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Traditional views of automaticity are in need of revision. For example, automaticity otten has been 
treated as an all-or-none phenomenon, and traditional ~ e s  have held that automatic processes 
are independent of attention. Yet recent empirical data suggest that automatic processes are continu- 
ous, and furthermore are subject to attentional control. A model of attention is presented to address 
these issues. Within a parallel distributed processing framework, it is proposed that the attributes of 
automaticity depend on the strength of a processing pathway and that strength increases with train- 
ing. With the Stroop effect as an example, automatic processes are shown to be continuous and to 
emerge gradually with practice. Specifically, a computational model of the Stroop task simulates the 
time course of processing as well as the effects of learning. This was accomplished by combining the 
cascade mechanism described by McCleUand (1979) with the backpropagation learning algorithm 
(Rumelhart, Hinton, & Williams, 1986). The model can simulate performance in the standard 
Stroop task, as well as aspects of performance in variants of this task that manipulate stimulus-onset 
asynchrony, response set, and degree of practice. The model presented is contrasted against other 
models, and its relation to many of the central issues in the literature on attention, automaticity, and 
interference is discussed. 

I n t r o d u c t i o n  

The nature of  attention has been one of  the central concerns 
of experimental psychology since its inception (e.g., Cattell, 
1886; Pillsbury, 1908). James (1890) emphasized the selective 
aspects of attention and regarded attention as a process of 
"taking possession by the mind, in clear and vivid form, of  one 
out of  what seems several simultaneously possible objects or 
trains of  thought" (p. 403). Others, such as Moray (1969) and 
Posner (1975), have noted that attention is also a heightened 
state of  arousal and that there appears to be a limited pool of  
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attention available for cognitive processes. Posner and Snyder 
(1975) and Shiffrin and Schneider (1977) have provided ac- 
counts of  attention that integrate these aspects of attention and 
emphasize that attention is intimately tied to learning. These 
accounts focus on two types of  cognitive processes, controlled 
and automatic. Controlled processes are voluntary, require at- 
tention, and are relatively slow, whereas automatic processes are 
fast and do not require attention for their execution. Perfor- 
mance of  novel tasks is typically considered to rely on con- 
trolled processing; however, with extensive practice, perfor- 
mance of some tasks can become automatic (e.g., LaBerge & 
Samuels, 1974; Logan, 1979; Posner & Snyder, 1975; Schneider 
& Shiffrin, 1977; Shiffrin & Schneider, 1977). 1 

Many tasks have been used to examine the nature of  atten- 
tion and automaticity. Perhaps the most extensively studied 
tasks have been the search tasks of  Shiffrin and Schneider (1977; 
Schneider & Shiffrin, 1977), priming tasks (e.g., Neely, 1977), 
and the Stroop task (Stroop, 1935). The interpretation of  such 
studies often has relied on the assumption that automaticity is 
an all-or-none phenomenon. However, recent research has be- 
gun to question this assumption (e.g., Kahneman & Henik, 
1981; MacLeod & Dunbar, 1988). An alternative conception is 
that automaticity is a matter of  degree. For example, Kahne- 

i Some authors have argued that certain automatic processes are in- 
nate. For example, Hasher and Zacks (1979) argued that the encoding 
of event frequency is an automatic process and that it is innate. In this 
article, however, our focus is on processes that become automatic after 
extensive practice at a task. 
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man and Treisman (1984) have suggested that processes may 
differ in the extent to which they rely on attention, and Mac- 
Leod and Dunbar (1988) have presented data that indicate that 
the attributes of automaticity develop gradually with practice. 
As yet, however, there is no explicit account of the mechanisms 
underlying automaticity that can explain both its gradual devel- 
opment with practice and its relation to selective attention. The 
purpose of this article is to provide such an account. 

We begin by illustrating the relationship between attention 
and automaticity--as it is commonly construed--in the con- 
text of the Stroop interference task. We show how previous at- 
tempts to explain the Stroop effect point to significant gaps in 
understanding this basic phenomenon. We then describe a theo- 
retical framework in which automaticity can be viewed as a con- 
tinuous phenomenon that varies with practice; the framework 
specifies the relationship between automaticity and attentional 
control in terms of specific information-processing mecha- 
nisms. The main body of the article describes a simulation 
model that applies this theoretical framework to performance 
in the Stroop task. 

