in terms of algebraic Riccati
equations. In all of these approaches a solution is given
for systems where the rank of original system matrices
satis"es certain technical constraints.
In the current paper, we assume all disturbances and

noise enter as continuous time signals; however, there
are alternative possibilities in the formulation of this
H

�
sampled-data problem. In particular, it is possible to

formulate the problem with discrete noise entering dir-
ectly into the measurement equation, as in Sagfors et al.
(1997b, 1998), Sagfors and Toivonen (1997), and Lennar-
tson, Lindgarde, Toivonen, and Sagfors (1997). Together
with the above rank constraints on direct feedthrough
terms, this discrete noise makes certain aspects of the
problem non-singular.
When formulating the sampled-data nature of the

system, there are various methods possible also.
The approach adopted in this paper has been to express
the multi-rate sampled-data problem as a synthesis
problem for jump systems. A formulation involving
linear systems with jumps is also used in Lall (1995),
Lennartson et al. (1997), Sagfors et al. (1997b, 1998),
Sagfors and Toivonen (1997), Sun et al. (1993), and
Toivonen and Sagfors (1997). Similar approaches to
those used in this paper for analysis of the sample and
hold operators are used in Astrom and Wittenmark
(1989), Colaneri and De Nicolao (1995), Sagfors and
Toivonen (1997), Sagfors, Toivonen, and Lennartson
(1997a,b).
A modi"cation of time-invariant lifting is time-varying

lifting, where the segments have a duration which varies
with time. Time-varying lifting is used in this paper, and
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has also been used by Lennartson et al. (1997) to solve the
state-feedback multi-rate H

�
control problem.

In Dullerud and Lall (1999b) mathematical tools were
developed which allow discrete-time, time-varying sys-
tems to be treated in a way very similar to the manipula-
tion of transfer functions for discrete-time time-invariant
systems. In this paper, this formulation allows applica-
tion of the H

�
equivalence and reduction process of

Bamieh and Pearson (1992) to time-varying systems.
Using this method, the multi-rate sampled-data prob-

lem is converted to an equivalent discrete-time, time-
varying synthesis. Solutions to the linear time-varying
H

�
synthesis problem in terms of Riccati recursions exist

(Ravi et al., 1991; Xie, de Souza, & Wang, 1993), and
Dullerud and Lall (1999b) provides a convex solution to
this discrete problem under minimal assumptions. In
combination with the time-varying equivalencing, this
leads to the solution of the multi-rate sampled-data prob-
lem presented in this paper. One of the main advantages
of this approach is that the solution is developed via
convex optimization. For synthesis problems with ra-
tional sampling rates, the solutions are expressed in
terms of "nite dimensional linear matrix inequalities, for
which standard numerical techniques can be used.
The derivation in this paper does not require time-

invariance of the original system, nor periodicity of the
sample and hold devices; it is valid for irrational and
asynchronous sampling and hold rates as well as ra-
tional, synchronous systems. In the case when the result-
ing discrete time-varying system is periodic, then this
results in a computable solution to the multi-rate sample-
data synthesis problem. In the asynchronous case, we
show the equivalence of this problem to an in"nite-dimen-
sional convex optimization problem. More details on the
numerical issues are in Section 5.1. Other less common
cases such as sampling with delays between sampling
di!erent channels, or sampling one channel at odd times
and another at even times, are easily handled both com-
putationally and theoretically within this framework.
A numerical example of this is given in the paper.

1.1. Overview of the procedure

1.1.1. Conversion to a jump system
The "rst step is to express the system G combined with

the multi-rate sampler and hold, S and H, as a linear
time-varying (LTV) system with jumps. In general,
a jump system is a system which, for times tOt

�
, satis"es

the usual continuous-time state-space equations

x� (t)"A(t)x(t)#B(t)u(t), (1)

y(t)"C(t)x(t), (2)

with the proviso that at particular times t
�
, the state of

the system undergoes a &jump' according to the rule

x(t�
�
)"A

�
(t
�
)x(t

�
)#B

�
(t
�
)u

�
(t
�
). (3)

Since the hold operators are not stateless, the jump
system will have n#n

�
states. The interval between

successive jump times, h
�
:"t

���
!t

�
, need not be con-

stant, although it will be periodic provided that the
original sample and hold rates are rationally related. The
jump system itself will then also be periodic if the original
continuous-time system was time-invariant. Note that
the periodicity of the jump systemmay be longer than the
period of the sequence h

�
, for example in the case when

the sampling devices become activated alternately.

1.1.2. Lifting
The time-varying system with jumps is then lifted. The

lifting procedure is a map between continuous signal
spaces and in"nite-dimensional discrete signal spaces.
The lifted system is a time-varying discrete-time (DT)
system, but it has in"nite-dimensional input and output
spaces at each time t

�
. That is, at each time t

�
, w

�
is an

element of the space ¸
�
(t
�
, t

���
]. For any given control-

lerK, the lifted system has the same induced norm as the
original sampled-data system.

1.1.3. Conversion to the equivalent discrete time system
Given the original system G, and "xed periodic sample

and hold devices, a standard time-varying DT system is
constructed. For the case when the original multi-rate
problem is periodic, this DT system will be periodic also.
Any controller which achieves internal stability and
a contractive closed loop for this DT system is also
feasible for the original sampled-data problem.

1.1.4. Periodic and time-varying H
�

synthesis
The problem is now the standard one of "nding a con-

troller which achieves a given induced-norm perfor-
mance for the time-varying DT system given above. The
solution to this problem is expressed as an LMI. If the
system is periodic, then this LMI is "nite dimensional,
and can be solved using standard techniques. The LMI
generated requires "nding j positive de"nite n�n ma-
trices, where j is the periodicity of the jump system.

