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Abstract— In this paper, we address the question of global
asymptotic stability of TCP/AQM congestion control proto-
cols. We analyze a well-known model, whose dynamics were
previously shown to be locally stable via analysis of its
linearization. We show that in fact the nonlinear dynamics
are globally stable, and we explicitly account for the effects of
both nonlinearities and time-delays in the dynamics. These
results apply to the case of a single link with sources of
identical fixed delay, and show that global stability holds under
the same conditions that local stability does. The dynamic
model analyzed is nonlinear, nonsmooth, and contains a delay,
and the proof is based on the theory of integral-quadratic
constraints.

I. INTRODUCTION AND PRIOR WORK

The analysis of Internet congestion control protocols
has received much attention recently. Explicit mathematical
modelling of the Internet has allowed analysis of existing
protocols from a number of different theoretical perspec-
tives and has generated some suggestions for improvement
to current protocols. This work has been motivated by
concern about the ability of the current protocols to ensure
stability and performance of the Internet as the number
of users and amount of bandwidth continues to increase.
Although the protocols that have been used in the past have
performed remarkably well as the Internet has increased
in size, analysis [1] indicates that as capacities and delays
increase, instability will become a problem.

Many algorithms have been proposed for Internet conges-
tion control, some of which have been shown to be globally
stable in the presence of delay and nonlinearities [2], [3],
[4], [5], [6]. In all of these cases, stability has been shown
with various restrictions on system parameters and the
number of links in the network.

In this paper, we address the question of global asymp-
totic stability of TCP/AQM congestion control protocols.
We analyze a well-known model, whose dynamics were
previously shown to be locally stable via analysis of its
linearization in [7]. We show that in fact the nonlinear
dynamics are globally stable, and explicitly account for
the effects of both nonlinearities and time-delays in the
dynamics. These results hold in the case of a single link with
sources of identical fixed delay under the same conditions
on the system parameters as used in [7].

In Low and Lapsley [3], it was shown that the dynamics
of the Internet with certain control algorithms could be
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interpreted as a decentralized implementation of the gra-
dient projection algorithm to solve the dual to the network
optimization problem, thus showing global convergence to
optimality for sufficiently small step size. In Paganini et
al. [7] it was shown with a certain class of the pricing
functions that a bound of α < π/2 on a certain parameter α
at the source allows a proof of linear stability for arbitrary
topology and heterogeneous time delays. Global asymptotic
stability with time-delay of the protocols by Paganini et
al. was discussed by Wang and Paganini [4] for a non-
linear implementation. In the single-source with a single-
link case, this paper gave a proof of global asymptotic
stability with time delay for all α < αmax, where αmax =
ln(xmax/c)/

(
(xmax/c)−1

)
, c is the capacity of the link and

xmax is a maximum data rate parameter. In this paper, we
show that for all 0 < α < παmax/2, the congestion control
algorithm with time-delays is globally asymptotically stable.
If xmax = c, then αmax = 1 and this is the same bound used
in [7] for the linearized case.

This paper uses an input-output approach to stability,
similar to the work in [6], [4]. The input-output stability
result is then used to prove global asymptotic stability. The
paper is organized as follows. We first discuss the deriva-
tion of the proposed algorithm from the general network
optimization problem in Section II-B. In Section II-C, we
discuss stability in terms of delay-differential equations and
the interconnection of operators and give a generalization
of passivity theory in the form of IQCs. In Section III-
A, we form the interconnection and in Sections III-B
through III-D we use IQC theory to prove stability. We
then conclude global asymptotic stability and briefly discuss
implementation.

II. BACKGROUND MATERIAL

A. Notation

The space of continuous functions φ : R
+ → R

n is
denoted by C with norm ‖φ‖ = supθ‖φ(θ)‖. We use Cτ

to denote the space of continuous functions which map
[0, τ ] → R

n with the same norm. A function x : R → R

is absolutely continuous if for any integer N and any
sequence t1, . . . , tN , we have

∑N−1
k=1 |x(tk)−x(tk+1)| → 0

whenever
∑N−1

k=1 |tk − tk+1| → 0. The closed norm ball of
radius β is denoted by B(β).