The Stroop Task 

The effects observed in the Stroop task provide a clear illus- 
tration of people's capacity for selective attention and the ability 
of some stimuli to escape attentional control. In this task, sub- 
jects are asked to respond to stimuli that vary in two dimen- 
sions, one of which they must ignore. In the classic version of 
the task, subjects are shown words written in different-colored 
inks. When the task is to read the word, subjects are effective in 
ignoring the color of the ink, as evidenced by the fact that ink 
color has no influence on reading time. However, when the task 
is to name the ink color, they are unable to suppress the effects 
of word form. If the word conflicts with the ink color (e.g., 
GREEN in red ink2), they are consistently slower to respond (i.e., 
say "red") than for control stimuli (e.g., a row of Xs printed in 
red ink), and they are faster if the word agrees with the ink color 
(e.g., RED in red ink). Subjects are also slower overall at color 
naming than at word reading, suggesting that color naming is a 
less practiced task. These effects are highly robust, and similar 
findings have been observed in a diversity of paradigms using 
various stimuli (for reviews, see Dyer, 1973; MacLeod, 1989). 
The Stroop effect illustrates a fundamental aspect of attention: 
People are able to ignore some features of the environment but 
not others. 

The simplest explanation for the Stroop effect is that the rele- 
vant difference between color naming and word reading is speed 
of processing. Indeed, subjects are consistently faster at reading 
words than at naming colors. Because of this fact, it is often 
assumed that the word arrives at the response stage of process- 
ing before color information. If the word concurs with the color, 
this will lead to facilitation of the color-naming response; if the 
word conflicts, its influence must be overcome to generate the 
correct response, leading to a longer response time for (i.e., in- 
terference with) the color-naming process. Because color infor- 
mation arrives at the response stage after the word information, 
it has no effect on the word-reading process. 

However, if speed of processing is the only relevant variable, 
then there should be a way to make color information conflict 

with word reading by presenting color information early 
enough before the onset of the word. In fact, however, this does 
not work. M. O. Glaser and Glaser (1982) varied the stimulus- 
onset asynehrony (SOA) of a color patch and a color word, 3 and 
found no interference of the color patch on word reading even 
when the color preceded the word by as much as 400 ms. This 
result indicates that the relative finishing time of the two pro- 
cesses is not the sole determinant of interference effects. 

A more general approach to explaining Stroop-like effects has 
been to consider the role of attention in processing. This ap- 
proach draws on the distinction between automatic and con- 
trolled processes (Cattell, 1886; Posner & Snyder, 1975; Shitfrin 
& Schneider, 1977). Automatic processes are fast, do not re- 
quire attention for their execution, and therefore can occur in- 
voluntarily. In contrast, controlled processes are relatively slow, 
require attention, and therefore are under voluntary control. 
From this point of view, the results of an automatic process are 
more likely to escape attempts at selective attention than are 
those of a controlled process. 

Posner and Snyder (1975) applied the distinction between 
controlled and automatic processes directly to the SWoop task 
by making the following three assumptions: (a) Word reading is 
automatic, (b) color naming is controlled, and (c) if the outputs 
of any two processes conflict, one of the two processes will be 
slowed. In this view, the finding that word reading is faster than 
color naming follows from the relatively greater speed of auto- 
matic processes. The finding that ink color has no effect on word 
processing follows from the assumption that color naming is 
controlled and therefore voluntary; so, the color-naming pro- 
cess will not occur when the task is to ignore the color and read 
the word. The finding that a conflicting word interferes with 
color naming follows from the automaticity (i.e., involuntary 
nature) of word reading and the assumption that conflicting 
outputs slow responding. 

This interpretation of the Stroop task exemplifies a general 
method that has been used for assessing the automaticity of two 
arbitrary processes, A and C, on the basis of their speed of pro- 
cessing and the pattern of interference effects they exhibit. If A 
is faster than C, and ifA interferes with C but C does not inter- 
fere with A, then A is automatic and C is controlled. Of course, 
this reasoning requires that Processes A and C are in some sense 
comparable in intrinsic difficulty and number of processing 
stages. 

