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Abstract— The Phase-Locked Loop(PLL) is a key component
of modern electronic communication and control systems. PLL
is designed to extract signals from transmission channels. It
plays an important role in systems where it is required to
estimate the phase of a received signal, such as carrier tracking
from global positioning system (GPS) satellites. In order to
robustly provide centimeter-level accuracy, it is crucial for
the PLL to estimate the instantaneous phase of an incoming
signal which is usually buried in random noise or some type of
interference. This paper presents an approach that utilizes the
recent development in the semi-definite programming and sum-
of-squares (SOS) field. A Lyapunov function will be searched as
the certificate of the lock-in region of the PLL system. Moreover,
the polynomial design technique will be used to further refine
the controller parameters for system response away from the
equilibrium point. Various simulation results will be provided
to show the effectiveness of this approach.

Keywords: Non-linear systems, optimization, computation and
communications.

I. INTRODUCTION

For nonlinear control systems, one would often like to

know the region of attraction of an equilibrium point. Often,

this region is difficult to both find and represent computa-

tionally. The usual mathematical tool used for analyzing of

the region of attraction is Lyapunov’s method. This gives us

a sufficient condition for local stability, although it is often

difficult to find a Lyapunov function that can be used as a

certificate for the whole domain-of-attraction. Several prior

approaches have used quadratic functions, for example [1],

[2], [3]. In particular, the approach of [3] makes use of

semidefinite programming to find a quadratic function whose

sublevel-set is a good inner approximation to the region of

attraction. For system in which the region is complicated,

an ellipsoid may not provide a good approximation, and the

above methods leave a large unexplored region within the

domain-of-attraction.

With recent developments in algebra and sum-of-squares

techniques, it is now possible to solve for a Lyapunov

function with a more general polynomial form [4], [5]. Posi-

tive definiteness properties are replaced by sum-of-squares

constraints which can be efficiently solved using convex

optimization. The SOSTOOLS [6] toolbox for MATLAB has
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been developed as an easy computational tool to solve prob-

lems that utilizes the sum-of-squares techniques. This ap-

proach has also allowed finding a Lyapunov function within

some specified semi-algebraic region [7], [8]. However, while

this provides a method to certify a given inner approximation

to the region of attraction, it does not immediately provide a

way to find it. The level-set method [9] has been developed

to find a semi-algebraic representation of the domain-of-

attraction. With these polynomial techniques, it is possible

to precisely estimate the domain of attraction of a nonlinear

polynomial system and to find a suitable Lyapunov function

as the stability certificate.

The PLL system is a nonlinear system with limited

domain-of-attraction. Due to its importance in communi-

cation systems, analyzing and designing a PLL system

has attracted many attentions in this field [10], [11], [12],

[13], [14], [15], [16]. The current approach for designing

a controller for a PLL system is still based on the linear

model [16]. Hence, the performance of the resultant system

cannot be guaranteed at system states far away from the

designed equilibrium point.

In this paper, we utilize the current sum-of-squares tech-

niques to analyze the domain-of-attraction of a PLL sys-

tem. A local Lyapunov function can then be found as the

certificate of the domain-of-attraction using this approach.

The Lyapunov function will be further used to improve the

stability region and performance of the PLL system. An

example of a second order PLL system is used later in this

paper to show the benefits of this design approach.

II. PRELIMINARIES

The following are some definitions that will be used

frequently in this paper. R[x] is used to represent the ring

of polynomials in x with real coefficients. A polynomial

f ∈ R[x] is called positive semidefinite (PSD) if f(x) ≥ 0,

for all x ∈ R
n. A polynomial f is called sum-of-squares

(SOS) if there exist polynomials g1, ..., gs ∈ R[x] such that

f = g2
1 + g2

2 + · · ·+ g2
s . Clearly if f is sum-of-squares then

f is PSD. It is also well-known that the converse is not true.

Σ denotes the set of all sum-of-squares polynomials in R[x].
R+ is used to represent the set of nonnegative real numbers.