2. Preliminaries

The real and complex numbers are denoted by � and
�, respectively. Given a Hilbert space E we denote its
norm by �� ) ��

�
; for convenience we frequently omit the

subscript. If E and F are Hilbert spaces, then we denote
the space of bounded linear operators mapping E to F by
L(E,F), and shorten L(E,E) to L(E). If X is in L(E)
then we denote the induced norm of X by ��X��. The main
Hilbert spaces of interest in this paper are ¸�

�
[0,¹) for

¹'0, allowing ¹"R, de"ned to be the set of square
integrable functions mapping [0,¹) to the Euclidean
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space �� with the inner product

�x, y�
�������

"�
�

�

�x(t), y(t)��� dt. (4)

The second Hilbert space of interest is formed given an
in"nite sequence �<

�
� of Hilbert spaces, and is denoted

l
�
(�<

�
�). It is de"ned as the subspace of the Hilbert

space direct sum ��
���
<

�
consisting of elements

(x
�
, x

�
,x

�
,2), where x

�
3<

�
, which satisfy

�
�

���

��x
�
���
	�

(R. (5)

The inner product of x, y in l
�
(�<

�
�) is therefore de"ned

by the in"nite sum �x, y�l
�
:"��

���
�x

�
, y

�
�
	�
. When all

the spaces <
�
are equal we use the shorter notation

l
�
(<); thus, for example, l

�
(�) is the usual space of real

valued, square summable sequences. If the sequence �<
�
�

is clear from the context we abbreviate further to l
�
.

Finally, we de"ne the linear fractional transformation
describing the closed-loop interconnection of systems.
Suppose G is a system such that

�
z

y�"�
G

��
G

��
G

��
G

��
��

w

u� (6)

and K is a controller connected in feedback such that
u" Ky. Then the closed-loop map is denoted by
z"Fl(G,K)w, whereFl(G,K) :"G

��
#G

��
(I!KG

��
)	�

KG
��
. Throughout the paper we make use of the standard

notion of positive de"niteness, and make use of the follow-
ing proposition, which can be found in any standard text
on matrix analysis, such as Horn and Johnson (1990).

Proposition 1. Suppose X and > are self-adjoint operators
on two Hilbert spaces, = is an operator between these
spaces, and �*0. Then

�
X =

=H >�(!�I, (7)

if and only if >(!�I and X!=>	�=H(!�P,
where P is the positive operator (I#=>	�(I#

�>	�)	�>	�=H).

Since the systems we will be considering are in general
time-varying, we make use of some additional formalism.

De5nition 2. A bounded operator Q mapping l
�
(�<

�
�)

to l
�
(�;

�
�) is block diagonal if there exists a sequence of

operators Q
�
in L(<

�
,;

�
) such that, for all w, z, if

z"Qw then z
�
"Q

�
w
�
. Then Q has the representation

Q"diag(Q
�
,Q

�
,Q

�
,2).

Further, if P
�
3L(<

�
,;

�
) is a uniformly bounded se-

quence of operators we say P"diag(P
�
,P

�
,2) is the

block-diagonal operator for �P
�
�. Given a linear time-

varying DT system of the form

x
���

"A
�
x
�
#B

�
w
�
,

z
�
"C

�
x
�
#D

�
w
�
, (8)

the matrix sequences A
�
, B

�
, C

�
and D

�
de"ne block

diagonal operators, which we here denote by A,B,C,
and D.
Let Z be the unilateral shift de"ned on l

�
(X), for

X some Hilbert space. Then, for a"(a
�
, a

�
, a

�
,2) in

l
�
(X) we have (Za)"(0, a

�
,a

�
, a

�
,2). Then we can re-

write (8) as

x"ZAx#ZBw,

z"Cx#Dw.
(9)

This system of equations is well de"ned if the system is
exponentially stable, and in that case

z"(C(I!ZA)	�ZB#D)w. (10)

Many properties of time-varying systems thus become
formally identical to the corresponding property of time-
invariant systems; for example, exponential stability
of this system is equivalent to the condition that
1 � spec(ZA).
We can now move on to the main body of the paper.

3. Problem formulation

The synthesis problem we are considering is illustrated
in Fig. 1. Here, G is a continuous-time linear time-invari-
ant system de"ned in the usual state space notation by
the di!erential equations

x� "Ax#B
�
w#B

�
u,

z"C
�
x#D

��
w#D

��
u,

y"C
�
x#D

��
w#D

��
u (11)

with initial condition x(0)"0. In order for the sampling
operation to be well de"ned, we assume D

��
"0. Here

x(t)3�
, u(t)3�
� , w(t)3�
� , y(t)3�
� , and z(t)3�

 .

3.1. Dexnition of the multi-rate sample and hold

The sample and hold operators are constructed in
a state-space formulation. A similar formulation was
used in Astrom andWittenmark (1989), Colaneri and De
Nicolao (1995), Sagfors and Toivonen (1997), Sagfors et
al. (1997a, b). At each time t, the input u(t) and output y(t)
signals are partitioned into

y(t)"�
y
�
(t)

y
�
(t)

�

y
�
(t)�, u(t)"�

u
�
(t)

u
�
(t)

�

u
�
(t)�, (12)
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where u
�
(t)3��� , y

�
(t)3��� , and ��

���
p
�
"n

�
,

��
���

q
�
"n

�
.

Associated with each sampler S
�
let there be a sequence

of sampling times 	�
�
,	�

�
,2, such that 0(	�

�
(	�

���
.

Then, we de"ne the ideal sampler S
�
as the mapping

satisfying

(S
�
y
�
)(	�

�
) :"y(	�

�
) (13)

for each function y
�
:[0,R)P��� . If the signal y

�
is the

output of the above systemG with D
��

"0 and u,w3¸
�
,

then S
�
y
�
3l

�
.

Similarly associated with each hold H
�
let there be a se-

quence of hold times 
�
�
,
�
�
,2, such that 0(
�

�
(
�

���
.

Then, we de"ne the zero order hold H
�
as the mapping

satisfying

(H
�
u�
�
)(t)"u�

�
(
�

�
) for t3(
�

�
,
�
���
] (14)

for every sequence u�
�
3l

�
. Clearly H

�
3L(l

�
,¸

�
).