This method for identifying processes as automatic or con- 
trolled has gained wide acceptance. However, evidence from a 
recent series of experiments conducted by MacLeod and Dun- 
bar (1988) suggests that this may not be an adequate character- 
ization of the processes involved in the Stroop task. They taught 
subjects to use color words as names for arbitrary shapes that 
actually appeared in a neutral color. After 288 trials (72 trials 
per stimulus), subjects could perform this shape-naming task 
without difficulty. At this point, the effect that ink color had on 

2 Throughout this article, references to word stimuli appear in upper- 
case letters (RED), references to color stimuli appear in lowercase letters 
(red), and references to potential responses appear in quotation marks 
("red"). 

3 As we discuss later, the Stroop effect can still be observed even when 
the two stimulus dimensions are physically disjoint. 
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shape naming was tested by presenting subjects with conflicting 
and congruent stimuli (i.e., shapes colored to conflict or agree 
with their assigned names). Ink color produced large interfer- 
ence and facilitation effects. However, when the task was re- 
versed, and subjects were asked to state the color of the ink in 
which the shapes appeared (the color-naming task), congruity 
of the shape name had no effect. They also noted that reaction 
times for the shape-naming task (control condition) were slower 
than were those for the standard color-naming task (control 
condition). 

MacLeod and Dunbar's (1988) results are incompatible with 
the explanation of the Stroop task in terms of controlled versus 
automatic processing. That is, according to standard reasoning, 
since (a) color naming is slower than word reading, (b) color 
naming is influenced by word information, and (c) ink color 
does not influence word reading, color naming must be con- 
trolled. Yet, in MacLeod and Dunbar's experiment, color nam- 
ing reversed roles. That is, (a) color naming was faster than 
shape naming, (b) color naming was not affected by shape 
names, and (c) ink color interfered with (and facilitated) shape 
naming. If we treat automaticity as dichotomous, we must con- 
elude from these findings that color naming is automatic. 

One way of accounting for these data--rather than by trying 
to dichotomize processes as controlled or automatic--is to sup- 
pose that tasks such as word reading, color naming, and shape 
naming lie along a continuum. This is suggested by their relative 
speeds of performance and by the pattern of interference effects 
that exist among these tasks. Thus, word reading is faster than 
and is able to interfere with color naming, whereas color nam- 
ing is faster than and is able to interfere with shape naming (at 
least at first). Such a continuum suggests that speed of process- 
ing and interference effects are continuous variables that de- 
pend on the degree of automatization of each task. This is sup- 
ported by the following evidence. 

Continuous Nature of Speed of Processing 

Numerous studies have shown that practice produces grad- 
ual, continuous increases in processing speed (e.g., Blackburn, 
1936; Bryan & Harter, 1899; Logan, 1979; Shiffrin & Schnei- 
der, 1977) that follow a power law (Anderson, 1982; Kolers, 
1976; Logan, 1988; Newell & Rosenbloom, 1981). MacLeod 
and Dunbar (1988) also examined this variable in their study. 
They continued to train subjects on the shape-naming task with 
144 trials per stimulus daily for 20 days. Reaction times showed 
gradual, progressive improvement with practice. 

Continuous Nature of Interference Effects 

The pattern of interference effects observed in the MacLeod 
and Dunbar (1988) study also changed over the course of train- 
ing on the shape-naming task. As mentioned earlier, after 1 day 
of practice, there was no effect of shape names on color naming. 
After 5 days of training, however, shapes produced some inter- 
ference, and after 20 days, there was a large effect. That is, pre- 
senting a shape with a name that conflicted with its ink color 
produced strong interference with the color-naming response. 
The reverse pattern of results occurred for the shape-naming 
task. After 1 session of practice, conflicting ink color interfered 

with naming the shape, whereas after 20 sessions this no longer 
occurred. 

These data suggest that speed of processing and interference 
effects are continuous in nature and that they are closely related 
to practice. Furthermore, they indicate that neither speed of 
processing nor interference effects, alone, can be used reliably 
to identify processes as controlled or automatic. These observa- 
tions raise several important questions. What is the relationship 
between processes such as word reading, color naming, and 
shape naming, and how do their interactions result in the pat- 
tern of effects observed? In particular, what kinds of mecha- 
nisms can account for continuous changes in both speed of pro- 
cessing and interference effects as a function of practice? Fi- 
nally, and perhaps most important, how does attention relate to 
these phenomena? 