Suppose g : R
n → R is C1. Define the 0-sub-level set of

g to be sub(g) ⊂ R
n given by sub(g) = { x ∈ R

n | g(x) ≤
0 }. Further define the boundary of sub(g) as ∂ sub(g).

One feature of the proposed advection algorithm is that

the advection problem can be converted into a semidefinite

program. The following is a standard form of a semidefinite
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program.

min
X

trace(CX)

s. t. trace(AiX) = bi for i = 1, . . . , m

X � 0,

where X ∈ R
n×n is symmetric. X � 0 means that zT Xz

is positive semidefinite for all z ∈ R
n.

The condition of one semi-algebraic set containing another

semi-algebraic set is one of the key constraints used in this

paper. The following lemma shows that this kind of relation-

ship can be converted to constraints on the coefficients of the

polynomials. The proof can be found in [7] or [4].

Lemma 1: Given p, q ∈ R[x], suppose there exist s0, s1 ∈
Σ such that

s0 − s1q + p = 0 for all x ∈ R
n. (1)

Then sub(q) ⊂ sub(p). Further, given q and the degree

bound of p, s0, and s1, the set of coefficients of p, s0 and s1

satisfying (1) is the feasible set of a semidefinite program.

The following result is similar. Given q ∈ R[x], if there

exists s0, s1 ∈ Σ and ǫ > 0 such that

s0 + s1q − p + ǫ = 0,

then sub(p) ⊂ sub(q).
Usually q is a given polynomial and p is the solution to

find such that sub(p) and sub(q) approximately represent the

same set with some other constraints on p, such as having

lower degree or passing through several pre-specified points.

The above results are used to construct such constraints.

III. ACQUIRING THE LOCAL LYAPUNOV FUNCTION

Finding a local Lyapunov function is coupled with finding

the domain-of-attraction. Without a clear knowledge of the

actual shape of the domain-of-attraction, it is hard to find a

Lyapunov function that can be used to represent the entire

domain-of-attraction [4], [8]. To deal with this difficulty, we

utilize the current development in set advection [9].

A. Set advection

Suppose f : R
n → R

n is locally Lipschitz. In this paper,

we will consider the following autonomous system

ẋ(t) = f(x). (2)

Given a locally Lipschitz autonomous system (2) and

an open subset U ∈ R
n, the basic local existence and

uniqueness theorem [17] states that there exist c ∈ R+ such

that the autonomous system (2) has a unique solution for any

z ∈ U in the compact time interval [−c, c].
We define the flow map φ : R

n ×R → R
n to be the local

unique solution of

∂φt(z)

∂t
= f(φt(z)) for t ∈ [−c, c], c(z) ∈ R+, z ∈ R

n

φ0(z) = z.

For any t ∈ R such that φt(x) exists, the map φt : R
n →

R
n is continuous, invertible and has a continuous inverse;

that is it is a topological homeomorphism on R
n [18].

Given t ∈ R, we define the time t advection operator

At : C(Rn, R) → C(Rn, R) by

q = Atp if q(x) = p (φ−t(x)) for all x ∈ R
n,

where C(X, Y ) is the set of functions mapping from X

to Y . The map At is also called the Liouville operator

associated with f . A very important property is that it is

linear. Figure 1 shows the concept of the advection operator.

Given polynomial p, At maps the coefficients of p to another

polynomial q such that sub(q) = φt sub(p). We relate the

advection operator to the advection of sets in the following

remark.

Remark 1: Suppose g1, g2 are functions mapping R
n to

R. If g2 = Atg1 then sub(g2) = φt (sub(g1)).
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Fig. 1. The advection operator At.

B. Time-stepping

Since we are performing advection, we must use an ap-

proximation to the flow map φh with time step h. Many such

approximations are possible, and are provided by the theory

of numerical integration. The first-order Taylor approxima-

tion to q = Ahp is the map Bh : C(Rn, R) → C(Rn, R)
given by

q = Bhp if q(x) = p(x) − hDp(x)f(x),

where the derivative Dp(x) is a linear map Dp(x) : R
n →

R
n at each point x.