L2(−∞,∞) is the Hilbert space of Lebesgue measurable
complex vector-valued functions x : R → C

n with inner-
product 〈u, v〉2 =

∫ ∞

−∞
u(t)∗v(t)dt, where u(t)∗ denotes

the conjugate transpose of u(t). L2 denotes L2[0,∞) =
{x ∈ L2(−∞,∞) | x(t) = 0 for all t < 0 } and is
a Hilbert subspace of L2(−∞,∞). PT is the truncation
operator such that if y = PT z, then y(t) = z(t) for all
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t ≤ T and y(t) = 0 otherwise. L2e denotes the space of
functions such that for any T > 0 and y ∈ L2e, we have
PT y ∈ L2. The dimensions of the various L2 spaces used
should be clear from context and are not explicitly stated.
A causal operator H : L2e → L2e is bounded if H(0) = 0
and if it has finite gain, defined as

‖H‖ = sup
u∈L2 �=0

‖Hu‖

‖u‖

L̂2 denotes the Hilbert space of complex vector-valued
functions on the imaginary axis, x : jR → C

n with
inner-product 〈û, v̂〉2 = 1

2π

∫ ∞

−∞
û(jω)∗v̂(jω)dω. L̂∞ de-

notes the Banach space of matrix-valued functions on the
imaginary axis, Ĝ : jR → C

m×n with norm ‖Ĝ‖∞ =

ess supω∈R
σ̄

(
Ĝ(jω)

)
where σ̄(Ĝ(jω)) denotes the max-

imum singular value of Ĝ(jω). û denotes the either the
Fourier or Laplace transform of u, depending on u. We will
also make use of the following specialized set of transfer
functions, A, defined to be those transfer functions which
are the Laplace transform of functions of the form

g(t) =

{
h(t) +

∑N
i=1 giδ(t − ti) if t ≥ 0

0 otherwise

where h ∈ L1, gi ∈ R and ti ≥ 0.

B. The Internet Optimization Problem

We view the Internet as an abstract collection of sources
and links. The term source refers to a connection between
a user and a single destination. Sources transmit data in
packets. The rate at which a source i transmits packets is
dictated by the round-trip time, the time taken for the user
to receive acknowledgements for transmitted packets, τi, as
well as by the number of packets which are allowed to
be simultaneously unacknowledged (or window size), wi.
In this paper, we assume that packet losses do not affect
the source transmission rates. We assume that acknowledge-
ments contribute to delay but do not contribute to congestion
at the links. We assume a fixed bit size for all packets and
that τi is known at least for the purposes of determining
data rate. The packet transmission rate, xi, at source i can
be controlled by the window size according to

wi = xiτi. (1)

The term link refers to a single congested resource such
as a router. Packets arriving at a link enter an entrance
queue. A link can process packets in the queue at rate
capacity cj . If too many data packets arrive in a given period
of time, the size of the queue may grow and some packets
may experience a queueing delay while in the queue. In
this paper, we assume that the dynamics from this variable
queueing delay are negligible and we only model the delay
due to the fixed propagation time. Links are also able to feed
back information. This can be done either through the ECN
bit in the packet header, through packet dropping schemes
or through measurement of variations in queueing delay.

The value of the congestion indicator at the link is denoted
pj . In most schemes the congestion indicator received at
each source is the summation of the indicators of all links
in the source’s route. This value is denoted qi.

Sources and links are related by routing tables which
specify the route or set of links, Ji through which the
packets from source i to a certain destination must pass.
The rate of packets received at a link is then the sum of
the rates of all sources using that link and is denoted by yj .
The set of users for link j is denoted Ij . Ignoring delay for
the moment, we have the following equations.

y = Rx, y ≤ c, q = RT p,

where

Rji =

{
1 if source i uses link j

0 otherwise

1) Optimization Model: The following model for opti-
mizing flow rates in a network was proposed by Kelly et
al. [8].

maximize
N∑
i

Ui(xi)

subject to x ≥ 0, Rx ≤ c

Assume that the Ui are strictly concave non-decreasing
functions. Note that, as N increases, the problem becomes
progressively more difficult to solve using a centralized
algorithm. The dual problem has dual variable p ∈ R

M ,
where M is the number of links, and is given by

minimize h(p)

subject to p ≥ 0

where the dual function h is given by

h(p) = max
x≥0

∑
i

(Ui(xi)) − pT (Rx − c)

=
∑

i

Ui(xopt,i) − pT (Rxopt + c),

where q = RT p and xopt,i = U ′−1
i (qi).

