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Abstract

In this paper we consider the problem of determining optimal decentralized
decision rules in discrete stochastic decision problems. Here we consider a static
single-stage problem. It has been shown in [8] that the static problem is NP-
hard, even for the case of two decision makers. We show that this problem has an
equivalent formulation as minimization of a bilinear polynomial subject to linear
constraints. We then form a relaxation of this polynomial optimization problem,
from which we can compute suboptimal decentralized decision rules as well as
bounds on the optimal achievable value. The methods are illustrated by an example
of decentralized detection.

1 Introduction

Decentralized decision problems are optimization problems in which a collection of deci-
sions are made in response to a set of observations with the goal of minimizing some cost.
The complicating factor is that decisions can only be made to depend on some specified
subset of the observations. That is, the complete set of observations can be thought of
as the state of the environment. Each decision is made on the basis of an incomplete
observation of the state, although the cost incurred depends on the entire state and set
of decisions. Such problems are common in areas such as engineering and economics.
Much of the early work on team decision problems was motivated by economic problems
[2]. In certain engineering problems, such as the design of distributed detection schemes
and distributed data transmission protocols, the key difficulty lies in the design of good
rules for interacting decision makers to follow.
Here we consider a fairly general discrete version of this problem, where the sets of

possible observations and decisions are finite. The problem considered is a static decision
problem, where a single set of decisions is made in response to a single set of observations.
Given the probabilities of all sets of observations, the goal is to choose decentralized
decision rules which minimize the expected cost. This problem is shown in [8] to be
NP-hard, even for the case of two decision makers. Therefore, the goal of this paper is
to determine effective methods of computing good suboptimal solutions to this problem.
Here we show that this problem can be equivalently formulated as a minimization of a
polynomial subject to linear constraints. Relaxations of this polynomial optimization
problem can then be efficiently solved. From these relaxations, we obtain lower bounds
on the minimum achievable value for the original problem, as well as suboptimal decision
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rules. The combination of lower bounds together with suboptimal solutions is powerful,
since this gives us a way to put a bound on how suboptimal the best known decision
rules are.

2 Previous work

Much of the previous work on decentralized decision problems can be roughly categorized
as complexity results, tractable special cases, and applications. Some of the earliest work
on decentralized decision problems is the work of Radner and Marschak [4, 2]. Along
with introducing the general static decentralized decision problem, they have shown that
for certain convex quadratic costs and continuous decision variables, person-by-person
optimality is sufficient for global optimality. A nice survey of the early work in the field
of decentralized decision problems, including extensions to dynamic problems, can be
found in [1]. In [8], it is shown that the general static decentralized decision problem
with finite state and action spaces is NP-hard.
A great deal of work on the static decentralized decision problem has been done

for the application of decentralized detection. The decentralized detection problem was
introduced in [6], where it was shown that under certain independence assumptions, op-
timal decentralized detection rules take the form of likelihood ratio tests. However, it is
shown in [8] that the problem of decentralized detection, a special case of the decentral-
ized decision problem, is also NP-hard. Therefore, most approaches to the problem of
decentralized detection focus on determining person-by-person optimal detection rules.
Surveys of the field of decentralized detection can be found in [7] and the book [9].

3 Motivating example

In this section we motivate the study of the general problems discussed in this paper
by a specific application. The problem of decentralized detection is an example of a
decentralized stochastic decision problem. Here we present a very brief overview of this
subject. Detailed surveys can be found in [7] and [9].
In a detection problem, we have several hypotheses on the underlying state of our

environment, and we would like use measurements of our environment to decide which
hypothesis is true.

