
2004.03.07.04 edited

Topology Independent Controller Design

for Networked Systems

Randy Cogill1 Sajay Lall2

Abstract

In this paper we present a method for synthesis of de-
centralized controllers for systems interconnected on a
graph. We develop a synthesis procedure which will
achieve a specified level of performance for any graph
topology satisfying given degree bounds, independent
of the size of the graph. We also give an analysis con-
dition which gives an upper bound on the performance
achieved for all such topologies. The methods reduce
to computation via semidefinite programming, and the
size of the resulting optimization problem does not grow
with the size of the graph.

1 Introduction

Many systems of practical interest can be modelled as
large collections of interacting subsystems. Examples of
such systems include electrical power distribution net-
works [5], data networks [8], and collections of vehi-
cles travelling in formation [4]. Several practical issues
arise when attempting to design controllers for such
systems. Implementation of classical control schemes
typically requires that each subsystem has access to
the states or outputs of each other subsystem. This
is often impractical. Most practical control schemes for
such systems are decentralized. That is, each subsys-
tem uses only local information when making control
decisions. Another issue is uncertainty in the subsys-
tem interconnection topology. With electrical networks,
failures of transmission lines or individual generators
cause changes in the interconnection topology. With
data networks, changes in the number of subsystems
and the subsystem interconnection topology are com-
mon during normal operation. It is not always clear
how a system’s ability to reject external disturbances
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is affected by changes in the subsystem interconnection
topology or system scale. It may be possible that a col-
lection of interconnected subsystems remain stable as
we introduce additional subsystems into the intercon-
nection, but overall system output errors propagate in
an undesirable way. This will be shown in an upcoming
example.

The issues discussed above will be the focus of this pa-
per. We concentrate on the design of decentralized con-
trollers which are provably scalable. Such controllers
guarantee a bound on the overall system H∞ norm even
if we introduce new subsystems or change the subsys-
tem interconnection topology. This means that, for an
acceptable upper bound, we do not have to redesign
our control laws as the complexity of the overall sys-
tem increases. Here we only consider systems formed
by interconnecting identical subsystems, although the
results could readily be extended to accommodate non-
identical subsystems.

2 Previous Work

The analysis and control of collections of interconnected
systems has been widely studied in the literature. Early
work on stability analysis and decentralized control of
large-scale interconnected systems is found in [6, 7, 10,
9, 12]. A common theme in many of these works are
decompositions which allow a stability analysis for the
interconnected system to be performed at a subsystem
level.

In [1], analysis conditions and control synthesis
procedures for guaranteeing scalable and topology-
independent stability are given. When the analysis con-
ditions are met, stability is guaranteed for a collection of
interconnected systems for all possible interconnection
topologies satisfying some local connectivity bounds.

Stability, however, is not always sufficient for desir-
able scalable performance of large scale systems. For ex-
ample, in [4], the notion of string stability is introduced
for an infinite linear array of subsystems. Roughly
speaking, a system is string stable if disturbances di-
minish as they propagate through the system. Here we
would like to obtain similar performance guarantees by
finding an upper bound on the overall system norm of
a collection of interconnected systems for all possible
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interconnection topologies satisfying local connectivity
bounds.

3 Main Result

In this section we present a semidefinite program which
produces an upper bound on the H∞ norm of an in-
terconnected system. This upper bound holds for all
interconnection topologies among the subsystems satis-
fying a certain degree of sparsity in the interconnection
structure. We will first present an analysis condition,
then extend it to a decentralized control synthesis pro-
cedure with which a controller can be synthesized to
minimize this upper bound.

3.1 Analysis of Identical Interconnected Sub-
systems

Here we will consider systems formed by interconnect-
ing a collection of identical subsystems by a directed
graph. The interconnection structure is specified by
a simple directed graph G = (V,E), with N vertices
V = {1, . . . , N} and edge set E ⊂ V × V . Here simple
means the graph has no self-loops, that is (i, i) �∈ E for
all i. We say vertices i and j are adjacent if (i, j) ∈ E
or (j, i) ∈ E, and define the degree of vertex i as the
number of vertices j adjacent to it. In terms of the
adjacency matrix, the degree of vertex i is

di(G) =
N∑

j=1

(1 − (1 − Uji)(1 − Uij)).