We would like to construct a dynamical system which
converges to the solution of the dual problem. One such
system is given by the gradient projection algorithm. In
discrete-time, this is

pj(t + 1) = max{0, pj(t) − γjDjh(p(t)}, (2)

where Dj denotes the partial derivative with respect to the
j’th argument. A continuous-time analog is

ṗj(t) =

{
γjDjh(p(t)) if pj(t) > 0

max{0, γjDjh(p(t))} otherwise
(3)

Here γj denotes a parameter, corresponding to step-size in
discrete time.
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This algorithm has the remarkable property that it is
decentralized, corresponding to the separable structure of
the constraints. For network optimization, it is as follows.

ṗj(t) =

{
γ(yj(t) − cj) pj(t) > 0

max{0, γ(yj(t) − cj)} pj(t) ≤ 0

xi(t) = U ′−1
i (qi(t)), y(t) = Rx(t), q(t) = RT p(t)

If γ is sufficiently small, the gradient projection algorithm
will converge to the solution of the dual problem [3].
Because of convexity of the problem, strong duality implies
that xopt will converge to the solution of the primal problem.
The gradient projection algorithm can be implemented in
the Internet in the following manner. pj is computed at
each of M links. Link j requires only knowledge of yj to
compute this value. xopt,i is computed at each of N sources.
Source i requires only knowledge of qi to compute this
value.

2) Stability Properties: We must also consider the delay
in transmitting packets from the source to the link and then
receiving acknowledgements at the source. The delay from
source i to link j is denoted τf

ij and the delay from link
to source is denoted τ b

ij . For any source, the total round
trip time is fixed, i.e. τi = τf

ij + τ b
ij for all j ∈ Ji. We

express these delays in the frequency domain by replacing
the entries of the routing matrix R with delay transfer
functions, giving

y(s) = Rf (s)x(s), q(s) = Rb(s)T p(s)

Rf
ji(s) =

{
e−τ

f
ij

s if source i uses link j

0 otherwise

Rb
ji(s) =

{
e−τb

ijs if source i uses link j

0 otherwise

This system has a stable linearization about its positive
equilibrium point [7] if γj = 1/cj and

d

dqi

U ′−1
i (qi) = −

αi

Miτi

U ′−1
i (qi),

where Mi is a bound on the number of links in the path of
source i and αi < π/2. The choice of

Ui(x) =
Miτi

αi

(
1 − ln

x

xmax,i

)
,

with x ≤ xmax,i was suggested in [7] as a utility function

such that U ′−1
i (q) = xmax,ie

−
αi

Miτi
q, has the necessary

derivative. In the case of a single source and a single
link, the paper by Wang and Paganini [4] has shown this
implementation to be globally stable for α < αmax. When
xmax = c, then αmax = 1 and this condition becomes α < 1.

C. Stability Analysis using Passivity

Two definitions of stability will be used in this paper. The
first, finite-gain L2 stability, is used to define stability of

an interconnection of operators and is a property of input-
output behavior. The second defines stability of a delay-
differential equation and is a property of the behavior of
the state given initial conditions. Consider the following

g

f

y

G

+

+ u

É

Fig. 1. Interconnection of systems

equations which define an interconnection between G and
∆ where Ĝ ∈ A and ∆ : L2e → L2e is causal and bounded.

y = Gu + f

u = ∆y + g

Definition 1 (Jönsson [9], p71): The interconnection of
G and ∆ is well-posed if for every input pair (f, g) with
f, ḟ ∈ L2 and g ∈ L2e, there exists a solution u, y, ẏ ∈ L2e

and the map (f, g) → (u, y) is causal. The interconnection
is L2 stable if it is well-posed and there exists positive
constants ρ1, ρ2, c such that for all T > 0,∫ T

0

(|y(t)|2+|u(t)|2)dt ≤ ρ1‖f‖
2+ρ2‖ḟ‖

2+c

∫ T

0

|g(t)|2dt

Now consider a delay-differential equation of the following
form with the assumption that f(0, 0) = 0.

ẋ(t) = f(x(t), x(t − τ)) (4)

The state of the differential equation at time t is xt ∈ Cτ ,
where xt(θ) = x(t− τ + θ) for all θ ∈ [0, τ ]. x ∈ C is said
to be a solution of (4) with initial condition xinitial ∈ Cτ

if x(t) = xinitial(t) for t ∈ [0, τ ] and equation (4) holds
for all t ≥ τ . The following definition assumes existence
of a unique solution for any initial conditions xinitial ∈ Cτ

and that the solution depends continuously on the initial
condition.

