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Control Design for Topology-Independent Stability of

Interconnected Systems

Randy Cogill1 Sanjay Lall2

Abstract

In this paper we present a method for synthesis of de-
centralized controllers for multiple identical systems in-
terconnected on a graph. We develop a synthesis pro-
cedure for controllers which will stabilize the system for
any graph topology satisfying given degree bounds, in-
dependent of the size of the graph. The methods reduce
to computation via semidefinite programming, and the
size of the resulting optimization problem does not grow
with the size of the graph. We also show how these re-
sults may be extended to construct partially decentral-
ized controllers which receive measurements from their
neighbors. We illustrate the results via an example of
a power distribution network.

1 Introduction

Many systems of practical interest consist of large
collections of interacting subsystems. Examples of
such systems include electrical power distribution net-
works [8], data networks [12], and collections of vehi-
cles traveling in formation [7]. For many such systems
both the number of subsystems and the topology of the
graph specifying their interconnection structure is not
fixed. For example, vehicles may join or depart from a
platoon, power generators or transmission lines may fail
or be deactivated. In many cases, the topology is sim-
ply unknown, as is the case for the congestion control
dynamics of the Internet.

Given a particular subsystem model, such as that for
a power generator or network router, one would like to
determine whether large-scale interconnections of many
such subsystems will be stable. A collection of subsys-
tems which is stable under one interconnection topology
is not necessarily stable under other topologies. In this
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paper, we present conditions which guarantee stability
whenever the degree of the interconnection graph is less
than some specified maximum.

We further address the problem of controller design
for such systems. Since the topology is allowed to vary,
the controllers that we design are decentralized. That is,
each subsystem uses only local information when mak-
ing control decisions. We present a design methodol-
ogy which uses semidefinite programming to construct
decentralized controllers which are stabilizing for any
graph satisfying degree bounds. Such controllers are
also scalable; that is, they are stabilizing independent
of the size of the graph. This is particularly important
for very large-scale systems where centralized control
synthesis or implementation may be infeasible.

2 Previous Work

The analysis and control of collections of interconnected
systems has been widely studied in the literature. Early
work on stability analysis and decentralized control of
large-scale interconnected systems is found in [?, 9, 11,
16, 15, 18]. A common theme in many of these works are
decompositions which allow a stability analysis for the
interconnected system to be performed at a subsystem
level. Some of the more widely known stability criteria
are the passivity related conditions of [14] and the small-
gain related conditions of [2].

The well-known notion of connective stability found
in [16] is similar in spirit to the concept of topology-
independent stability discussed in this paper. An inter-
connected system possesses connective stability when
stability is preserved after removing or weakening links
from some given interconnection topology. Rather than
considering how system stability changes when links are
removed, we would like to consider how stability is af-
fected by the addition of new subsystems into an exist-
ing interconnection structure. In this paper we present
conditions which determine when stability of an inter-
connected system is independent of system scale, as well
as interconnection topology. This results in a condition
which guarantees stability for all topologies with some
pre-specified bound on the system connectivity.

The synthesis procedures and stability conditions
found in this paper are similar to those found in [1].
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In that paper, the authors consider stability of an in-
terconnected system formed by connecting an infinite
string of identical subsystems. Stability is shown using
a decentralized Lyapunov function, and exploit shift-
invariance in the resulting stability conditions to obtain
a collection of uncoupled linear matrix inequalities.

3 Main Results

In this section we present linear matrix inequality
conditions which, when feasible, produce a controller
which stabilizes a collection of interconnected subsys-
tems for arbitrary interconnection topologies. We will
first present an analysis condition which proves stabil-
ity of a collection of identical interconnected systems
for arbitrary interconnection topologies. This condi-
tion is then extended to control synthesis procedures
in the following subsections. A method for synthesizing
perfectly decentralized controllers is presented at first.
This method is then extended to synthesis of distributed
controllers.