We define
dmax(G) = max

i
di(G),

the maximum degree of any vertex of G.
The subsystems are given in terms of state space re-

alizations,

ẋi(t) = Asxi(t) + Lsvi(t) + Bswi(t)
zi(t) = Csxi(t)
qi(t) = F sxi(t),

(1)

each of which defines a linear map from signals (wi, vi)
to (zi, qi). These systems are interconnected according
to

vi(t) =
N∑

j=1

Uijqj(t). (2)

We interpret inputs wi as disturbances affecting sys-
tem i and outputs zi as error signals to be kept small by
a controller. When wi is zero, we can view each system
i as a map from signals vi to signals qi. Each system
corresponds to vertex in the graph. We interpret edges
as signals; all signals entering vertex i are summed to

construct the input to system i. Similarly, all signals
leaving a vertex are simply copies of the output of sys-
tem i. This is illustrated in the figure below:
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A consequence of interconnecting the systems via the
graph G is that the dynamics of the subsystems be-
comes coupled. For a specific interconnection topology,
the dynamics of the interconnected system can be ex-
pressed as

ẋi(t) = Asxi(t) +
N∑

j=1

UijL
sF sxj(t) + Bswi(t)

zi(t) = Csxi(t)

for all i = 1, . . . , N . We can write the dynamic equa-
tions above as

ẋ(t) = Ax(t) + Bw(t)
z(t) = Cx(t),

where

z(t) =

⎡
⎢⎢⎢⎣

z1(t)
z2(t)

...
zN (t)

⎤
⎥⎥⎥⎦ w(t) =

⎡
⎢⎢⎢⎣

w1(t)
w2(t)

...
wN (t)

⎤
⎥⎥⎥⎦

and

A = (IN ⊗ As) + (U ⊗ LsF s)
B = IN ⊗ Bs

C = IN ⊗ Cs.

Here, IN denotes the N × N identity matrix. The re-
sulting feedback structure is a map

z = T (G)w

where the linear system T (G) depends on the graph
G. It is the map from the vector of all disturbances
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to the vector of all errors. The following result gives a
bound on the performance of the system, in particular
the induced-norm of the map from w to z, which holds
for any graph G such that dmax(G) ≤ d.

Theorem 1. Suppose there exists γ ∈ R and Xs � 0
such that [

A1X + XAT
1 + BBT XCT

CX −γI

]
≺ 0[

A2X + XAT
2 + BBT XCT

CX −γI

]
≺ 0,

(3)

where

A1 =
[

As dLsF s

(dLsF s)T As

]
, A2 =

[
As dLsF s

0 As

]
,

B =
[
Bs 0
0 Bs

]
C =

[
Cs 0
0 Cs

]

and the semidefinite programming variable Xs enters
via

X =
[
Xs 0
0 Xs

]
.

Then
‖T (G)‖ <

√
γ

for all G such that dmax(G) ≤ d.

This result gives a semidefinite program which can
be used to verify that the interconnected system will
be stable and satisfy the above performance bound in-
dependent of both the number of systems and the topol-
ogy, provided the structural constraint on the degree is
satisfied. Notice that in this SDP, the variable is the
matrix Xs ∈ R

n×n, and both the number of constraints
and the number of variables is independent of the graph.