H1 , . . . , HM

S1 S2 SN

Y1
YNY2

U1 U2 UN

Classical detection methods assume all measurements are available to a single detector,
which estimates the true hypothesis based on all measurements. Such a detection scheme
is called centralized. Optimal decision rules in centralized schemes are given by the well-
known MAP (maximum a-posteriori probability) detector. In a decentralized detection
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scheme, each sensor is responsible for making a decision based only on its own measure-
ment. The goal is to choose decision rules for all sensors which are optimal with respect
to some system-wide cost function.
For example, suppose we have a collection of sensors each monitoring various elements

of some industrial process. We would like the sensors to sound an alarm when some part
of the process is malfunctioning. In this case we may wish to maximize the probability
that the alarm sounds when there is a malfunction and does not sound when there is no
malfunction. One option is to transmit all sensor measurements to a central location,
where a decision to sound the alarm is made on the basis of all measurements. An
alternative is to equip each sensor with its own decision rule and the ability to sound the
alarm. When the loss of performance associated with employing the second alternative
is small, such a scheme is preferable due to the reduced implementation complexity
associated with the elimination of the communication requirements.
One might initially assume that good decentralized decision rules can be obtained by

allowing each sensor to use a MAP detection rule. While this is true in some special cases,
it is not true in general. Unlike the centralized case, the general problem of computing
optimal decentralized detection rules is NP-hard [8]. While centralized decision rules are
described by Also, decentralized decision rules can appear considerably more complex
than their centralized counterparts. For example, optimal decentralized decision rules
typically involve hedging among the sensors, a strategic element which is not present
when simply using MAP rules at each detector.
Due to the complexity of this problem, most existing methods for computing de-

centralized detection rules produce equilibrium policies. Such policies are said to be
person-by-person optimal ; for a set of such decision rules, no improvement can be ob-
tained by adjusting the decision rule for any given sensor while leaving the others fixed.
In general, a single problem instance may have many equilibrium policies. The globally
optimal policy is clearly an equilibrium policy. However, for any given equilibrium pol-
icy, we have no way of knowing how this policy relates to the globally optimal policy. In
particular, we have no way of knowing how much improvement we could obtain by using
the globally optimal policy. In the next section we will show by a simple example that an
equilibrium policy can perform arbitrarily poorly compared to the optimal policy. The
methods that we present for in this paper are relaxations. In addition to generating an
equilibrium policy, they return a lower bound on the minimum achievable cost by any
decentralized policy. When the bound is exact, we have a proof that our computed policy
is globally optimal. Even when the bound is not exact, we still have a measure of the
suboptimality of the computed policy.

4 Main results

4.1 Formulation and complexity

Decentralized decision problems are optimization problems in which a collection of de-
cisions are made in response to a set of observations with the goal of maximizing some
payoff. The complicating factor is that each decision can only be made to depend on
some specified subset of the observations. In this section we consider a general static
decentralized decision problem, also commonly referred to as a team decision problem

[4, 1]. For notational simplicity, we only discuss problems involving two decision makers.
Extensions of all results to the general case of N decision makers is straightforward. The
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specific problem under consideration is the following:

Decentralized Decision Problem: Given finite sets Y1, Y2, U1, U2, a probability

mass function p : Y1 × Y2 → R, and a cost function c : Y1 × Y2 × U1 × U2 → R, find

policies γi : Yi → Ui, i = 1, 2 which minimize the expected cost

J(γ1, γ2) =
∑

Y1×Y2

c(y1, y2, γ1(y1), γ2(y2))p(y1, y2)

It was shown in [8] that this problem is NP-hard. Unless P = NP , we cannot hope to
find an efficient algorithm capable of always producing globally optimal policies. Methods
for computing policies must aim to find good suboptimal solutions.
One way to formulate the static decentralized decision problem involves expressing

policy i as a |Yi| × |Ui| Boolean matrix for each i:

Ki
yiui
=

{
1 if γi(yi) = ui

0 otherwise

Similarly, we can express the system cost as a |Y1||Y2| × |U1||U2| matrix:

Cyu = c(y, u)p(y)

= c(y1, y2, u1, u2)p(y1, y2)

Here, the matrix is indexed according to a lexicographic order on the pairs (y1, y2) and
(u1, u2). The static decentralized decision problem can be equivalently formulated as

minimize:
∑

y,u CyuKyu

subject to: Kyu = K1

y1u1
K2

y2u2

Ki ≥ 0 i = 1, 2

Ki1 = 1 i = 1, 2

Kyu ∈ {0, 1} for all y, u

(1)

This problem is clearly a nonconvex optimization problem due to the Boolean constraints
and the bilinear constraint. However, we can eliminate the Boolean constraints and show
that the resulting problem is equivalent to (1):