Based on the required accuracy of the advection, we could

also choose to use higher order Taylor approximation. How-

ever, depending on the system dynamics, this usually will

lead to the requirement of using higher degree polynomials

in the sum-of-squares constraints. The relationship between

the accuracy and the degree of polynomials will be further

investigated in future work.

C. Domain-of-attraction estimation

The set advection concept is used to estimate the domain-

of-attraction of a system. We use the following definition of

the domain-of-attraction in this paper.

Definition 1: Suppose f : R
n → R

n is analytic with the

flow map, φ, and the origin is asymptotically stable. Define

the domain-of-attraction (also called the basin/region of
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attraction) of f to be R ⊂ R
n such that for any x ∈ R, φt(x)

is defined for all t ≥ 0 and limt→∞ φt(x) = 0.

The following properties can be easily derived. The de-

tailed proofs can be found in [9].

Lemma 2: Suppose f is analytic and the origin is asymp-

totically stable and R 6= ∅. Suppose also S1 ⊂ R and

0 ∈ S1, and S1 is a connected closed positively invariant set.

Let h > 0 be a positive constant, and define the backward

advection of S1 to be S2, given by

S2 = φ−hS1.

Then S1 ⊂ S2 ⊂ R, and S2 is also connected, closed and

positively invariant. Furthermore, ∂S2 = φ−h∂S1.

Theorem 1: Suppose f is analytic and the origin is asymp-

totically stable and h > 0. Also suppose 0 ∈ S0 and S0 ⊂ R

is a closed connected positively invariant set, such that there

exists ǫ > 0 such that Bǫ ⊂ S0.

Define the sequence of sets S0, S1, S2, . . . by

Sk+1 = φ−hSk for k = 0, 1, 2, . . .

Then this sequence converges to R in the following sense:

(i) Sk ⊂ R for all k ∈ N.

(ii) Sk ⊂ Sk+1 for all k ∈ N.

(iii) For every x ∈ R, there exists n such that x ∈ Sn

D. Star-shaped constraint

For the case of estimating the domain-of-attraction, we

introduce the concept of star-shaped sets. The star-shaped

sets have many important properties and can be easily

implemented as a semidefinite program. We now start with

the first property. The detailed information about the star-

shaped set can be found in [9].

Definition 2: A set S ∈ R
n is called star-shaped if for all

x ∈ S,

λx ∈ S for all λ ∈ [0, 1].

The set S is called strictly star-shaped if for all x ∈ S,

λx ∈ int(S) for all λ ∈ [0, 1).
Note that a star shaped set S is connected. We now give a

simple sufficient condition that ensures that a sub-level set

is star-shaped. We make the following definition.

Definition 3: Suppose g : R
n → R. We call g strictly

star-shaped if g is C1 and further satisfies g(0) < 0 and

Dg(x)x > 0 for all x 6= 0.

The following lemma shows the connection between strictly

star-shaped functions and star-shaped sets.

Lemma 3: Suppose g : R
n → R is strictly star-shaped.

Then sub(g) is star-shaped.

For the purposes of this paper, we would like to construct

a convex set of functions whose sub-level sets are connected.

Although the convex set of all convex functions on R
n will

suffice, using it would unnecessarily restrict the class of sets

describable to be convex. One cannot simply use the set of

all functions whose 0-sub-level set is connected, since this

set of functions is not convex. We therefore choose the set

of strictly star-shaped functions, which is a convex set. We

will use strictly star-shaped polynomials to represent sets.

This is significantly more general than existing approaches

using quadratic functions [2], [1], [3]. Also, it has been

shown in Lemma 3 that if g is strictly star-shaped, then

sub(g) is strictly star-shaped. By using this property, we can

easily pose the star-shaped constraints on g to make sub(g)
a connected set.

E. An algorithm for backward advection

Here we will state the result of the backward advection

algorithm. The interested readers can find more detailed

derivations in [9].

Given a strictly star-shaped polynomial gi−1 such that

sub(gi−1) ⊂ R, and sub(gi−1) is bounded and positively in-

variant, we compute a polynomial gi such that sub(Ahgi) ≈
sub(gi−1) as follows.