3.1 Analysis of Identical Interconnected Sub-

systems

Here we will consider systems formed by interconnect-
ing a collection of identical subsystems by a directed
graph. The interconnection structure is specified by
a simple directed graph G = (V,E), with N vertices
V = {1, . . . , N} and edge set E ⊂ V × V . Here simple
means the graph has no self-loops, that is (i, i) 6∈ E for
all i. We say vertices i and j are adjacent if (i, j) ∈ E or
(j, i) ∈ E, and define the degree of vertex i as the num-
ber of vertices j adjacent to it. In terms of the graph
adjacency matrix U , the degree of vertex i is

di(G) =

N
∑

j=1

(1− (1− Uji)(1− Uij)).

We define
dmax(G) = max

i
di(G)

to be the maximum degree of any vertex of G.

The subsystems are given in terms of state space re-
alizations,

ẋi(t) = Axi(t) + Lvi(t)

qi(t) = Cxi(t),

each of which defines a linear map from signals vi to qi.
These systems are interconnected according to

vi(t) =

N
∑

j=1

Uijqj(t). (1)

Each subsystem corresponds to a vertex in the graph.
We interpret edges as signals; all signals entering ver-
tex i are summed to construct the input to system i.

Similarly, all signals leaving a vertex are simply copies
of the output of system i. This is illustrated in Figure 1.
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Figure 1: Block diagram and corresponding graph

A consequence of interconnecting the systems via the
graphG is that the dynamics of the subsystems becomes
coupled. For a specific interconnection topology, the
dynamics of the interconnected system can be expressed
as

ẋi(t) = Axi(t) +

N
∑

j=1

UijLCxj(t) (2)

for all i = 1, . . . , N . We can write the equations (2) as
ẋ(t) = AGx(t), where

AG = (IN ⊗A) + (U ⊗ LC)

and the state vector x is formed by concatenating each
of the subsystem state vectors. Here, IN denotes the
N ×N identity matrix. The dynamics of the resulting
interconnected system depend on the graph G. The
following result determines when AG is stable for any
graph G such that dmax(G) ≤ d.

Theorem 1. Suppose there exists a solution X Â 0 to
the matrix inequalities
[

A dLC

dLC A

] [

X 0
0 X

]

+

[

X 0
0 X

] [

A dLC

dLC A

]T

≺ 0 (3)

[

A dLC

0 A

] [

X 0
0 X

]

+

[

X 0
0 X

] [

A dLC

0 A

]T

≺ 0. (4)

Then AG is stable for all G such that dmax(G) ≤ d.

Proof of this theorem is presented at the end of this
subsection.
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It is well known that for fixed G, AG is stable if
and only if there exists a matrix X Â 0 such that
AGX + XA

T
G ≺ 0. A sufficient LMI condition for sta-

bility of AG can be obtained if we restrict ourselves to
an X of the form X = IN ⊗ X. This restriction will
allow us to prove stability of the interconnected system
for multiple topologies. This restriction will also ren-
der the decentralized control problem computationally
tractable, as shown in the next subsection. With the
variable X restricted as such, let H = AGX + XA

T
G.

The i, j block of H is

Hij =

{

AX +XAT if i = j

Uij(LC)X + UjiX(LC)
T otherwise

The proof of Theorem 1 will involve relating properties
of Hij to negative definiteness of the matrix H. We will
make use of the following result.

Theorem 2. Let H be a Hermitian matrix partitioned

into blocks Hij , where i, j = 1, . . . , N . Let mi be the

number of nonzero off-diagonal blocks in row i of H.

Suppose, without loss of generality, that each row has

at least one nonzero off-diagonal block. If

[

1
mi

Hii Hij

Hji
1

mj
Hjj

]

Â 0

for all i, j = 1, . . . , N , i 6= j, then H Â 0.

Proof. Let U ∈ R
N×N be defined by

Uij =

{

1 if Hij 6= 0 and i 6= j

0 otherwise

For any vector x,

x∗Hx =

n
∑

i

x∗i Hiixi +

n
∑

i=1

∑

j>i

(x∗i Hijxj + x∗jHjixi)

=

n
∑

i=1

∑

j>i

Uij

(

1

mi

x∗i Hiixi +
1

mj

x∗jHjjxj

)

+
n
∑

i=1

∑

j>i

Uij(x
∗
i Hijxj + x∗jHjixi)

=

n
∑

i=1

∑

j>i

Uij

[

xi

xj

]∗
[

1
mi

Hii Hij

Hji
1

mj
Hjj

]

[

xi

xj

]

Clearly, if
[

1
mi

Hii Hij

Hji
1

mj
Hjj

]

Â 0

for all i, j = 1, . . . , N , i 6= j, then x∗Hx > 0 for all
nonzero x, or H Â 0.