In order to prove this result, we make use of some
additional technical facts. The Kalman-Yakubovich-
Popov lemma implies that ‖T (G)‖ <

√
γ if and only

if there exists a matrix X � 0 such that AX + XAT +
BBT + 1

γXCTCX ≺ 0. Since this condition depends on
the graph G, an alternative sufficient condition may
be obtained if we restrict ourselves to an X of the
form X = IN ⊗ Xs. Any γ such that the inequality
AX + XAT + BBT + 1

γXCTCX ≺ 0 is feasible gives√
γ as an upper bound on the system H∞ norm. This

restriction will allow us to determine an upper bound
on the norm of the interconnected system which holds
for multiple topologies. This restriction will also ren-
der the decentralized control problem computationally
tractable, as shown in the next section.

With the variable X restricted as such, the i, j block
of the matrix AX + XAT + BBT + 1

γXCTCX is

AsXs + Xs(As)T + Bs(Bs)T

+ 1
γ Xs(Cs)T CsXs for i = j

UijL
sF sXs + UjiX

s(LsF s)T for i �= j.

The proof of Theorem 1 will involve relating properties
of these blocks to negative definiteness of the matrix
AX +XAT +BBT + 1

γXCTCX . The following theorem
appears in [1], and is used in the proof of Theorem 1.

Theorem 2. Let H be a Hermitian matrix partitioned
into blocks Hij, where i, j = 1, . . . , N . Let mi be the
number of nonzero off-diagonal blocks in row i of H.
Suppose, without loss of generality, that each row has
at least one nonzero off-diagonal block. If[

1
mi

Hii Hij

Hji
1

mj
Hjj

]
� 0

for all i, j = 1, . . . , N , i �= j, then H � 0.

Proof. Let U be the N × N matrix such that for
i �= j, Uij = 1 if Hij �= 0. Otherwise, Uij = 0. Note
that Uii = 0 for all i. For any vector x,

x∗Hx =
n∑
i

x∗
i Hiixi +

n∑
i=1

∑
j>i

(x∗
i Hijxj + x∗

jHjixi)

=
n∑

i=1

∑
j>i

Uij

(
1

mi
x∗

i Hiixi +
1

mj
x∗

jHjjxj

)

+
n∑

i=1

∑
j>i

Uij(x∗
i Hijxj + x∗

jHjixi)

=
n∑

i=1

∑
j>i

Uij

[
xi

xj

]∗ [
1

mi
Hii Hij

Hji
1

mj
Hjj

] [
xi

xj

]

Clearly, if [
1

mi
Hii Hij

Hji
1

mj
Hjj

]
� 0

for all i, j = 1, . . . , N , i �= j, then x∗Hx > 0 for all
nonzero x, or H � 0.

We can now apply this result to prove Theorem 1.

Proof of Theorem 1. If the matrix inequalities (3)
are satisfied, then

A1X + XAT
1 + BBT +

1
γ

XCT CX ≺ 0 (4)

A2X + XAT
2 + BBT +

1
γ

XCT CX ≺ 0. (5)

In terms of the individual blocks, the above inequalities
imply[ 1

d1
Φ Ψ + ΨT

Ψ + ΨT 1
d2

Φ

]
≺ 0 and

[ 1
d1

Φ Ψ
ΨT 1

d2
Φ

]
≺ 0

for all 1 ≤ d1, d2,≤ d, where Φ and Ψ are given by

Φ =
(
AsXs + Xs(As)T

+
1
γ

Xs(Cs)T CsXs + Bs(Bs)T
)

Ψ = LsF sXs
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Suppose dmax(G) ≤ d, and let U be the adjacency ma-
trix corresponding to the graph G. Then the above
matrix inequalities imply[

1
di

Φ UijΨ + UjiΨT

(UijΨ + UjiΨT )T 1
dj

Φ

]
≺ 0 (6)

for all i �= j. To show this, consider the four possible
cases (Uij = Uji = 0), (Uij = Uji = 1), (Uij = 1, Uji =
0), and (Uij = 0, Uji = 1). The matrix inequality (4)
clearly implies that (6) holds in the first two cases. The
matrix inequality (5) clearly implies that (6) holds in
the third case. Also (6) holds in the fourth case since[ 1

d2
Φ ΨT

Ψ 1
d1

Φ

]
≺ 0

by permuting the blocks in (5). Since (6) holds for all
i �= j, this implies

AX + XAT + BBT +
1
γ
XCTCX ≺ 0,

or equivalently[ AX + XAT + BBT XCT

CX −γI

]
≺ 0.