Definition 2 (Hale [10]): The equation (4) is said to be
stable if for any ε > 0, there is a δ such that xinitial ∈
B(δ) implies that for the solution x with initial condition
xinitial, one has xt ∈ B(ε) for all t ≥ τ . The system is
asymptotically stable if it is stable and every solution tends
to 0 as t → ∞.

1) Theory of Integral-Quadratic Constraints: We now
move on to address stability of the interconnection of G
and ∆. The result is based on analysis of the behavior of
the operators with respect to the inputs and outputs.

Definition 3: For an operator, ρ : X → X , the graph of
ρ is the set of points Φ(ρ) = {(x, y) : y = ρ(x), x ∈ X}.
The inverse graph of ρ is the set Φi(ρ) = {(x, y) : x =
ρ(y), y ∈ X}.
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Many theorems concerning the stability of the intercon-
nection of operators can be viewed as separating the graph
and inverse graph of two operators. That is, if, for some
function σ : X × X → R, we have σ(x) ≥ 0 ∀x ∈ g1

and σ(y) < 0 ∀y ∈ g2, y 
= 0, then g1 ∩ g2 = 0 and
σ is a separating function, assuming both graphs contain
the origin. For example, the small gain theorem can be
expressed using σ((x, y)) = ‖x‖ − k‖y‖ for any k > 0.
Similarly, passivity can be expressed using σ((x, y)) =
〈x, y〉. Definition 4 gives a class of separating functions
which have been shown to be sufficient to prove L2 stability.

Definition 4 (Rantzer [11]): The mapping σ : L2 → R

is quadratically continuous if for every δ > 0, there exists
a ηδ such that the following holds.

|σ(x1) − σ(x2)| ≤ ηδ‖x1 − x2‖
2 + δ‖x2‖

2

for all x1, x2 ∈ L2

This class includes the small gain and passivity func-
tions. Furthermore, for any bounded linear transformations
Π1,Π2, the function Σ(w) = 〈Π1w,Π2w〉 is quadratically
continuous. In this paper we use the following results from
Jönsson [9] to prove stability.

Definition 5: Let ΠB : jR → C
n×n be a bounded and

measurable function that takes Hermitian values and λ ∈ R.
We say that ∆ satisfies the IQC defined by ΠB , λ, if there
exists a positive constant γ such that for all y, ẏ ∈ L2 and
v = ∆y ∈ L2,

1

2π

∫ ∞

−∞

[
ŷ(jω)
v̂(jω)

]∗

ΠB(jω)

[
ŷ(jω)
v̂(jω)

]
dω+2〈v, λẏ〉 ≥ −γ|y(0)|2

Theorem 6: Assume that
1) G is a linear causal bounded operator with

sĜ(s), Ĝ(s) ∈ A
2) For all κ ∈ [0, 1], the interconnection of κ∆ and G

is well-posed
3) For all κ ∈ [0, 1], κ∆ satisfies the IQC defined by

ΠB , λ
4) There exists η > 0 such that for all ω ∈ R[

Ĝ(jω)
I

]∗ (
ΠB(jω) +

[
0 λjω∗

λjω 0

])[
Ĝ(jω)

I

]
≤ −ηI

Then the interconnection of G and ∆ is L2 stable.

III. RESULTS

In this section we represent the single source/single link
case of the proposed congestion control algorithm as the
interconnection of a linear system with delay and a non-
linear system without delay. This approach was motivated
by Wang[4] and Jönsson[12]. We then show that using the
IQC defined by ΠB , λ = 2

π
, where

ΠB =

[
0 β
β − 4

π
− 2

]
(5)

and β = α/(αmaxτ) we can establish L2 stability of the
interconnection for any τ ≥ 0, 0 < α < π/2αmax. We also
show that L2 stability of the interconnection implies asymp-
totic stability of the original delay-differential equation.