We make the standing assumptions that the di!erences
	�
���

!	�
�
and 
�

���
!
�

�
are bounded sequences for each

"xed value of i. De"ne the sequence t
�
as the union of the

	 and 
 sequences, ordered such that 0(t
�
(t

���
;

so that for any i, j, there exists k, l such that 	�
�
"t

�
and 
�

�
"t

�
. Given a discrete signal u� 3l

�
, we denote u� (t

�
)

by u�
�
.

At each time t
�
de"ne the diagonal matrix �

�
3�
��
�

whose ith entry is equal to 1 if the corresponding channel
is sampled at time t

�
, with all other entries zero. That

is, �
�
:"diag(g

�
(k)I

��
,2, g

�
(k)I

��
), where g

�
(k)"1 if

	�
�
"t

�
for some j, and g

�
(k)"0 otherwise. If channel i is

not sampled at time t
�
, then de"ne the output of the

sampler S
�
(t
�
) to be zero. Then we can de"ne the multi-

rate sampler S: yC y� by y�
�
"�

�
y(t

�
). In this way, the

multi-rate information is speci"ed by the matrix se-
quence �

�
, and the multi-rate sampling can simply be

viewed as the irregular sampling of one channel,
provided that the controller design process takes into
account the matrix �

�
.

Similarly, to characterize the multi-rate hold, de"ne
�

�
:"diag(r

�
(k)I

��
,2, r

�
(k)I

��
) where r

�
(k)"1 if 
�

�
"t

�
for some j, and r

�
(k)"0 otherwise. We can de"ne the

multi-rate hold operator H: u� C u by the dynamical
system

�(t�
�
)"(I!�

�
)�(t

�
)#�

�
u�
�
, �(t

�
)"0,

u(t)"�(t).
(15)

where �(t�
�
) :"lim

�W��
�(t) is the limit of �(t) as t tends to

t
�
from above. Clearly � is left-continuous. In this system,

only those components of u�
�
which correspond to active

hold operators are used at time t
�
; the other components

are ignored.
Note from the de"nitions that there is no direct feed-

through from u�
�
to y�

�
, even ifD

��
O0, since the sampling

is de"ned to take place the instant before the input signal
undergoes a discontinuity.
The multi-rate sampled-data problem can now be

stated as follows; we would like to "nd a discrete control-
ler K mapping y� causally to u� , such that the ¸

�
induced

norm of the closed-loop system F
�
(G,HKS) is less than

some prespeci"ed level 
'0. Without loss of generality
we choose 
"1.

4. Synthesis procedure

4.1. Construction of the jump system

Consider the continuous system G de"ned by Eq. (11).
Combined with the multi-rate sampler and hold, it can be
rewritten as

x�� (t)"AI
�
x� (t)#BI

�
w(t),

x� (t�
�
)"AI

�
(t
�
)x� (t

�
)#BI

�
(t
�
)u� (t

�
),

z(t)"CI
�
x� (t)#DI

��
w(t),

y� (t
�
)"CI

�
(t
�
)x� (t

�
), (16)

where x� (t
�
)"0, and

AI
�
"�

A B
�

0

�
�

0

�
�, BI

�
"�

B
�
0

�
�,

CI
�
"[C

�
D

��
], DI

��
"D

��
,

AI
�
(t
�
)"�

I



0

0 I!�(t
�
)�, BI

�
(t
�
)"�

0

�
�

�(t
�
)�,

CI
�
(t
�
)"[�(t

�
)C

�
�(t

�
)D

��
]. (17)

The state of the continuous system G is related to the
state of the jump system by x(t)"[I



0]x� (t). In fact, for

the particular case of the multi-rate sampled-data system,
x(t) is continuous, although x� (t) is only left-continuous.
We will write this system as

�
z

y� �"GI �
w

u� �"�
GI

��
GI

��
GI

��
GI

��
��

w

u� �. (18)

It is straightforward to verify that

�
GI

��
GI

��
GI

��
GI

��
�"�

I 0

0 S��
G

��
G

��
G

��
G

��
��

I 0

0 H� (19)

and hence that the jump system GI is equivalent to the
original multi-rate sample-data system mapping (u� ,w)
to (y� , z).
The system is represented as the jump system above,

with the n
�
extra states the states of the hold operators, so

that the input signals which are not modi"ed at any
particular time are &stored' by these states in this
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realization. The methodology presented here assumes
that the sampling does not occur at exactly the same time
as the hold operation, so that there is an e!ective delay
between measurement and control. This is di!erent from
the approach presented in, for example Bamieh and
Pearson (1992), where there is no delay.
The purpose of the jump system is to allow the control-

ler synthesis to explicitly take into account the multi-rate
nature of the problem. At times t

�
at which there is no

sampled information available, y�
�
"0, since the output

matrix CI
�
(t
�
) contains �(t

�
). The controller synthesis

procedure explicitly takes account of �(t
�
) throughCI

�
(t
�
)

and hence does not mistake this zero output for an actual
measured zero. Similarly, the e!ect of �(t

�
) in this realiz-

ation is to prevent the controller violating the restrictions
imposed by the multi-rate hold; any controller activity at
times when the hold operators are not active is not seen
by the continuous system. Hence, the closed-loop map
F
�
(GI ,K) is exactly the closed-loop map when the control-

ler K is connected via the multi-rate sample and hold to
the continuous system G.
If the sampling and hold operators are periodic, and

their rates are related by integers, then the jump system
so de"ned will also be periodic. In the sequel we shall see
that this leads to a solution computable in terms of "nite
matrices.
Since AI

�
, BI

�
and CI

�
are time-varying, we now have

the system written as a time-varying system with jumps.
The solution to the synthesis problem for such systems is
now presented.