We can now apply this result to prove Theorem 1.

Proof of Theorem 1. For convenience of notation,
we define Ψ = LCX. Then if the two matrix inequali-
ties (3) and (4) are satisfied, we have

[

1
a1

(AX +XAT ) Ψ + ΨT

Ψ+ΨT 1
a2

(AX +XAT )

]

≺ 0 (5)

and
[

1
a1

(AX +XAT ) Ψ

ΨT 1
a2

(AX +XAT )

]

≺ 0 (6)

for all 1 ≤ a1, a2 ≤ d. Suppose G is a graph such
that dmax(G) < d, and let U be its adjacency matrix.
Inequalities (5) and (6) imply

[

1
di(G) (AX +XAT ) UijΨ+ UjiΨ

T

UjiΨ+ UijΨ
T 1

dj(G) (AX +XAT )

]

≺ 0, (7)

for all i 6= j. To show this, consider the four possible
cases: (Uij = Uji = 0), (Uij = Uji = 1), (Uij = 1, Uji =
0), and (Uij = 0, Uji = 1). The matrix inequality (5)
clearly implies that (7) holds in the first two cases. The
matrix inequality (6) clearly implies that (7) holds in
the third case. The inequality (7) holds in the fourth
case since we have

[

1
dj
(AX +XAT ) ΨT

Ψ 1
di
(AX +XAT )

]

≺ 0

by permuting the blocks in (6) . Since (7) holds for all
i 6= j, this implies AGX + XA

T
G ≺ 0 by Theorem 2.

Hence, the system with interconnection topology spec-
ified by G is stable.

Note that we only need the first inequality in Theo-
rem 1 when considering interconnected systems where
each of the links are bi-directional, i.e. the adja-
cency matrix U is symmetric. We only need the sec-
ond inequality when considering interconnected systems
where none of the links are bi-directional, i.e. Uij = 1
if and only if Uji = 0.

3.2 Decentralized Control Synthesis

At this point we extend the stability condition presented
in the previous subsection to a procedure for design-
ing decentralized controllers which guarantee topology-
independent stability. Each subsystem now has a con-
trol input ui:

ẋi(t) = Axi(t) + Lvi(t) +Bui(t)

qi(t) = Cxi(t).

The desired control law determines control inputs for
each subsystem using only measurements of the local
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subsystem state. In general, there is no known com-
putationally tractable procedure guaranteed to gener-
ate a decentralized controller for a linear system, given
that one exists. Conservative approaches do exist, how-
ever. Here we can extend our stability analysis result to
a condition guaranteeing the existence of a stabilizing
decentralized controller without adding any additional
conservatism. This is because of the restricted form of
the matrix X used to prove stability.

The desired control law is a decentralized state feed-
back where each local controller is identical. In other
words, we would like to stabilize AG + BK with a con-
troller of the form K = IN ⊗ K, where B = IN ⊗ B.
When there are no constraints on the structure of K, the
LMI approach to state feedback synthesis involves in-
troducing a variable Z = KX and finding Z and X Â 0
such that

AGX + XA
T
G + BZ + Z

TBT ≺ 0.

Upon finding such an X and Z, we can construct a
control law as K = ZX−1. Existence of a solution to
these LMIs is equivalent to existence of a stabilizing
controller. However, when the desired controller has
special structure, there is no known equivalent LMI con-
dition. This is because the resulting constraints on X
and Z are typically non-convex. However, recall that
for our stability condition we are restricting ourselves
to an X of the form X = IN ⊗ X. When restrict-
ing X to this form, we can make a change of variables
Z = KX , where K is of the desired form if and only if
Z is of the form Z = IN ⊗Z. This provides a computa-
tionally tractable sufficient condition for synthesis of a
stabilizing decentralized controller. With the variables
X and Z restricted as such, the i, j block of the matrix
H = AGX + XA

T
G + BZ + Z

TBT is

Hij =







AX +XAT +BZ + ZTBT if i = j

Uij(LC)X + UjiX(LC)
T otherwise.