Pick α > 0 and positive integer d. Solve, using semidef-

inite programming, the following feasibility problem for

gi ∈ R[x], s1, s2, s3, s4 ∈ Σ.

gi(0) = −1

Dgi(x)x > 0

s3 − s4gi−1 + B(h−α)gi = 0

s1 + s2gi−1 − Bhgi = 0

deg(gi) ≤ d.

Here we introduced an important parameter, α, which

we think of as follows. The above algorithm finds a de-

gree d polynomial gi such that gi is strictly star shaped,

φh sub(gi) ⊂ sub(gi−1), and φh−α sub(gi) ⊃ sub(gi−1).
Hence the parameter α may be thought of as a tolerance that

allows for the constraint that gi is required to have degree d

or less. Then from the result of theorem 1, limi→∞ sub(gi)
converges to the domain-of-attraction. It should be noted that

this technique only works in the case that the advected set

is positively/negatively invariant.

F. The local Lyapunov Function

We find a local Lyapunov function in order to construct

an initial star-shaped positively invariant set. The following

result is standard.

Proposition 1: Suppose f : R
n → R

n is analytic and the

origin is a stable equilibrium point. Also suppose V : R
n →

R is a C1 function, γ > 0, and the set

D = { x ∈ R
n | V (x) ≤ γ }

is compact. Further suppose

V (x) > 0 for all x 6= 0

V (0) = 0

DV (x)f(x) < 0 for all x 6= 0, x ∈ D.

Let g0(x) = V (x)− γ. Then sub(g0) is positively invariant,

and sub(g0) ⊂ R.

One simple approach to finding an initial sub-level set is

to find a quadratic Lyapunov function for the linear model

of the system, and use a small sub-level set of this quadratic

polynomial as the initial set.
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An alternative method which often gives a much larger

initial set is as follows. Choose a polynomial p ∈ R[x]
such that sub(p) ⊂ R. We then solve the following convex

feasibility problem. Find V ∈ R[x] and s0, s1 ∈ Σ such that

DV (x)x > 0 for all x 6= 0

V (x) > 0 for all x 6= 0

V (0) = 0

DV (x)f(x) + s0 − s1p = 0 for all x 6= 0.

Similar methods for finding local Lyapunov functions along

with details on the construction of the associated semidefinite

program may be found in [8], [5]. Here we have added the

first constraint to ensure that V −γ is strictly star-shaped for

γ > 0. Note that these constraints imply that all sub-level

sets of V are compact. Given V , we then solve the convex

program

maximize γ

subject to V − γ − s0 − s1p − ǫ = 0 for all x

s0, s1 ∈ Σ

where ǫ > 0 is small. The optimal γ satisfies sub(V −
γ) ⊂ sub(p). Then V and γ satisfy the assumptions of

Proposition 1 and so we may use g0 = V −γ as the function

defining our initial level-set.

IV. CONFIGURATION OF A PHASE-LOCKED LOOP

Figure 2 shows the basic configuration of a PLL. It has

three components; a phase detector, a loop filter, and a

voltage controlled oscillator(VCO). The VCO generates an

output signal whose phase, θ0(t), depends on the phase,

θi(t), of the input signal. The PLL is phase locked when

the phase error φ(t) = θi(t) − θ0(t) is a constant value and

the loop is in stable equilibrium state. Usually, it is desired

that the phase error, φ(t), is maintained at zero.

Phase

Detector

Low Pass

Filter

Voltage

Controlled

Oscillator

iq oqf

Fig. 2. Basic Configuration of a PLL

Of interest is the behavior of the phase error φ(t). Because

of its sinusoidal nonlinearity in the PLL, the phenomenon of

chaos is believed to exist [10], [11] and its inherent chaotic

behavior for broadening the lock-in range of PLL has also

been realized [12], [13]. A nonlinear controller can drive PLL

from chaotic state into periodic state or vice versa [14]. For

higher-order PLL, it is not possible to determine whether the

loop will or will not slip cycles using the initial frequency

alone. In this case, one might define the lock-in range as the

separatrix ordinate at φ = 0 [16]. Analyzing the domain-of-

attraction of the PLL system provides a better description

of the region in which a PLL locks up without slipping.