4.2. LTV lifting

De"ne the lifting operator =: ¸
�
[0,R)Pl

�
(�¸

�
(0, h

�
]�) by x\ "(=x)"(x\

�
, x\

�
,x\

�
,2), where h

�
:"

t
���

!t
�
, and

(x\
�
)(s) :"x(s#h

�
) for s3(0, h

�
]. (20)

Clearly from the de"nition =	� exists and = is an
isometric isomorphism. This lifting operation is a slight
generalization of that found in Bamieh and Pearson
(1992).
We can now lift the system. Let z("=z and w( "=w.

Then

�
z(

y� �"�
= 0

0 I��
GI

��
GI

��
GI

��
GI

��
��
=	� 0

0 I��
w(

u� �. (21)

This lifted system has a realization

x(
���

"AK
�
x(
�
#BK

��
w(
�
#BK

��
u�
�
,

z(
�
"CK

��
x(
�
#DK

���
w(
�
#DK

���
u�
�
,

y�
�
"CK

��
x(
�
, (22)

where x(
�
"x� (t

�
), and

AK
�
:�
�
�P�
�
� ,

BK
��
:¸

�
[0, h

�
)P�
�
� , BK

��
:�
�P�
�
� ,

CK
��
:�
�
�P¸

�
[0,h

�
), CK

��
:�
�
�P�
� ,

DK
���
:¸

�
[0, h

�
)P¸

�
[0, h

�
), DK

���
:�
�P¸

�
[0, h

�
).

Speci"c expressions for these operators can easily be
derived from the state space matrices for the jump sys-
tem; we include them here for completeness.

AK
�
"e���I �AI

�
(t
�
),

BK
��

w(
�
"�

����

��

e�I �
�	�� �BI
�
w(
�
(
) d
,

BK
��

"e���I �BI
�
(t
�
),

CK
��

"CI
�
(t
�
),

(CK
��

x(
�
)(t)"CI

�
e�I � 
�	�� �AI

�
(t
�
)x(

�
,

(DK
���

w(
�
)(t)"DI

��
w(

�
(t)#CI

��
�

��

e�I � 
�	�� �BI
�
w(

�
(
) d
,

(DK
���

u�
�
)(t)"CI

�
e�I � 
�	�� �BI

�
(t
�
)u�

�
. (23)

Here t3(t
�
, t

���
]. Since= is an isometric isomorphism,

with any controller in place the induced norm of the lifted
system (22) is the same as that of the original system.

4.3. The equivalent discrete system

Having the system in lifted form does not enable us
immediately to perform the synthesis, however. The next
step is to construct a standard DT system, with "nite
dimensional input and output spaces for z and w, for
which we can apply standard synthesis techniques.
In order to do this, note that the lifted system has the

same state dimension n#n
�
as the jump system. As is

well known in the time-invariant case, this implies that
the operators BK

�
and CK

�
have "nite rank. If DK

��
were

zero, then we could simply replace these operators with
"nite matrices, and the synthesis problem would be un-
changed.We now construct the equivalent DT system for
the time-varying case.
Suppose that the system is being controlled by a DT

controller K characterized by

�
���

"A�
�
�
�
#B�

�
y
�
,

u
�
"C�

�
�
�
#D�

�
y
�
. (24)
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Connecting this controller with the realization of the
lifted system (22), the closed-loop system M :"
=F

�
(G,HKS)=	� is exactly described by

�
���

"�
AK

�
#BK

��
D�

�
CK

�
BK

��
C�

�
B�

�
CK

��
A�

�
���#�

BK
��
0 �w(

�
, (25)

z(
�
"[CK

��
DK

���
]�

I 0

D�
�
CK

��
C�

�
���#DK

���
w(

�
.

We can now de"ne new operators and rewrite (25) as

�
���

"AK �
�
�
�
#BK �

�
w(
�
,

z(
�
"CK �

�
�
�
#DK �

�
w(
�
. (26)

Making use of the block-diagonal description of this
system, we have

�"ZAK ��#ZBK �w( ,

z("CK ��#DK �w( . (27)

The following is an operator version of a well-known
result.

Theorem 3. The system M dexned by Eq. (26) is exponenti-
ally stable, and satisxes ��M��(1, if and only if there exists
a block diagonal operator X'0 such that

�
!ZHX	�Z AK � BK � 0

AK �H !X 0 CK �H

BK �H 0 !I DK �H

0 CK � DK � !I�(0, (28)

where the block structure of X is the same as that of AK �.

A proof of this result for the case when the input and
output spaces are "nite-dimensional can be found in
Dullerud and Lall (1999b). The case in which the system
is a lifted continuous-time system, and hence the input
and output spaces are in"nite-dimensional, can be pro-
ved in a similar way. Using this result, we can now prove
the following theorem.

Theorem 4. Suppose that ��DK ���(1, and that CM and BM are
block-diagonal operators satisfying

(CM HCM )
�
"(CK �H(I!DK �DK �H)	�CK �)

�
,

(BM BM H)
�
"(BK �(I!DK �HDK �)	�BK �H)

�
. (29)

Dexne AM :"AK �#BK �(I!DK �HDK �)	�DK �HCK �. Then the fol-
lowing conditions are equivalent:

(i) 1 � spec(ZAK �) and ��CK �(I!ZAK �)	�ZBK �#DK ���(1
(ii) 1 � spec(ZAM ) and ��CM (I!ZAM )	�ZBM ��(1.