Also, it is clear that X � 0 implies X � 0. Therefore,
the KYP lemma implies

‖T (G)‖ <
√

γ

as desired.

Note that we only need the first inequality in Theo-
rem 1 when considering interconnected systems where
all of the links are bi-directional, i.e. the adjacency ma-
trix U is symmetric. We only need the second inequality
when considering interconnected systems where none of
the links are bi-directional, i.e. Uij = 1 if and only if
Uji = 0.

3.2 Decentralized Control Synthesis

At this point we extend the analysis condition presented
in the previous section to a procedure for designing scal-
able decentralized controllers which guarantee a bound
on the system norm. Each subsystem now has a control
input ui:

ẋi(t) = Asxi(t) + Lsvi(t) + Hsui(t) + Bswi(t)
zi(t) = Csxi(t) + Dsui(t)
qi(t) = F sxi(t).

The desired control law determines control inputs for
each subsystem using only measurements of the local
subsystem state. Due to the restricted form of the ma-
trix X used in our analysis condition, we can readily

extend this condition to a procedure for designing con-
trollers with the desired structure.

The desired control law is a decentralized state feed-
back control law where each local controller is identical.
In other words, we would like to choose a controller of
the form K = IN ⊗Ks to minimize an upper bound on
the H∞ norm of the system

ẋ(t) = (A + HK)x(t) + Bw(t)
z(t) = (C + DK)x(t)

where H = IN ⊗ Hs and D = IN ⊗ Ds. We can denote
the interconnected system under this control law by the
map

z = Tcl(G)w

where, again, the linear system Tcl(G) depends on the
graph G.

When there are no constraints on the structure of K,
the semidefinite programming approach to state feed-
back synthesis involves introducing a variable Z = KX
and finding Z and X � 0 such that[AX+XAT+HZ+ZTHT+BBT (CX+DZ)T

CX+DZ −γI

]
≺ 0

Upon finding such an X and Z, we can construct a
control law as K = ZX−1. Existence of a solution to
this semidefinite program is equivalent to existence of
a controller guaranteeing ‖Tcl(G)‖ <

√
γ. However,

when the desired controller has special structure, there
is no known equivalent semidefinite program. This is
because the resulting constraints on X and Z are typ-
ically non-convex. However, recall that for our anal-
ysis condition we are restricting ourselves to an X of
the form X = IN ⊗ Xs. When restricting X to this
form, we can make a change of variables Z = KX ,
where K is of the desired form if and only if Z is of the
form Z = IN ⊗ Zs. This provides a computationally
tractable condition for synthesis of a decentralized con-
troller. With the variables X and Z restricted as such,
the i, j block of the matrix

AX + XAT + HZ + ZTHT + BBT +
1
γ

(CX + DZ)T (CX + DZ)

is

AsXs + Xs(As)T + HsZs + (Zs)T (Hs)T + Bs(Bs)T

+
1
γ

(CsXs + DsZs)T (CsXs + DsZs)

for i = j, and

Uij(LsCs)Xs+UjiX
s(LsCs)T

for i �= j. We can use this fact to obtain the following
synthesis condition:

1791



2004.03.07.04 edited

Theorem 3. Suppose the there exist γ, Z, and Xs � 0
such that

[
A1X+XAT

1 +HZ+ZT HT+BBT XCT+ZT DT

CX+DZ −γI

]
≺ 0[

A2X+XAT
2 +HZ+ZT HT+BBT XCT+ZT DT

CX+DZ −γI

]
≺ 0

where

A1 =
[

As dLsF s

dLsF s As

]
A2 =

[
As dLsF s

0 As

]

B =
[

Bs 0
0 Bs

]
H =

[
Hs 0
0 Hs

]

C =
[

Cs 0
0 Cs

]
D =

[
Ds 0
0 Ds

]

and the semidefinite programming variables Xs and Zs

enter via

X =
[
Xs 0
0 Xs

]
Z =

[
Zs 0
0 Zs

]
.