The Lyapunov method has been used for stability analysis

in control systems. Here the advection algorithm will be used

to find the guaranteed stability boundary of the PLL system

and the associated local Lyapunov function is then used to

further refine the controller parameters. In [15], a Lyapunov

styled analysis for PLL system up to third order is presented.

The method shown in this section provides a way to analyze

the domain-of-attraction for a more general system. Also,

the form of the Lyapunov function used here is much more

flexible.

Figure 3 shows the nonlinear model of the PLL. The sine

function here represents the phase detector of the system.

K in Figure 3 stands for the loop gain of the system. F (s)
is equivalent to the low pass filter shown in Figure 2 and

it corresponds to the controller of the PLL. Finally, the

integrator in Figure 3 is the voltage or numerically controlled

oscillator. The key idea of a PLL system is to use the

command, y2, from F (s) to steer the oscillator such that

θ0(t) tracks θi(t) as closely and quickly as possible.

å )sin(· K )(sF òiq +

-
oq

f
1y 2y

oq

Fig. 3. Model of the Phase-Locked Loop

A. Second order Phase-Locked Loop

To use the nonlinear design approach, start with a refer-

ence design. The reference design used in this paper is the

linear model of a PLL system. A Proportional-Integrator (PI)

controller is chosen to be the filter, F (s), as

F (s) =
1 + τ2s

τ1s
. (3)

Using the model shown in Figure 3, it is routine to check

that the resulting dynamic equation of the system is

d2φ

dt2
+ K

τ2

τ1
cos(φ)

dφ

dt
+

1

τ1
K sin(φ) =

d2θi

dt2
. (4)

Assume that the received signal frequency is varying linearly

with time and has zero radial acceleration and let x1 =
φ, x2 = φ̇. The PLL system can be rewritten as the following

state space model

ẋ1 = x2

ẋ2 = −K
τ2

τ1
cos(x1)x2 −

1

τ1
K sin(x1) (5)

= k1 cos(x1)x2 + k2 sin(x1).

Equation (5) is the final nonlinear model of the second order

PLL. A linearized model can then be derived as

ẋ1 = x2

ẋ2 = k1x2 + k2x1.

The filter F can then be designed using existing linear design

approach [16]. One typical choice is to let ωn = 15, ζ =
0.707, K = 1, where ωn is the natural frequency, ζ is the

damping ratio, and K is the overall gain. The two coefficients

of the filter are then given as τ1 = K
ω2

n

, τ2 = 2ζ

ωn
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V. PHASE-LOCKED LOOP ANALYSIS AND DESIGN

In this section, the second order PLL controller will be

used to demonstrate the nonlinear design approach. The same

approach can also be applied to the third order controller

design.

A. Pull-in range of the traditional PLL system

Now the advection algorithm can be applied to the PLL

nonlinear system. To reduce the required number of itera-

tions, a local Lyapunov function is used as the initial set.

After a few iterations of the algorithm, it gives us the

estimated domain-of-attraction of the system. The result is

shown in Figure 4. Note that the estimated region is based on

the Taylor series expansion of the sine and cosine functions.

In this example, two degree-10 polynomials are used to

approximate sine and cosine functions and the estimated

region is only valid between −π and π. More terms of the

Taylor series could also be used to improve the accuracy.

−4 −3 −2 −1 0 1 2 3 4

−60

−40

−20

0

20

40

60

φ

d
φ
/d

t

Fig. 4. Result of the original PLL system.

B. PLL system controller design

After getting a good estimated domain-of-attraction, a

local Lyapunov function that describes the system behavior

can be easily computed using the same sum-of-squares

techniques as what we used to get the initial invariant set.

This local Lyapunov function can also be used to describe

the trajectories of the system in the domain-of-attraction.