We can use this fact to obtain the following synthesis
condition.

Theorem 3. Suppose there exist solutions Z and

X Â 0 to the linear matrix inequalities

Â1X̂ + X̂ÂT
1 + B̂Ẑ + ẐT B̂T ≺ 0

Â2X̂ + X̂ÂT
2 + B̂Ẑ + ẐT B̂T ≺ 0

where

Â1 =

[

A dLC

dLC A

]

, Â2 =

[

A dLC

0 A

]

,

B̂ =

[

B 0
0 B

]

, X̂ =

[

X 0
0 X

]

, Ẑ =

[

Z 0
0 Z

]

.

When such solutions exist, the decentralized control law

ui(t) = Kxi(t), where K = ZX−1 will result in AG +
BK being stable for all G such that dmax(G) ≤ d.

Proof of this theorem is not given since it is nearly iden-
tical to the proof of Theorem 1.

3.3 Distributed Control Synthesis

In the previous subsection we considered control
schemes in which each subsystem determines control in-
puts based only on its own state. We can extend the
previous control synthesis method to accommodate a
wider class of control policies. In particular, we can
synthesize distributed controllers which determine the
control input for a subsystem based on the state of this
subsystem, as well as the states of neighboring subsys-
tems. The control input ui is determined under such a
control law as

ui(t) = KSxi(t) +

N
∑

j=1

UijKIxj(t).

In this setting, state information is shared according to
an interconnection topology matching that of the sub-
system interconnections. As with the perfectly decen-
tralized case, each subsystem uses an identical control
law. In the perfectly decentralized case we used a con-
trol law of the form K = IN ⊗K. In this case we use a
control law of the form

KG = (IN ⊗KS) + (U ⊗KI). (8)

Since X = IN ⊗ X, there exists KS and KI such that
KG satisfies (8) if and only if ZG = KGX and

ZG = (IN ⊗ ZS) + (U ⊗ ZI)

for some ZS and ZI . This leads to the following syn-
thesis condition.

Theorem 4. Suppose there exist solutions ZS, ZI , and

X Â 0 to the linear matrix inequalities

Â1X̂ + X̂ÂT
1 + B̂Ẑ1 + ẐT

1 B̂T ≺ 0

Â2X̂ + X̂ÂT
2 + B̂Ẑ2 + ẐT

2 B̂T ≺ 0

where

Â1 =

[

A dLC

dLC A

]

, Â2 =

[

A dLC

0 A

]

,

B̂ =

[

B 0
0 B

]

, X̂ =

[

X 0
0 X

]

,

Ẑ1 =

[

ZS dZI

dZI ZS

]

, Ẑ2 =

[

ZS dZI

0 ZS

]

.

When such solutions exist, the distributed control law

ui(t) = KSxi(t) +

N
∑

j=1

UijKIxj(t)

with KS = ZSX
−1 and KI = ZIX

−1 will result in

AG+BKG being stable for all G such that dmax(G) ≤ d.

Again, proof of this theorem is not given since it is
nearly identical to the proof of Theorem 1.
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4 Numerical Example

Here we will illustrate the ideas presented in the previ-
ous section with an example. Consider the problem of
stabilizing an electrical power distribution network [8].
A power distribution network consists of a collection
of load-driving generators interconnected by transmis-
sion lines. The generator is a dynamic device, with a
linearized model given by

˙δx(t) = Aδx(t) + Lδi(t) +Bu(t)

δv(t) = Cδx(t),

where δi and δv are the current and voltage deviations
from some operating point, and u is a control torque
which can be applied to regulate the generator. For
AC power networks δi and δv each typically have two
components, since the corresponding system is second-
order. If we connect this generator to a load with ad-
mittance Y , then the voltage and current are related as
i(t) = Y v(t) and we can write the generator dynamics
as

˙δx(t) = (A+ LY C)δx(t) +Bu(t).