The purpose of this article is to provide a theoretical frame- 
work within which to address these questions. Using the princi- 
ples of parallel distributed processing (PDP), we describe a 
model of the Stroop effect in which both speed of processing 
and interference effects are related to a common, underlying 
variable that we call strength of processing. The model provides 
a mechanism for three attributes ofautomaticity. First, it shows 
how strength varies continuously as a function of practice; sec- 
ond, it shows how the relative strength of two competing pro- 
cesscs determines the pattern of interference effects observed; 
and third, it shows how the strength of a process determines the 
extent to which it is governed by attention. 

The model has direct implications for the standard method 
by which controlled and automatic processes are distinguished. 
The model shows that two processes that use qualitatively iden- 
tical mechanisms and differ only in their strength can exhibit 
differences in speed of processing and a pattern of interference 
effects that make the processes look as though one is automatic 
and the other is controlled. This finding suggests that these cri- 
ter ia-speed of processing, ability to produce interference, and 
susceptibility to interference--may be inadequate for distin- 
guishing between controlled and automatic processing. This 
does not mean that the distinction between controlled and auto- 
matic processes is useless or invalid. Rather, the model shows 
that speed-of-processing differences and Stroop-like interfer- 
ence effects can emerge simply from differences in strength of 
processing, so that these phenomena may not provide a reliable 
basis for distinguishing controlled from automatic processes. 

The Processing Framework 

The information-processing model we describe was devel- 
oped within the more general PDP framework described by 
Rumelhart, Hinton, and McClelland (1986). Here, we outline 
some of the general characteristics of this framework. We then 
turn to the details of our implementation of a model of the 
Stroop task. 

Architectural characteristics. Processing within the PDP 
framework is assumed to take place in a system of connected 
modules. Each module consists of an ensemble of elementary 
processing units. Each unit is a simple information-processing 
device that accumulates inputs from other units and adjusts its 
output continuously in response to these inputs. 

Representation of information. Information is represented as 
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a pattern of  activation over tbe units in a module. The activation 
of  each unit is a real valued number varying between a maxi- 
mum and minimum value. Thus, information is represented in 
a graded fashion and can accumulate and dissipate with time. 

Processing. Processing occurs by the propagation of  signals 
(spread of  activation) from one module to another. This occurs 
via the connections that exist between the units in different 
modules. In general, there may be connections within as well as 
between modules, and connections may be bidirectional. How- 
ever, for present purposes, we adopt the simplification that there 
is a unidirectional flow of  processing, starting at modules used 
to represent sensory input and proceeding forward or from the 
bottom up to modules from which output governs the execution 
of overt responses. 

Pathways and their strengths. A particular process is as- 
sumed to occur via a sequence of  connected modules that form 
a pathway. Performance of  a task requires that a processing 
pathway exist that allows the pattern of  activation in the rele- 
vant sensory modules to generatemthrough propagation of  ac- 
tivation across intermediate modules--an appropriate pattern 
of  activation in the relevant output modules. The speed and 
accuracy with which a task is performed depends on the speed 
and accuracy with which information flows along the appropri- 
ate processing pathway. This, in turn, depends on the connec- 
tions between the units that make up the modules in that path- 
way. We demonstrate this in the Simulations section. We refer 
to this parameter as the strength of a pathway. Thus, the speed 
and accuracy of performing a task depend on the strength oftbe 
pathway used in that task. 

Interactions between processes. Individual modules can re- 
ceive input from and send information to several other mod- 
ules. As such, each can participate in several different process- 
ing pathways. Interactions between processes arise in this sys- 
tem when two different pathways rely on a common module, 
that is, when pathways intersect. If  both processes are active, 
and the patterns of  activation that each generates at tbe point 
of  intersection are dissimilar, then interference will occur within 
that module, and processing will be impaired in one or both 
pathways. If  the patterns of  activation are very similar, this will 
lead to facilitation. 