Proof. The proof makes use of repeated application of
the Schur complement formula. Applying this to Eq. (28),

we have that condition (i) above holds if and only if there
exists a block diagonal X'0 such that

�
!ZHX	�Z AK �

AK �H !X�
!�

BK � 0

0 CK �H��
!I DK �H

DK � !I�
	�

�
BK �H 0

0 CK ��(0. (30)

By directly expanding the matrix inverse, it is clear that
this is tantamount to

�
!ZHX	�Z AK �

AK �H !X�
#�

BK �(I!DK �HDK �)	�BK �H BK �(I!DK �HDK �)	�DK �HCK �

CK �HDK �(I!DK �HDK �)	�BK �H CK �H(I!DK �DK �H)	�CK � �(0,

(31)

which we can immediately rewrite as

�
!ZHX	�Z#BM BM H AM

AM H !X#CM HCM �(0. (32)

Reversing the Schur complement formula, this holds if
and only if

�
!ZHX	�Z AM BM 0

AM H !X 0 CM H

BM H 0 !I 0

0 CM 0 !I�(0, (33)

which holds if and only if condition (ii) above holds. �

The following result is an immediate consequence of
this. It states that a given controller achieves a closed-
loop induced norm bound of less than 1 for this system if
and only if it achieves a closed-loop induced norm bound
of less than 1 for a standard DT system, constructed in
the hypotheses.

Theorem 5. Suppose ��DK
���

��
�����

(
 holds for all k*0,
where 
(1. Then let GM be a purely DT system with state
space realization given by

x
���

"AM
�
x
�
#BM

��
w
�
#BM

��
u
�
,

z
�
"CM

��
x
�
#DM

���
u
�
, (34)

y
�
"CM

��
x
�
,

where

AM
�
"AK

�
#BK

��
DK

���
(I!DK

���
DK H

���
)	�CK

��
, (35)

BM
��

"BK
��

#BK
��

DK
���
(I!DK

���
DK H

���
)	�DK

���
, (36)

CM
��

"CK
��
, (37)

Ķ
�
"(I!DK

���
DK H

���
)	�, (38)
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and BM
�
,CM

�
,DM

��
satisfy

BM
��

BM H
��

"BK
��
(I!DK H

���
DK

���
)	�BK H

��
, (39)

�
CM H

��
DM H

���
�[CM �� DM

���
]"�

CK H
��

DK H
���
� Ķ

�
[CK

��
DK

���
]. (40)

Then the following are equivalent:

(i) The controller K stabilizes the jump system GI and the
closed-loop system satisxes ��F

�
(GI ,K)��

�����
(1

(ii) The controller K stabilizes the DT system GM and the
closed-loop system satisxes ��F

�
(GM ,K)��l

��l
�
(1.

Note that in the above theorem, BM
�
, CM

�
, and DM

��
are

not uniquely de"ned, but they can always be constructed
using simple matrix factorizations. Also it is clear that the
hypothesis is reasonable; if the norm ��DK

���
��
�����

is not
uniformly less than 1 then no controller achieving the
desired performance will exist. The latter, so-called com-
pression norm, can be computed using a variety of tech-
niques (Dullerud, 1999; Flamm & Mitter, 1987; Foias,
Tannenbaum, & Zames, 1987; Zhou & Khargonekar,
1987). An immediate corollary is the following.

Corollary 6. Let GM be dexned as in Theorem 5. Then the
following are equivalent:

(i) The controller K stabilizes the DT system GM , and the
closed-loop system satisxes ��F

�
(GM ,K)��l

��l
�
(1.

(ii) The controller K stabilizes the multi-rate sampled-data
system G and the closed-loop system satisxes
��F

�
(G,HKS)��

�����
(1.

Formulae for the equivalent DT system. We now pro-
ceed to give formulae for the above DT system. Clearly,
all we need to do is calculate the composition of the
relevant operator expressions for the lifted system to
construct the "nite dimensional matrices

BK
��
(I!DK H

���
DK

���
)	�BK H

��
, (41)

�
CK H

��
DK H

���
�(I!DK

���
DK H

���
)	�[CK

��
DK

���
], (42)

BK
��

DK
���
(I!DK

���
DK H

���
)	�CK

��
[CK

��
DK

���
]. (43)

This task is straightforward and can be performed using
similar methods to those used in the single-rate sam-
pled-data case in Bamieh and Pearson (1992), Cantoni
and Glover (1996), Hara and Kabamba (1990), Chen and
Francis (1996), and Toivonen (1993). Since the derivation
is standard we omit it here, and simply state the formulae.
De"ne the Hamiltonian matrix

E"�
!AI H

�
!CI H

�
DI

��
MI BI H

�
!CI H

�
I̧ CI

�
BI
�
MI BI H

�
AI

�
#BI

�
MI DI H

��
CI

�
�, (44)

where I̧ "(I!DI
��

DI H
��
)	� and MI "(I!DI H

��
DI

��
)	�.

Let Q
�
"e���, and partition Q

�
as

Q
�
"�

Q
���

Q
���

Q
���

Q
���
�, (45)

where Q
���
has the same dimension as AI

�
. Then

BM
��

BM H
��

"Q
���

Q	�
���
, (46)

�
CM H

��
DM H

���
�[CM �� DM

���
]

"!�
AI

�
(t
�
)H

BI
�
(t
�
)H�Q	�

���
Q

���
[AI

�
(t
�
) BI

�
(t
�
)], (47)

AM
�
"Q	��

���
AI

�
(t
�
), (48)

BM
��

"Q	��
���

BI
�
(t
�
), (49)

CM
��

"CI
�
(t
�
). (50)

The "nal DT system is obtained by symmetric factoriz-
ation of expressions (46) and (47); all that remains is to
synthesize a controller for this discrete-time system.

5. Discrete LTV synthesis

We now wish to synthesize a controller for the discrete
system GM in (34). This system will be periodic, if the
multi-rate sample and hold operators are periodic and
have rational rates. However, in the general case this will
not be the case, and as a result both the jump system
GI and the DT system GM will be aperiodically time-vary-
ing. We therefore turn to the problem of synthesizing
a controller for this time-varying system.
Making use of De"nition 2, the matrix sequences

AM
�
, BM

��
, BM

��
, CM

��
, CM

��
and DM

���
in (34) de"ne block-

diagonal operators, which we will denote by AM , BM
�
, BM

�
,

CM
�
, CM

�
and DM

��
. Then we can rewrite (34) as

x"ZAM x#ZBM
�
w#ZBM

�
u,

z"CM
�
x#DM

��
u,

y"CM
�
x. (51)

Further, for each k, de"neN�
�
to be an orthonormal basis

for the null space of [BM H
��

DM H
���
] and N�

�
to be an or-

thonormal basis for the null space of [CM
��

DM
���
]. Let

NM �"diag�N�
�
,N�

�
,2� andNM �"diag�N�

�
,N�

�
,2�. The

following result is taken from Dullerud and Lall (1999b).