In a power distribution network there are several loads
driven by multiple interconnected generators. If the sys-
tem consists of N generators, then the current drawn
from generator j in terms of the terminal voltages at
each generator is

ij(t) = Yjjvj(t) +
∑

k 6=j

Yjk(vj(t)− vk(t)),

where Yjj is the admittance of the load connected to
generator j and Yjk is the admittance of the line con-
necting generators j and k. Note that we always have
Yij = Yji.

In this example, we will consider a network consist-
ing of a collection of N identical generators and loads
connected by identical lines. Let Y1 be the load admit-
tance and Y2 be the line admittance. We can write the
dynamic equations as

˙δxi(t) =

(

A+ LY1C +

(

N
∑

j=1

Uij

)

LY2C

)

δxi(t)

−
N
∑

j=1

Uij(LY2C)δxj(t) +Bui(t)

for j = 1, . . . , N . In order to put this problem in the
framework of the previous section, we can write each
subsystem as

˙δxi(t) = (A+ LY1C + diLY2C) δxi(t) + Lvi(t) +Bui(t)

qi(t) = −Y2Cδxi(t).

P
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Figure 2: Subsystem for power distribution network

One way to think of such subsystems is as a genera-
tor/load subsystem with a gain of −di placed in feed-
back, as shown in Figure 2.

Although we can now cast this problem in our frame-
work, we now face the problem that each subsystem con-
tains parameters which depend on the interconnection
topology. We can easily get around this problem with a
simple modification to our control synthesis procedure.
Since d is the maximum degree for any subsystem, we
can perform the synthesis procedure using subsystems
of the form

˙δxi(t) = (A+ LY1C + dLY2C) δxi(t) + Lvi(t) +Bui(t)

qi(t) = −Y2Cδxi(t).

To synthesize a controller, we find X Â 0 and Z such
that

(A+ LY1C)X +X(A+ LY1C)
T +BZ + ZTBT ≺ 0

ÂX̂ + X̂Â+ B̂Ẑ + ẐT B̂T ≺ 0,

where

Â =

[

(A+ LY1C) + dLY2C −dLY2C

−dLY2C (A+ LY1C) + dLY2C

]

B̂ =

[

B 0
0 B

]

X̂ =

[

X 0
0 X

]

Ẑ =

[

Z 0
0 Z

]

.

We can then show that the inequalities still hold for
subsystems with di < d by taking the appropriate conic
combinations of the first inequality with the diagonal
blocks of the second inequality.

Now we will compute a controller for a specific model.
We will use the simple model given by

d

dt

[

δω(t)
δθ(t)

]

=

[

−0.5 0
1 0

] [

δω(t)
δθ(t)

]

+

[

−1 0
0 0

] [

δiR(t)
δiI(t)

]

+

[

1
0

]

u(t)

[

δvR(t)
δvI(t)

]

=

[

0 0
0 −1

] [

δω(t)
δθ(t)

]

,

where δω gives the deviation of the rotor angular ve-
locity from some fixed operating condition and δθ gives
the deviation of the rotor angle from some uniformly
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increasing reference angle. This system is marginally
stable. That is, if the rotor angle drifts to some offset
then it will remain at that offset. Suppose each genera-
tor drives a load with admittance y1 = 1+0.1i and can
be connected by a transmission line with admittance
y2 = 0.3− i. These admittances are represented in the
model in matrix form as

Y1 =

[

1 −0.1
0.1 1

]

and Y2 =

[

0.3 1
−1 0.3

]

.

When we connect a single generator to a load, the re-
sulting system becomes stable. However, the system
actually becomes unstable when we connect a pair of
generators driving loads by a single transmission line.

We can solve the synthesis LMIs for this system (with
d = 3 chosen arbitrarily) to obtain the decentralized
state feedback controller

K =
[

−6.57 −24.75
]

.

This controller is guaranteed to stabilize any intercon-
nection between any number of generators, as long as
each generator is connected to no more than three other
generators.

5 Conclusions

In this paper we addressed the problem of designing
scalable controllers for collections of interconnected sub-
systems. We derived sufficient linear matrix inequality
conditions for the existence of such controllers. This
paper exclusively covered the case where all subsystems
are identical. Although it is not discussed here, the
methods of this paper may easily be extended to the
case where subsystems of various types are intercon-
nected.
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