The intersection between two pathways can occur at any 
point in processing after tbe sensory stage. For example, inter- 
ference at an intermediate stage is consistent with data reported 
by Shaffer (1975) and by Allport, Antonis, and Reynolds 
(1972). Interference at the output stage would give rise to re- 
sponse competition, such as that observed in tbe Stroop task 
(cf. Dyer, 1973). The general view that interference effects arise 
whenever two processes rely on a common resource or set of  
resources has been referred to as the multiple-resources view 
(e.g., Allport, 1982; Hirst & Kalmar, 1987; Navon & Gopher, 
1979; Wickens, 1984). Logan (1985) summarized this position 
succinctly: 

Different tasks may depend on different resources, and dual-task 
interference occurs only when the tasks share common resources. 
Thus, the interference a particular task produces will not be an 
invariant characteristic of that task; rather, it will depend on the 
nature of the tasks it is combined with:' (p. 376) 

This point will be made explicit in the simulations we present 
later. 

Attentional control. One way to avoid the interactions that 
occur at the intersection between two pathways is to modulate 
the information arriving along one of  them. This is one of  the 
primary functions of  attention within this framework and is 
consistent with the views on attention expressed by several 
other authors (Kahneman & Treisman, 1984; Logan, 1980; 
Treisman, 1960). In our system, modulation occurs by altering 
the responsiveness of  the processing units in a pathway. In this 
way, attention can be used to control individual processes. How- 
ever, this does not necessarily imply that attention requires a 
unique or even distinct component of  processing. Attention can 
be thought of as an additional source of  input that provides con- 
textual support for the processing of  signals within a selected 
pathway. 

This framework can be used to account for many oftbe em- 
pirical phenomena associated with learfiing and automaticity. 
Schneider (1985) has used a similar approach to explain how 
performance in a category-search task changes as a function of  
practice. Here, we focus on the significance that this approach 
has for selective attention, using the Stroop task as an example. 
In the next section, we describe a simulation model of  the 
Stroop task that is based on the processing principles discussed 
earlier. We then present a series of  six simulations to demon- 
strate that this model is able to account for many of  the empiri- 
cal phenomena associated with automaticity and for their grad- 
ual emergence as a function of  practice. The first four simula- 
tions are used to examine the attributes of  automaticity 
evidenced in the Stroop task (namely, speed of processing and 
interference effects). The remaining simulations directly ex- 
plore the relationship between processing and attention. 

The  Model  

In this section, we describe the PDP mechanisms for process- 
ing, practice, and attentional control that we used to simulate 
the Stroop task. 

Architecture, Processing, and the 
Representation of  Information 

The architecture of  this model is depicted in Figure 1. The 
model consists of two processing pathways---one for processing 
color information, the other for processing word informationm 
both of which converge on a common response mechanism. 
Each pathway consists of a set of input units, a set of intermedi- 
ate units, and a set of output units. Each oftbe input units in a 
given pathway projects to all of the intermediate units in that 
pathway. The intermediate units from both pathways project to 
all of the output units in the model. In addition, each unit is 
associated with a bias term, which is a constant value that is 
added to its net input (discussed later). 

Processing in this system is strictly feed forward. A stimulus 
is provided by activating units at the input level of the network. 
Activation then propagates to the intermediate units and grad- 
ually to the output units. A response occurs when sufficient acti- 
vation has accumulated from one of the output units to exceed 
a response threshold. Reaction time is assumed to be linearly 
related to the number of processing cycles necessary for this 
threshold to bc exceeded (the response mechanism is discussed 
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RESPONSE 

"red . . . .  green" 

. . . . . . . . .  | 

Color Word 
INK COLOR Naming Reading WORD 

TASK DEMAND 

Figure 1. Network architecture. (Units at the bottom are input units, and units 
at the top are the output [response] units.) 

in greater detail later). In addition to the units just described, 
there are two task demand (or attention) units--one for the col- 
or-naming task, the other for the word-reading task. These are 
connected to the intermediate units in the two processing path- 
ways and are used to allocate attention to one or the other of  
them. Activation of a particular task demand unit sensitizes 
processing in the corresponding pathway, as is explained later. 