Figure 5 shows the result gained from the usual sum-of-

squares approach.
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Fig. 5. Local Lyapunov level sets of the original PLL system.

The sum-of-squares techniques can be applied to the

design of a controller. For the PLL system, it is desired to

design a system which has a larger domain-of-attraction or

faster converging speed. Here, the objective is to find possible

system parameters such that the same Lyapunov function is

still valid and the system converges faster. This can be done

by solving a semidefinite program.

Suppose V is the local Lyapunov function for the PLL

system. Using the sum-of-squares technique, solve the fol-

lowing optimization problem:

max α

s.t. − (DV )f = s1 + s2(a − V )

− (DV )f − αq = s3 + s4(b − V ) (6)

p(k) ≤ 0

where a, b ∈ R+ specify the domain of the constraints and

q is a positive definite performance polynomial specified by

the user. p(k) is a linear constraint of controller parameter

k. As before, s1, s2, s3, s4 are sum-of-squares polynomials.

Since V is now a given function, the above constraints are

linear in the controller parameters. The first constraint shows

that V is a valid Lyapunov function in sub(V − a). This

constraint is used to specify the desired domain-of-attraction

to maintain. The second constraint along with the objective

function will put an upper bound on the derivative of the

Lyapunov function in sub(V − b). Faster decreasing rate im-

plies faster converging speed. This specifies the performance

requirement of our system. The user could also put different

performance requirements in different sub-level sets of V .

Besides dynamic performance constraints, noise band-

width constraints will be applied as well. The noise band-

width for this PLL system with PI controller has the follow-

ing form

BL =
ωn

2

(

ζ +
1

4ζ

)

.

Assume ζ ≥ 1, ωn ≥ 1. Then

BL =
ζωn

2
+

ωn

8ζ
≤ −

k1

4
−

k2

8
.

This linear upper bound will be used to find a set of

controller parameters that have better dynamic performance

while maintaining the same noise bandwidth.
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Fig. 6. Comparison of the domain-of-attraction. Left: linear design. Right:
nonlinear design.

The system phase portrait as well as the estimated stable

region are shown in Figure 6. The nonlinear design has K =
1, ωn = 10.813, and ζ = 1.3303. The noise bandwidth is

8.1082 Hz, which is slightly higher than the noise bandwidth

of the linear design, 7.9546 Hz. From the phase portrait, the

nonlinear design has approximately 20% larger guaranteed

domain-of-attraction. It can also be observed from the phase

portrait that the nonlinear design has less overshoot than the
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linear design. This shows that the proposed method increases

the system performance while not sacrificing too much of the

noise rejection capability.

A Simulink model is used to compare the nonlinear de-

signed PLL controller with the linear design. In this Simulink

model, the sinusoidal input is collapsed by measurement

noise and clock noise with zero mean and variances 0.1 and

0.0001, respectively. Figure 7 is the phase error of the two

designs. It is clear that the nonlinear designed controller has

a much faster convergence rate than the original design.
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Fig. 7. Phase error of Simulink simulation. Left: linear design. Right:
nonlinear design.

Both systems are tested on a NORDNAV R25 software

GPS receiver. This receiver collects, down-converts and

samples the GPS data by the front end, so that the collected

GPS data can be post-processed repeatedly using different

tracking-loop filter orders. The results are shown in Figure 8.

It can be seen that the the original system has some overshoot

and converges around 300ms. The nonlinear design has much

less overshoot and converges about five times faster than the

original design.

VI. CONCLUSIONS

In this paper, we presented a method of designing a PI

controller of a PLL system. This design approach is based

on the polynomial nonlinear model of the PLL system.

This approach starts with the linear design of the controller

and then estimates the domain-of-attraction of the linear

designed system to get the suitable local Lyapunov function

for the system. The Lyapunov function is then used as the

performance constraints to further refine the performance

of the system outside the linear region. The domain-of-

attraction of the initial design can also be extended to get a

better lock-in region of the PLL system. This approach gives

us a way to design a fixed form controller for a nonlinear

system.
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