Theorem 1. The optimization problem

minimize:
∑

y,u CyuKyu

subject to: Kyu = K1

y1u1
K2

y2u2

Ki ≥ 0 i = 1, 2

Ki1 = 1 i = 1, 2

(2)

always has an optimal solution satisfying Kyu ∈ {0, 1} for all y, u.
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Proof: Suppose K1 and K2 are optimal for (2). Note that K1 and K2 may have non-
integer entries. The problem

minimize:
∑

y1,u1

(∑
y2,u2

CyuK2
y2,u2

)
K1

y1,u1

subject to: K1 ≥ 0

K11 = 1

is a linear program in the variable K1. An optimal solution K̂1 to this LP satisfies

∑

y,u

CyuK̂1
y1u1

K2
y2u2

≤
∑

y,u

CyuK1
y1u1

K2
y2u2

Also, it is clear that K̂1 can be chosen to have 0-1 entries. Now consider the linear
program

minimize:
∑

y2,u2

(∑
y1,u1

CyuK̂1
y1,u1

)
K2

y2,u2

subject to: K2 ≥ 0

K21 = 1

Again, an optimal solution K̂2 satisfies

∑

y,u

CyuK̂1
y1u1

K̂2
y2u2

≤
∑

y,u

CyuK̂1
y1u1

K2
y2u2

and can be chosen to have 0-1 entries. Therefore, K̂1, K̂2, and K̂ = K̂1 ⊗ K̂2 constitute
an optimal 0-1 solution to (2). ¥

When the optimal solution in (2) is not unique, there may be a mixed optimal solution.
However, the above theorem shows that there is always a Boolean solution which achieves
the same objective value.
Although we were able to eliminate the Boolean constraints, finding a globally optimal

solution to (2) is still a difficult problem. The most common approach for handling this
problem is to employ an iterative scheme for finding a person-by-person optimal solution
[4, 1, 9]. This type of scheme starts by initially choosing an arbitrary pair of policies.
Policies are then modified by alternately optimizing each policy while leaving the other
policy fixed (as in the proof of Theorem 1). Since there are a finite number of policies, and
each step never results in a decrease in the objective, this method leads to an equilibrium
solution in a finite number of steps. The problem with such methods is that problems
may have many equilibria, and it not clear if any given equilibrium solution is necessarily
a good one. In fact, we can show by a simple example that an equilibrium policy can
perform arbitrarily poorly compared to the optimal policy.
Consider the case where Y1 = Y2 = U1 = U2 = {1, 2} and we have the cost function

c(y1, y2, u1, u2) =





1 for u1 = u2 = 1 and all y1, y2

ρ for u1 = u2 = 2 and all y1, y2

ρ+ 1 for u1 6= u2 and all y1, y2

Consider the decentralized policy where γ1(y1) = 2 for all y1 and γ2(y2) = 2 for all
y2. For any probability distribution on Y1 × Y2, this policy achieves an expected cost of
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J(γ1, γ2) = ρ. Leaving one decision rule fixed while changing the other always achieves
an expected cost greater than ρ. Therefore, this policy is an equilibrium policy. However,
the optimal decentralized policy in this case achieves an expected cost of J(γ∗

1
, γ∗

2
) = 1.

Since ρ is arbitrary, we can choose its value so that a suboptimal equilibrium policy
achieves an expected cost arbitrarily worse than the optimal cost.
We consider an alternate approach to searching for equilibrium policies in this paper.

We treat this problem as a polynomial optimization problem, and apply lifting methods
to obtain convex relaxations. Such methods either produce a globally optimal solution,
or produce a suboptimal solution along with a bound on its suboptimality.