Then the decentralized control law ui(t) = Ksxi(t) =
Zs(Xs)−1xi(t) will guarantee that

‖Tcl(G)‖ <
√

γ

for all G such that dmax(G) ≤ d.

Note that we can minimize over γ to find the minimum
such upper bound. Proof of this theorem is not given
since it is nearly identical to the proof of Theorem 1.

4 Numerical Example

Here we present a numerical example to illustrate the
methods of this paper. This example is not necessarily
chosen to reflect the dynamics of any particular physical
system, but is chosen because it clearly illustrates the
key points of this paper. Suppose we have subsystems
of the form

ẋi(t) = Asxi(t) + Lsvi(t) + Hsui(t) + Bswi(t)
zi(t) = Csxi(t)
qi(t) = F sxi(t),

where

As =

⎡
⎣ −0.82 0.03 −0.03

0.07 −0.88 −0.02
0 0.07 −1

⎤
⎦ ,

Ls =

⎡
⎣ −0.02 0.65

0.29 −1.84
1.11 0.73

⎤
⎦ ,

Hs =

⎡
⎣ −2.45 −0.59

0.47 −0.65
0.12 −1.08

⎤
⎦ ,

Bs =

⎡
⎣ 0.81 0.33

0.64 −0.67
1.31 −0.15

⎤
⎦ ,

Cs =
[ −0.05 −0.33 −0.04

0.38 −0.5 −0.17

]
,

F s =
[ −0.19 0.84 −0.72

0.01 −0.72 −0.2

]
.

It can be easily verified that this subsystem is stable.
Suppose we form an interconnection of these subsys-
tems by a graph of the form:

Specifically, such graphs are described by adjacency ma-
trices satisfying

Uij =
{

1 for j = i + 1
0 otherwise

The resulting interconnected system is stable since it
consists of a loop-free interconnection of stable systems.
However, we observe the following behavior as we vary
the number of subsystems in the interconnection:

# of subsystems H∞norm

5 11.82
10 222.35
20 7.66 × 104

30 2.64 × 107

The system’s ability to reject external disturbances
rapidly diminishes as we introduce additional subsys-
tems into the interconnection. As one would expect,
the analysis conditions of this paper fail to produce a
scalable upper bound on the overall system H∞ norm.
However, we can design a decentralized control law
which, when applied to the subsystems, guarantees such
an upper bound.
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Suppose we restrict ourselves to the set of intercon-
nection topologies such that each subsystem has degree
less than or equal to 3 (with this degree bound chosen
arbitrarily). We can then apply the synthesis meth-
ods of this paper to determine the decentralized state-
feedback control law

Ks =
[ −0.0211 −3.3218 −2.1114

0.8245 14.2558 9.3180

]
.

Under this control law, we can be guaranteed that
‖Tcl(G)‖ < 1.812 for all G such that dmax(G) ≤ 3. For
the topologies considered earlier, the controlled system
now has:

# of subsystems H∞norm

5 0.333
10 0.339
20 0.342
30 0.343

We can also guarantee upper bounds on the system
norm for more complex topologies, such as the one
shown below:

In this case, the interconnected system has H∞ norm
equal to 1.004.

5 Conclusions

In this paper we addressed the problem of design-
ing scalable controllers for collections of interconnected
subsystems. We derived a semidefinite program for the
synthesis of such controllers. These controllers guaran-
tee a fixed performance bound for the interconnected
system which is independent of interconnection topol-
ogy and system scale. This paper exclusively covered
the case where all subsystems are identical. Although
it is not discussed here, the methods of this paper may
readily be extended to the case where subsystems of
various types are interconnected.
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