A. Preliminary Results

If we consider the problem of a single link and a single
source, then from the development in Section II-B we have
that y(t) = x(t − τf ) and q(t) = p(t − τ b). The dynamics
can now be summarized as

ṗ(t) =

{
xmax

c
e−

α
τ

p(t−τ) − 1 p(t) > 0

max{0, xmax
c

e−
α
τ

p(t−τ) − 1} p(t) ≤ 0
(6)

x(t) = xmaxe
−α

τ
p(t−τb) (7)

Since the dynamics of Equation (6) are decoupled from
those of (7) and stability of x follows from that of p, we
need only consider stability of Equation (6). Now consider
the equilibrium point of Equation (6), p0 = τ

α
ln xmax

c
. As is

customary, we change to variable z, where z(t) = p(t)−p0

so that the origin is an equilibrium point. Now we have

ż(t) =

{
e−

α
τ

z(t−τ) − 1 z(t) > −p0

max{0, e−
α
τ

z(t−τ) − 1} z(t) ≤ −p0

(8)

Implicit in these dynamics is the constraint z(t) ≥ −p0.
If we assume that any initial condition will satisfy this
constraint, we can include the constraint in the dynamics
without altering the solutions. For convenience, we define
the bounded continuous functions

f1(y) = min
{
e

α
τ

y − 1, e
α
τ

p0 − 1
}

f2(y) = max
{
0, f1(y)

}
fc(x, y) =

{
f1(y) if x > −p0

f2(y) otherwise

where the domains are constrained such that y ≥ −p0.
These functions are illustrated in Figure 2. We now have

−4 −2 0 2 4
−2

−1

0

1

2

3

f 1(x
)

x
−4 −2 0 2 4

−2

−1

0

1

2

3

f 2(x
)

x

Fig. 2. f1 and f2

ż(t) = fc(z(t), z(t − τ)) (9)

Assume an initial condition which is absolutely continu-
ous. From boundedness and upper semi-continuity of the
associated differential inclusion, we can establish via Fil-
lipov [13][p77] the existence of an absolutely continuous
solution over a time interval of length τ . This solution can
be extended indefinitely by intervals of τ seconds by view-
ing the previous solution as an initial condition. Uniqueness
and continuity of solutions follows from boundedness of the
derivatives of f1 and f2 and Fillipov[p106]. Thus we have
existence and uniqueness of solutions.
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1) Separation into subsystems: Equation (9) is a delay-
differential equation defined by a nonlinear, discontinu-
ous function. To aid in the analysis, we will construct
an interconnection of systems whose L2 stability implies
asymptotic stability of the original differential equation.
Define the map G by w = Gu if

w(t) =

∫ t

t−τ

u(θ)dθ (10)

Define the map ∆ by v = ∆y if for some z̃ such that
z̃(0) = 0, we have

v(t) = ˙̃z(t), ˙̃z(t) = fc

(
z̃(t), y(t) − z̃(t)

)
If y, ẏ ∈ L2, then y is absolutely continuous (See p. 25
in Jönsson [9]). Thus we have existence and uniqueness
as above. If we form the interconnection of G and ∆ as
defined above with inputs f, g where g = 0, then z̃(0) = 0
and

˙̃z(t) = fc(z(t), f(t) − z̃(t − τ))

Now let z be the solution of the original delay differential
equation (9) with initial condition zinitial ∈ Cτ . It can
be shown that there exists some choice of f, ḟ ∈ L2

such that for some tf > 0, z̃(t + tf ) = z(t) for all
t > tf . Therefore, if for any inputs g, f, ḟ ∈ L2, we
have that limt→∞ z̃(t) = 0 where z̃ is the solution to the
equations defined by the interconnection of G and ∆, then
Equation (9) is asymptotically stable. For the remainder of
this paper, we drop the notation z̃ and simply use z. We
note that well-posedness of the interconnection of G and
κ∆ for all α, τ, κ follows from the same theorems cited
previously for existence and uniqueness of solutions.

B. ∆ satisfies the IQC

In this section we show that if α > 0, then ∆ and
consequently κ∆ are bounded and satisfy the IQC defined
by ΠB , λ = 2

π
for all κ ∈ [0, 1]. That is, for γ = 4β/π > 0,

we prove the following for all y, ẏ ∈ L2, v = ∆y.