Individual stimuli and responses have discrete representa- 
tions in this model. Each color is represented by a single input 
unit in the color pathway, and each word is represented by a 
single input unit in the word pathway. Similarly, each output 
unit represents one potential response. We chose local represen- 
tations of  this kind to keep the model as simple and interpret- 
able as possible. However, nothing in principle precludes the 
possibility that either inputs or outputs could be distributed 
over many units, and preliminary investigations indicate that 
our findings using locaI representations generalize to systems 
using distributed representations. 

Mechanisms for Learning and the 
Time Course of  Processing 

The model is intended to provide an explanation of  the rela- 
tionship between learning and the time course of  the psycholog- 
ical processes involved in the Stroop task. PDP models that 
have addressed the time course of psychological processes have 
largely been distinct from those that address learning and mem- 
ory. For example, McClelland (1979) presented a multilevel 

PDP system that provided an account of  the time course of  psy- 
chological processes; however, this system did not include a 
learning algorithm. The backpropagation algorithm described 
by Rumelhart, Hinton, and Williams (1986) was introduced as 
a general learning mechanism that can be used in multilevel 
networks. However, PDP systems that have used this algorithm 
generally have not simulated temporal phenomena, such as re- 
action times. Here we describe each of  these mechanisms and 
their limitations in greater detail. We then show how they can 
be brought together to provide a single system in which both 
learning and processing dynamics can be examined. 

McClelland's (1979) cascade model provides a mechanism 
for simulating the time course ofpsychological processes. In this 
system, information is represented as the activation of  units in 
a multilevel, feed-forward network. Input is presented as a pat- 
tern of activation over units at the lowest level. Information 
gradually propagates upward, as units at each level update their 
activations on the input they are receiving from lower levels. 
Eventually, a pattern of  activation develops over the units at the 
topmost level, where a response is generated. Units in this net- 
work update their activations on the basis of  a weighted sum of 
the input they receive from units at the previous level in the 
network. Specifically, the net input at time t for unitj (at leveln) 
is calculated as 

netj(t) = ~ ai(t)wij, (1) 
i 

where ai(t) is the activation of  each unitj (at leveln-l) from which 
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unit~ received input and w o is the weight (or strength) of  the 
connection from each unitj to unitj. The activation of a unit is 
simply a running average of  its net input over time: 

aj(t) = netj(t) = rnetj(t) + (1 - r)netj(t - 1), (2) 

where n-~j(t) is the time average of  the net input to unitj, netj(t) 
is the net input to unitj at time t, and 7 is a rate constant. This 
time-averaging function is what establishes the time course of  
processing in this model. When z is small, the unit's activation 
will change slowly; with a larger ~,, it will change more quickly. 
One feature of  Equation 2 is that if the net input to a unit re- 
mains fixed, the unit's activation will approach an asymptotic 
value that is equal to this net input. As a result, McClelland 
(1979) demonstrated that with a constant input to the first layer 
in such a network, all of  the units will approach an asymptotic 
activation value. Moreover, this value is determined strictly by 
the input to the network and the connections that exist between 
the units. Thus, given a particular input pattern and sufficient 
time to settle, the network will always reach a stable state in 
which each unit has achieved a characteristic activation value. 

One problem with the type of  network used in the cascade 
model is that it is based on a linear activation function. That is, 
the activation of a unit is simply a weighted sum of the inputs 
it receives. Networks that rely on linear update rules such as 
this, even if they are composed of  multiple layers, suffer from 
fundamental computational limitations (see Rumelhart, Hin- 
ton, & McClelland, 1986, for a discussion). To overcome this 
problem, a network must have at least one layer of units be- 
tween the input and output units that make use of a nonlinear 
relation between input and output. Another problem with the 
cascade model, especially within the current context, is that it 
lacks any mechanism for learning. Both of  these problems can 
be overcome if mechanisms are included that have been used in 
recent PDP models of  learning. 