Theorem 7. The following are equivalent:

(i) There exists a controller K that stabilizes the DT
system GM , and the closed-loop system satisxes
��F

�
(GM ,K)��l

��l
�
(1.
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(ii) There exist block diagonal operators RM ,SM 3L(l
�
),

RM '0, SM '0, such that

�
NM � 0

0 I�
H�

AM RM AM H!ZHRM Z AM RM CM H
�

BM
�

CM
�
RM AM H CM H

�
RM CM

�
!I 0

BM H
�

0 !I�
�

NM � 0

0 I�(0,

�
NM � 0

0 I�
H�

AM HZHSM ZAM !SM AM HZHSM ZBM
�

CM H
�

BM H
�
ZHSM ZAM BM H

�
ZHSM ZBM

�
!I 0

CM
�

0 !I�
�

NM � 0

0 I�(0,

�
RM I

I SM *0�.
The above result is a characterization of the existence

conditions for LTV synthesis for DT systems in terms of
a$ne operator inequalities. It is equivalent to the usual
characterization in terms of a DT Riccati recursion over
in"nite time, such as can be found in Xie et al. (1993).
However, the above formulation is convex, and as such
holds the possibility for analysis of almost periodic sam-
pled-data systems. Indeed, it is reasonable to assume that
given a solution to the above operator inequalities, small
perturbations to the sampling times (but not the samp-
ling rate) will not cause that solution to be infeasible.
Hence, this gives some justi"cation to the standard treat-
ment that sample and hold rates are exact.
The following corollary provides a general solution to

the multi-rate sampled-data problem.

Corollary 8. There exists a discrete multi-rate sampled-
data controller K for the LTI system G such that the closed-
loop system is stable and satisxes ��Fl(G,HKS)��

�����
(1

if and only if there exists block diagonal operators RM and
SM satisfying the linear matrix inequalities of Theorem 7(ii).

5.1. Synthesis for periodic systems

In general, the above operator inequalities for the
general time-varying problem are di$cult to compute,
with little currently known about numerical methods for
the in"nite dimensional case. As far as the authors are
aware, there are only numerical techniques currently
available for the case when the sample and hold oper-
ators are periodic, and their rates are related by rational
numbers. In this case, jump system (16) will also be
periodic. This implies that �

�
, �

�
, and h

�
must all be

periodic. Let the periodicity be j, so that h
���

"h
�
,

AI
�
(t
�
)"AI

�
(t
���
), BI

�
(t
�
)"BI

�
(t
���
), and CI

�
(t
�
)"CI

�
(t
���
)

for all k*0.
For the case when the system matrices are all periodic,

then it is shown in Dullerud and Lall (1999b) that the
RM and SM operators can always be chosen to have periodic
diagonal blocks. In this case, the above problem becomes
the simple matrix inequality as follows. De"ne the block
diagonal matrices

A
M
"diag�AM

�
,2,AM

�	�
�,

B
M �

"diag�BM
���
,2,BM

���	�
�,

B
M �

"diag�BM
���
,2,BM

���	�
�,

C
M �

"diag�CM
���
,2,CM

���	�
�,

C
M �

"diag�CM
���
,2,CM

���	�
�,

D
M ��

"diag�DM
����
,2,DM

����	�
�,

N
M
�"diag�N�

�
,2,N�

�	�
�,

N
M
�"diag�N�

�
,2,N�

�	�
� (52)

and the cyclic shift matrix

ZI "�
0 2 0 I

I � 0

� �

I 0�. (53)

Theorem 9. Suppose the DT system GM is periodic, with
period j. Then there exists a controller K such that
the closed-loop system is stable and satisxes
��Fl (GM ,K)��l

��l
�
(1 if and only if there exist block-diag-

onal matrices R'0 and S'0 satisfying

�
N
M
� 0

0 I�
H�

A
M
RA

M
H!ZI HRZI A

M
RC

M
H
�

B
M �

C
M �

RA
M
H C

M
H
�
RC

M �
!I 0

B
M
H
�

0 !I�
�

N
M
� 0

0 I�(0,

�
N
M
� 0

0 I�
H�

A
M
HZI HSZI A

M
!S A

M
HZI HSZI B

M �
C
M
H
�

B
M
H
�
ZI HSZI A

M
B
M
H
�
ZI HSZI B

M �
!I 0

C
M �

0 !I�
�

N
M
� 0

0 I�(0,

�
R I

I S�*0.

The following corollary is the main result of this paper.

Corollary 10. Suppose that the sequences h
�
, �

�
and

�
�
characterizing the multi-rate sample and hold devices
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are periodic in k. Then there exists a discrete multi-
rate sampled-data controller K for the LTI system G such
that the closed-loop system is stable and satisxes
��F

�
(G,HKS)��

�����
(1 if and only if there exist block

diagonal matrices R'0 and S'0 satisfying the linear
matrix inequalities of Theorem 9.

These conditions are linear matrix inequalities, and
hence the constraints they express onR and S are convex.
Standard convex optimization techniques and software
can be used to check for existence of feasible solutions.
Thus we have reduced the question of whether there

exists a multi-rate sampled-data controller for the LTI
system G to a set of "nite dimensional linear matrix
inequalities. All that remains is to construct the controller.