1

2π

∫ ∞

−∞

[
ŷ(jω)
v̂(jω)

]∗ [
0 β
β − 4

π
− 2

] [
ŷ(jω)
v̂(jω)

]
+

4

π
〈v, ẏ〉

≥ −γ|y(0)|2

By Parseval’s formula, this is equivalent to

2

π
〈v, ẏ − v〉 + 〈v, βy − v〉 ≥ −

γ

2
|y(0)|2

First notice that f1, f2 are sector bounded, i.e. 0 ≤ fi(x)x ≤

βx2 where β = e
α
τ

p0−1
p0

, denoted fi ∈ sector[0, β]. Also
notice that

fc(x, y) =

{
f1(y) if x ≥ −p0 or y ≥ 0

0 otherwise

Lemma 7: If v = ∆y with y, ẏ ∈ L2, then

1) v ∈ L2 with norm bound β‖y‖,
2) 〈v, βy − v〉 ≥ 0

Proof: As a consequence of the above sector bounds,
we have

fc(x, y)2 ≤ βyfc(x, y).

Let z be the solution of Equation (11), then this implies

ż(t)2 ≤ β(y(t) − z(t))ż(t)

Now for any T ≥ 0, we have

‖PT v‖2 =

∫ T

0

v(t)2dt =

∫ T

0

ż(t)2dt

≤ β

∫ T

0

ż(t)(y(t) − z(t))dt

= β

∫ T

0

ż(t)y(t)dt −
β

2
(z(T )2 − z(0)2)

≤ β〈PT ż, y〉 (11)

≤ β‖PT ż‖‖y‖ = β‖PT v‖‖y‖

Therefore, ‖PT ż‖ ≤ β‖y‖ for all T ≥ 0. Thus v ∈ L2

with norm bounded by β‖y‖. Statement 2 follows from the
line 11 by letting T → ∞.

Lemma 8: If v = ∆y with y, ẏ ∈ L2 and z satisfies
Equation (11), then limt→∞ z(t) = 0.

Proof: Suppose T2 > T1 > 0, and let H = PT2
−PT1

.
Then

‖Hv‖2
2 =

∫ T2

T1

ż(t)2dt

≤ β

∫ T2

T1

ż(t)y(t) dt − β

∫ T2

T1

ż(t)z(t) dt

= β〈Hv, Hy〉 −
β

2
(z(T2)

2 − z(T1)
2)

≤ β‖Hv‖2‖Hy‖2 −
β

2

(
z(T2)

2 − z(T1)
2
)

Hence

z(T2)
2 − z(T1)

2 ≤ 2‖Hv‖2‖Hy‖2 −
2

β
‖Hv‖2

2

≤ 2‖Hv‖2‖Hy‖2

By Lemma 7, v ∈ L2. Since ‖v‖ and ‖y‖ exist, we can
use the Cauchy criterion to establish that for any δ >
0, there exists a Tδ such that T2 > T1 > Tδ implies
(z(T2)

2 − z(T1)
2) < δ. It can be shown this implies that

for any infinite increasing sequence {Ti}, {z(Ti)
2} is a

Cauchy sequence and therefore z(t)2 converges to a limit.
Since z is continuous, this implies that z(t) also converges
to a limit, z∞. Since y, ẏ ∈ L2, we have limt→∞ y(t) =
0. Thus limt→∞ ż(t) = limt→∞ fc(z(t), y(t) − z(t)) =
fc(z∞,−z∞) since fc is discontinuous only for z(t) =
−p0, y(t) ≤ z(t). Since ż ∈ L2, if ż has a limit, it must be
0 and since fc(z∞,−z∞) = 0 implies z∞ = 0, we have
z∞ = 0.

Lemma 9: If v = ∆y with y, ẏ ∈ L2, then 〈v, ẏ − v〉 ≥
−β|y(0)|2.
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Proof: Define the variable r(t) = y(t)− z(t) and the
set M = {t : z(t) > −p0 or r(t) ≥ 0}, then

〈v, ẏ − v〉 = 〈ż, ẏ − ż〉 =

∫ ∞

0

ż(t)ṙ(t)dt

=

∫
M

f1(r(t))ṙ(t)dt ≤ β‖y‖‖ẏ‖ + β2‖v‖2

Since y, ẏ ∈ L2, we have that y is absolutely continuous and
thus r is absolutely continuous. Since r, z are continuous
functions and since by Lemma 8, we have z(t) → 0, we can
partition the set M into the countable union of sequential
disjoint intervals