4.2 A relaxation for the polynomial problem

Here we will discuss a specific low-order relaxation of the problem (2). This relaxation
is formed by adding valid constraints to the problem, then removing all nonconvex con-
straints [5]. Valid constraints are constraints which, when added to a problem, do not
change its feasible set. For example, sums or products of existing constraints produce
valid constraints.
Consider the problem (2) with additional valid constraints added by taking products

of the original linear constraints:

minimize:
∑

y,u CyuKyu

subject to: Kyu = K1

y1u1
K2

y2u2∑
u1
Kyu = K2

y2u2
for all y1 ∈ Y1∑

u2
Kyu = K1

y1u1
for all y2 ∈ Y2

Ki1 = 1 i = 1, 2

K ≥ 0

The additional constraints K i ≥ 0 and K1 = 1 are implied by the linear constraints,
so they are left out for brevity. By dropping the bilinear constraint, we obtain the LP
relaxation:

minimize:
∑

y,u CyuKyu

subject to:
∑

u1
Kyu = K2

y2u2
for all y1 ∈ Y1∑

u2
Kyu = K1

y1u1
for all y2 ∈ Y2

Ki1 = 1 i = 1, 2

K ≥ 0

(3)

Solving this linear program produces a lower bound on the minimum value achievable by
a decentralized policy, as well as suboptimal policies described by K1 and K2. When the
relaxation is not exact, the policies K1 and K2 may not be person-by-person optimal.
However, we can always apply the iterative scheme described at the end of Section 4.1
using these policies as a starting point to obtain improved deterministic equilibrium
policies.
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5 Numerical example

Here we illustrate some of the concepts discussed in this paper with a numerical example.
Consider a decentralized detection problem with four hypotheses and two detectors. Let
H denote the current hypothesis. The a-priori probabilities for each hypothesis are given
by:

Prob{H = hi} =





0.39 for i = 1

0.31 for i = 2

0.16 for i = 3

0.14 for i = 4

The measurements M1 and M2 are made by each detector are each quantized to one of
ten measurements. The conditional probabilities of each possible pair of measurements
given each hypothesis are illustrated by the figure below.
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Figure 1: Conditional probabilities of each pair of measurements given each hypothesis.
Dark areas on the plots represent low probabilities.

Each detector will estimate the hypothesis based only on its own observation. We would
like to find decentralized detection rules which maximize the probability that at least one
detector is correct.
We can formulate a relaxation of this problem as the linear program (3). In this case,

the costs are

Cyu = Prob{(H 6= u1) ∩ (H 6= u2) ∩ (M1 = y1) ∩ (M2 = y2)}

Solving the relaxation, we obtain the globally optimal detection rules:

γ∗
1
(y1) =

{
3 for y1 ≤ 3

2 otherwise
γ∗

2
(y2) =

{
1 for y2 ≤ 7

4 otherwise

The optimal strategy achieves Prob{at least one correct} = 0.77.
It is interesting to compare the optimal strategy to the one obtained by using a

maximum a-posteriori detection rule for each detector. For each detector, the a-posteriori
probabilities of the true hypothesis given each measurement are shown below

We can observe from the plots that the MAP strategy is identical for both detectors and
is given by

γMAP

i (yi) =

{
1 for yi ≤ 6

2 otherwise
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Figure 2: A-posteriori probabilities of the truth of each hypothesis given each measure-
ment. The most probable hypotheses (1 and 2) are labelled.

The MAP strategy achieves Prob{at least one correct} = 0.62. The key difference be-
tween the optimal strategy and the MAP strategy is the element of hedging employed
by the optimal strategy. That is, the first hypothesis is the most likely, and it is most
reliably detected by the second detector. In the optimal strategy, the first detector never
guesses the first hypothesis. This is done to maximize the probability of guessing the
correct hypothesis when the second detector guesses incorrectly. In the MAP strategy,
both detectors are often both guessing the first hypothesis. When one is incorrect, the
other is likely to be incorrect as well.

6 Conclusions

In this paper, we considered the problem of determining optimal decentralized decision
rules in stochastic decision problems. It was shown that a general discrete decision
problem has an equivalent formulation as a polynomial optimization problem. We obtain
a relaxation of this polynomial optimization problem which can be used to compute
suboptimal policies as well as bounds on the optimal achievable value.
Here we restricted our treatment to the problem of two decision makers. This was

done mostly to simplify notation, and all results discussed can readily be extended to
cases with more than two decision makers. When considering cases with more than
two decision makers, we may want to consider information structures more general than
perfectly decentralized structures. Arbitrary information structures can be handled by
methods like those discussed, although we have not discussed this issue here.
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