6. Controller construction

Once we have solved the above linear matrix inequali-
ties for R and S, it remains to construct the discrete
controller. The controller is a j-periodic DT controller
with state dimension n#n

�
. It is speci"ed as

x
���

"A�
�
x
�
#B�

�
y
�
,

u
�
"C�

�
x
�
#D�

�
y
�
. (54)

This controller has the usual DT state space form. Note
that, when implementing this controller, at any time k at
which there is no sampled measurement available on
a given channel that channel should simply be set to zero.
In this way the measured signal y

�
is exactly that produc-

ed by the jump system for which the controller achieves
the desired induced-norm. Similarly the controller pro-
duces a control signal u

�
at all times k, and if a hold

channel is not active at that time then it should simply
ignore the signal.
In order to construct the controller, a convex optim-

ization in the form of a linear matrix inequality must be
solved. De"ne the matrices J

�
by

J
�
"�

A�
�

B�
�

C�
�

D�
�
�. (55)

The following procedure is used to construct the LMI; it
is an extension of the methods used for time-invariant
systems in Gahinet and Apkarian (1994) to the time-
varying case.
The "rst step is to construct nonsingular matrices

M
�
, N

�
such that M

�
NH

�
"I!R

�
S
�
where R

�
and

S
�
are the kth block of the block-diagonal matrices R

and S respectively. Now construct the matrices
�X

�
,2,X

�	�
�, where X

�
3��

�
� ���

�
� � is the unique

solution of

�
S
�

I

NH
�
0�"X

��
I R

�
0 MH

�
�. (56)

The controller is given by "nding a solution J
�
to the

linear matrix inequality

H
�
#QH

�
JH
�
P

�
#PH

�
J
�
Q

�
(0, (57)

where

H
�
"�

!X	�
���

A�
�

B�
�

0

A�H

�
!X

�
0 C�H

�
B�H

�
0 !I 0

0 C�
�

0 !I�, (58)

P
�
"��

0 I

BM H
��

0��
0 0

0 0� �
0

0� �
0

DM H
���
��, (59)

Q
�
"��

0 0

0 0��
0 I



CM

��
0��

0

DM
���
��
0

0�� (60)

and

A�
�
"�

AM
�

0

0 0

�
�
�, B�

�
"�

BM
��
0 � (61)

C�
�
"[CM

��
0]. (62)

Since this controller achieves the desired performance
for the DT system GM , when connected to the multi-rate
sampled-data system G it achieves the induced norm
performance that ��F

�
(G,HKS)��(1 as required.

7. Example synthesis

The numerical procedure is as follows; "rst, for a given
sample and hold rate, the jump system is constructed.
Then the standard binary search over candidate 
 values
for performance is performed, with a test for controller
existence for each value of 
. For each candidate 
, the
equivalent DT system is constructed, and the matrix
inequalities of Theorem 9 tested for feasibility. If they are
feasible, then 
 is decreased and the binary iteration
continues until the desired tolerance is achieved.
As an example, we consider the following arbitrarily

chosen system

A"�
!0.5485 1.0812

0.3041 !2.6803�, B
�
"�

1.3908 !1.1711

0.0364 0.5731 �,

B
�
"�

1.3572 !1.7605

0.3329 0.0048 �, C
�
"[0.3359 0.6503],

C
�
"[!0.6097 0.2265], D

��
"[1.2005 0.3263],

D
��

"[0.8595 !0.5162], D
��

"[!0.0406 0.3559].

The optimal H
�
norm achievable using a continuous

controller for this system is 1.2441.
Our "rst synthesis for this system is a simple multi-rate

problem, with actuation rates half of the sensing rates.
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Table 1
Achieved induced norm for multi-rate syntheses

Sample Hold period Hold period 

period (channel 1) (channel 2)

1 0.75 1.5 1.5 1.5616
2 0.75 1.5 0.75 1.4225
3 0.75 0.75 1.5 1.4196
4 0.75 0.75 0.75 1.4148
5 0.75 1.5 1.5 (o!set) 1.4240

Fig. 2. Input signals for Experiment 5.Sampling rates are chosen su$ciently slow that the sam-
pled-data performance is signi"cantly less than the con-
tinuous performance. Using a sample period of 0.75 and
a hold period of 1.5, the optimal achievable closed-loop
induced norm is 1.5616. The compression norm calcu-
lation of ��DK

���
��
�����

was carried out using the method
in Dullerud (1999); this is only required for k"1, the
longest time interval between jumps.
As shown in Table 1 decreasing the hold interval on

either channel leads to better performance. Experiments 2
and 3 have one actuator channel twice the speed of the
other. Experiment 5 is di!erent from Experiment 1 in
that the two actuator channels are o!set from each other
by half the actuation period, as shown in Fig. 2. In
Experiment 5, the � and � matrices are given by

�
�
"�

0 0

0 1�, �
�
"�

1 0

0 0�, �
�
"1, �

�
"1.

This leads to an improved performance over the case
when the two channels are actuated at the same time with
a period of 1.5. In fact, it can be shown that the induced-
norm must be greater than that achievable by doubling
either actuator rate, although it need not be less than the
synchronous case.
For this system, where the state dimension is 2, the

hold period is twice the sample period, and there are
2 inputs, the resulting matrix inequalities consist of an
optimization over two 8�8 block diagonal matrices. For
a processor with a specfp of about 30, these computations
required about 100 s overall using standard tools such as
MATLAB and the LMI Control toolbox (Gahinet,
Nemirovski, Laub, & Chilali, 1995).
Further details of this speci"c example are provided in

the following subsection. However, at this point we pro-
vide some general comments about the computational
e!ort required to perform synthesis using Theorem 9 and
the controller construction of Section 6.
In Theorem 9, the two variables are R and S, which are

symmetric block diagonal matrices. Each block is
(n#n

�
)�(n#n

�
) in dimension, making the total num-

ber of decision variables (n#n
�
)(n#n

�
#1)j, where j is

the system period. These decision variables are subject to
the three LMIs given in the theorem. Since the block-
diagonal matrices A