⋃
i Ii

⋃
If where Ii = [Ta,i, Tb,i) with

{Ta,i}, {Tb,i} ⊂ R
+ and If = [Ta,f ,∞). To see that the

intervals are closed on the left, suppose Ii were open on the
left. Then, since Ta,i 
∈ M , z(Ta,i) = −p0 and r(Ta,i) <
0. However, since r is continuous, r(Ta,i + η) < 0 for η
sufficiently small. Since r(t) < 0 implies ż(t) ≤ 0, we
have that z(Ta,i + η) < 0 and thus Ta,i + η 
∈ M for
η sufficiently small, which is a contradiction. Thus all the
intervals are closed on the left. Similarly, one can show that
all the intervals are open on the right. Now, consider time
Ta > 0, where Ta ∈ M defines the start of one of the
intervals described above. If z(Ta) > −p0, then since z is
continuous, z(Ta − η) > −p0 for all η sufficiently small.
Therefore Ta − η ∈ M for all η sufficiently small. This
contradicts the statement that the intervals are disjoint. We
thus conclude z(Ta) = −p0 and consequently r(Ta) ≥ 0
by definition of M . Now suppose r(Ta) > 0. Since r is
continuous, r(Ta−ε) > 0 and consequently Ta−ε ∈ M for
all ε sufficiently small, which contradicts the statement that
the intervals are disjoint. Therefore we conclude r(Ta) = 0
if Ta 
= 0. Then

〈v, ẏ − v〉 =
∑

i

∫
Ii

f1(r(t))ṙ(t)dt +

∫ ∞

Ta,f

f1(r(t))ṙ(t)dt

=
∑

i

∫ Tb,i

Ta,i

f1(r(t))ṙ(t)dt +

∫ ∞

Ta,f

f1(r(t))ṙ(t)dt

We will assume that Ta,1 = 0. If Ta,1 
= 0, we have
r(Ta,1) = 0 and the proof becomes simpler. Since f1(r) is
continuous in r and r(t) is absolutely continuous in time,
by the substitution rule we have

〈v, ẏ − v〉 =
∑

i

∫ r(Tb,i)

r(Ta,i)

f1(r)dr

=

∫ r(Tb,1)

r(0)

f1(r)dr +
∑
i�=1

∫ r(Tb,i)

0

f1(r)dr

=

∫ 0

r(0)

f1(r)dr +
∑

i

∫ r(Tb,i)

0

f1(r)dr

Since f1 ∈ sector[0, β],
∫ r(Tb,i)

0
f1(r)dr ≥ 0 for any

r(Tb,i) ∈ R. The summation converges since it is bounded,
increasing. Furthermore, since r(0) = y(0) − z(0) = y(0)

and |
∫ y

0
f1(r)dr| ≤ f1(y)y ≤ βy2 for any y, we have

〈v, ẏ−v〉 =

∫ 0

y(0)

f1(r)dr+
∑

i

∫ r(Tb,i)

0

f1(r)dr ≥ −β|y(0)|2

To summarize, we have shown that ∆ is bounded and for
any y, ẏ ∈ L2, v = ∆y, we have that 〈v, βy − v〉 ≥ 0
and 〈v, ẏ−v〉 ≥ −β|y(0)|2. Therefore, we conclude that ∆
satisfies the IQC defined by ΠB , λ = 2

π
, since

1

2π

∫ ∞

−∞

[
ŷ(jω)
v̂(jω)

]∗ [
0 β
β − 4

π
− 2

] [
ŷ(jω)
v̂(jω)

]
+

4

π
〈v, ẏ〉

≥ −
4β

π
|y(0)|2

We conclude as a consequence that κ∆ satisfies the IQC
defined by ΠB , λ = 2

π
, since

2

π
〈κv, ẏ − κv〉 + 〈κv, βy − κv〉

≥ κ(
2

π
〈v, ẏ − v〉 + 〈v, βy − v〉)

≥ −κ
2β

π
|y(0)|2 ≥ −

2β

π
|y(0)|2

C. Properties of G

0 2 4 6 8 10 12 14

−1.5

−1

−0.5

0

Fig. 3. π

2
sin(ω)

ω
−

2
π

cos(ω) − 1

Recall that we define the map G as follows. w = Gu if

w(t) =

∫ t

t−τ

u(θ)dθ.

We first note that G is a linear bounded causal operator
with Ĝ(jω) = 1−e−jωτ

jω
. Moreover, Ĝ ∈ A since G can be

represented by the convolution operation w = g ∗ u with
g(t) = step(t) − step(t − τ) ∈ L1. Also, sĜ(s) ∈ A using
g(t) = δ(t) − δ(t − τ). Now, examine the term[

Ĝ(jω)
I

]∗ (
ΠB +

[
0 λjω∗

λjω 0

]) [
Ĝ(jω)

I

]

=

[
1−e−jωτ

jω

1

]∗ [
0 β + 2

π
jω∗

β + 2
π
jω − 4

π
− 2

] [
1−e−jωτ

jω

1

]

= 2Real

(
β

1 − e−jωτ

jω
−

2

π
e−jωτ − 1

)

= 2

(
βτ

sin(ωτ)

ωτ
−

2

π
cos(ωτ) − 1

)
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The plot of βτ sin(ω)
ω

− 2
π

cos(ω)−1 is given in Figure 3 for
βτ = π/2. If 0 ≤ βτ < π

2 , then one can find some η > 0

such that βτ sin(ωτ)
ωτ

− 2
π

cos(ωτ) − 1 ≤ −η for all ω ∈ R.
Since βτ = τ(e

α
τ

p0 − 1)/p0 = α/αmax, if α < παmax/2,
we have that βτ < π/2, and hence if 0 < α < παmax/2,
condition 4 of theorem 6 is satisfied.

D. Stability of the Interconnection

In this section, we summarize with the following theo-
rem.

Theorem 10: Suppose α ∈ (0, παmax/2). Then the delay-
differential equation (6) describing the algorithm proposed
by Paganini et al. [7] is asymptotically stable about the
equilibrium.

Proof: We have shown that G is a linear causal
bounded operator, that G(s), sG(s) ∈ A, that the inter-
connection of G and κ∆ is well-posed for all κ ∈ [0, 1],
that κ∆ satisfies the IQC defined by ΠB , λ = 2

π
for all

κ ∈ [0, 1] and that for all α ∈ (0, παmax/2), condition 4
of theorem 6 is satisfied. We can therefore use Theorem 6
to prove finite-gain stability of the interconnection for any
α ∈ (0, παmax/2). Since, as already mentioned, we can
choose appropriate inputs y, ẏ ∈ L2 to recreate any initial
condition xinitial ∈ Cτ , and since for any such inputs,
Lemma 8 implies z(t) → 0, we have global asymptotic
stability of the algorithm from [7] about the equilibrium
for any α ∈ (0, παmax/2).

IV. IMPLEMENTATION

To implement the proposed algorithm in the Internet
framework, the window size is adjusted to deliver the re-
quired packet rate as given by equation (1). In implementa-
tion, the delay is unlikely to be known. In this case, a bound
on the expected delay size can be used. Overestimation of
the delay will result in an increased stability margin.

Modification of the link can take many forms. Price
information from the link must be fed back to the source.
Since queues themselves integrate excess rate, price of a
congested resource can be computed directly using the
queueing delay. However, this approach results in non-
empty equilibrium queues and the possibility of unmodeled
dynamics due to variable queueing delays. If a link instead
uses a virtual capacity to avoid non-empty equilibrium
queues, then explicit integration of incoming packets would
be required and another mechanism must be used to feed
back price information. An example of direct feedback of
price information using packet marking is given by ECN. In
one of the proposed implementations, packets are randomly
marked at each link with probability 1 − φ−pj(t) for some
fixed φ > 1. Thus, assuming no duplications, if ν is the
percentage of marked packets received at the source, then
the aggregate price can be measured as qi(t) = − log(1−ν)

log(φ) .
This variant is known as random exponential marking.

V. CONCLUSION

To conclude, for the case of a single source with a
single link, we have proven global asymptotic stability of
an implementation of the algorithm proposed by Paganini
et al. [7]. We note that as a consequence of the use of
input-output theory in the proof, we can also conclude
asymptotic stability for any price disturbance f where
f, ḟ ∈ L2. Interest in stability with respect to disturbances is
motivated by viewing internet traffic as dominated by large
sustained source transmissions or ‘elephants’ and viewing
small transient sources as noisy ‘mice’.

We note that the same stability proof also holds for
multiple sources with identical delays. The only change
required in the proof is to replace xmax with

∑
i xmax,i.

We also note that the choice of implementation U−1(q) =
xmax,ie

−α
τ

q −1 is not unique. If the function U satisfies the
continuity, monotonicity and boundedness assumptions of
the proofs, one can still conclude global asymptotic stability.
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