M
, B

M
, C

M
, D

M
are sparse, the LMIs are

equivalent to the following j coupled LMIs

�
N�

�
0

0 I�
H�

AM
�
R

�
AM �

�
!R

���
AM

�
R

�
CM �

���
BM
���

CM
���

R
�
AM �

�
CM

���
R

�
CM �

���
!I DM

����
BM �
���

DM H
����

!I �
�

N�
�
0

0 I�(0,

�
N�

�
0

0 I�
H�

AM �
�
S
���

AM
�
!S

�
AM �

�
S
���

BM
���

CM
���

BM �
���

S
���

AM
�

BM H
���

S
���

BM
���

!I DM H
����

CM
���

DM
����

!I �
�

N�
�
0

0 I�(0,

�
R

�
I

I S
�
�*0,

where 0)k)j!1. Thus, for long periods we can
expect that computations will be expensive if general
purpose LMI software is used, as both the number of
decision variables and the number of constraints grows
linearly in the period j. Directly implementing this will
lead to a greater than linear (but polynomial) growth rate
with respect to the period j; see Nesterov and Nemirov-
skii (1994) for details on analysis of computational cost of
current general purpose semide"nite programming algo-
rithms. The above LMIs have a very speci"c recursive
structure, so specialized routines for exploiting this may
be possible. It is also important to note, once R and
S satisfying the above inequalities are found, that from
(57) we see the computational e!ort required to explicitly
construct an admissible controller K grows linearly with
the system period.
In Sagfors et al. (1997c, 1998) a multirate synthesis

problem is solved in terms of two algebraic Riccati equa-
tions. Although this solution is restricted to systems with
rank constraints, the number of synthesis conditions one
has to check grows linearly with respect to the period.
These conditions can be computed via a matrix recur-

sion in explicit form.
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Fig. 3. Input signals for Experiment 3.

The earlier multi-rate approaches in Chen and Qiu
(1994), and Voulgaris and Bamieh (1993) use lifting tech-
niques to convert the multirate synthesis problem, to
a constrainedmodel matching problem. The constraint is
that the D-matrix of the lifted compensator must be
lower block-triangular (causal). In Chen and Qiu (1994)
the results of Glover, Limebeer, Doyle, Kasenally, and
Safonov (1991) are "rst used to parametrize all solutions
to the unconstrained model matching problem. Then,
using nest algebra theory, explicit matrix conditions are
provided for determining whether an element of this
parametrization exists, which satis"es the required
causality constraint. A di!erent approach is used in
Voulgaris and Bamieh (1993), and the model matching
problem is solved by appealing directly to Voulgaris,
Dahleh, and Valavani (1991), where the related discrete
time problem is solved in terms of a "nite dimensional
convex programming problem, plus a standard Nehari
problem.

7.1. Numerical details for Experiment 3

In Experiment 3, the sampling period is 0.75, the "rst
actuator channel has hold period of 0.75, and the second
actuator channel has hold period of 1.5. Actuator inputs
when the system is driven by noise are shown in Fig. 3.
Both holds occur synchronized with the sampler. Ap-

plying the construction of Section 3, the� and �matrices
are

�
�
"�

1 0

0 1�, �
�
"�

1 0

0 0�, �
�
"1, �

�
"1.

The optimal achievable norm, 

�
, was found to be

1.4196. A controller was synthesized for a desired

"1.4204, and this controller achieved a closed-loop
norm of 1.4199. The induced norm of the closed-loop was
computed by converting the "nal closed-loop system to
a jump system and using an analysis procedure based on
the methods in this paper.
The synthesis results in a state space controller whose

parameters are

A�
�
"�

!0.0830 0.0231 0.1210 0.4738

!0.3620 0.1027 0.3781 1.0694

!0.0983 0.0285 0.0629 0.0245

0.5824 !0.1671 !0.4892 !0.9246�,
A�

�
"�

!0.0405 !0.0032 0.0692 0.0773

!0.5653 0.1154 0.4599 0.3554

!0.0207 !0.0134 0.0829 0.0928

!0.3498 0.0016 0.5494 0.5356�,

C�
�
"�

134.2302 !38.2747 !128.8920 !320.9355

136.9993 !39.1042 !128.9204 !309.9957�,

C�
�
"�

!63.4246 !3.7096 115.8516 115.1837

0 0 0 0 �,

B�
�
"�

!3.3042

!6.0095

0.6089

2.9592��10	�, B�
�
"�

!2.9397

!7.0285

0.3593

!0.4840��10	�,

D�
�
"�

1.5910

1.4759�, D�
�
"�

0.5894

0 �.
The Matlab code which was used to perform these

computations has been developed in the form of a
toolbox for solving general H

�
sampled-data problems,

and is available from the web site, http://www. stanford.
edu/& lall.

8. Conclusions

We have given an explicit method forH
�
synthesis for

multi-rate sampled-data systems. The techniques require
only the solution of "nite-dimensional LMIs. The condi-
tions for existence of a controller achieving the desired
performance are necessary and su$cient, and can be
computed simply by testing the feasibility of two LMIs,
using standard numerical methods. Furthermore, these
conditions put no unnecessary restrictions on the realiz-
ation of the system to be controlled.
The techniques are directly applicable to a wide class

of multi-rate sampled-data problems; indeed, any prob-
lem where the jump system is periodic may be immedi-
ately solved. This covers the class of systems in which the
sample and hold devices are synchronous and rational,
for which previous synthesis techniques have been de-
veloped, and also covers other systems, such as those in
which di!erent sample channels are running at the same
rates, but are o!set by some "xed, not necessarily ra-
tional, time from each other.
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Themain problem solved in this paper is the multi-rate
sampled-data synthesis problem. However, any problem
which can be cast into the jump system framework can
also be solved in exactly the same way; this includes the
calculation of the induced-norm for multi-rate sampled-
data problems, and sampled-data analysis and synthesis
problems where the system G is composed of several
discrete and continuous components connected via mul-
tiple sample and hold-devices. In this paper we have also
concentrated on the case when G is linear time-invariant.
In the time-varying case only the formulae (46)}(50)
require modi"cation; the methods and results remain
unchanged.
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