The first step is to introduce nonlinearity into processing. 
Typically, this has been done by using the logistic function to 
calculate the activation of  a unit, based on its instantaneous net 
input: 

1 
aj(t) = logistic[netj(t)] = I + e - ~  t°' (3) 

where netj(t) is given by Equation 1. The logistic function intro- 
duces nonlinearity by constraining the activation of units to be 
between the values of 0 and 1 (see Figure 2). This nonlinearity 
provides important behaviors, which we discuss later (see At- 
tentional Selection section). However, as it stands, Equation 3 
does not exhibit a gradual buildup of  activation over time. The 
full response to a new input occurs in a single processing step 
at each level, so the effects of a new input are propagated 
through the network in a single sweep through all of  its levels. 
The dynamic properties of  the cascade model can be intro- 
duced, however, if we assume, as the cascade model did, that the 
net input to a unit is averaged over time before the activation 
value is calculated. This gives us the following activation rule: 

ai(t) = logistic[h-~j(t)], (4) 

where netj(t) is defined as in Equation 2. The only difference 
between this activation rule and the one used in the cascade 

model is that the time-averaged net input to a unit is passed 
through the logistic function to arrive at its activation. We are 
still assured that the activation value will approach an asymp- 
tote that depends only on the input pattern and the connection 
strengths in the network. In fact, this asymptote is the same as 
the activation that the unit would assume without the use of  
time averaging (to see this, consider the limiting case in which 
r =  1). 

Several learning rules have been described for single and mul- 
tilevel networks using nonlinear units. In the current model, we 
used the generalized delta rule (also known as the backpropaga- 
tion learning algorithm) described by Rumelhart, Hinton, and 
Williams (1986). Learning occurs by adjusting the connection 
strengths to reduce the difference between the output pattern 
produced by the network and the one desired in response to the 
current input. This difference is essentially a measure of the 
error in the performance of  the network. Error reduction occurs 
by repeatedly cycling through the following steps: (a) presenting 
an input pattern to be learned, (b) allowing the network to gen- 
erate its asymptotic output pattern, (c) computing the differ- 
ence between this output pattern and the one desired, (d) propa- 
gating information derived from this difference back to all of 
the intermediate units in the network, and (e) allowing each 
unit to adjust its connection strengths on the basis of  this error 
information. By repeatedly applying this sequence of  steps to 
each member of a set of input patterns, the network can be 
trained to approximate the desired output pattern for each 
input. 

The nonlinearity of the activation update rule discussed ear- 
lier is compatible with the backpropagation algorithm, which 
only requires that the activation function be monotonic and 
continuous (i.e., differentiable). The logistic function satisfies 
this constraint. Furthermore, so long as units are allowed to 
reach their asymptotic activation values before error informa- 
tion is computed at the output level, then learning in this system 
is no different from systems that do not include a time-averag- 
ing component. 

Variability and the Response,Selection Mechanism 

Processing Variability 

Even when human subjects appear to have mastered a task, 
they still exhibit variability in their response. This can be seen, 
for example, in the distribution of  reaction times for a given 
task. To capture this variability, and to be able to model the 
variability of  reaction time data, we introduce randomness into 
the model by adding normally distributed noise to the net input 
of each unit (except the input units). 

Response Mechanism 

In addition to the variability in the activation process, the 
model also incorporates variability in the response mechanism. 
One successful way of modeling response variability has been 
to assume that the choice of  a response is based on a random 
walk (Link, 1975) or a diffusion process (Rateliff, 1978). In our 
adaptation of  these ideas, we associate each possible response 
with an evidence accumulator that receives input from the out- 
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put units of  the network. At the beginning of  each trial, all of  
the evidence accumulators are set to 0. In each time step of  
processing, each evidence accumulator adds a small amount of  
evidence to its accumulated total. The amount added is random 
and normally distributed, with mean # based on the output of  
the network, and with fixed standard deviation ~r. The mean 
is proportional to the difference between the activation of  the 
corresponding unit and the activation of  the most active alterna- 
tive: 

/.ti = a ( a c t i -  max_.actj,,t), (5) 

where a determines the rate of  evidence accumulation. A re- 
sponse is generated when one of  the accumulators reaches a 
fixed threshold. Throughout all of  our simulations, the value of  
a was 0.1, the value of  ~ was 0.1, and the value of  the threshold 
was 1.0. 

This response-selection mechanism may seem different from 
the rest of the network. For example, evidence is accumulated 
additively in the response-selection mechanism, whereas run- 
ning averages are used elsewhere in the network. Additionally, 
the response-selection mechanism is linear, whereas the rest of  
the net is nonlinear and relies on  this nonlinearity. In fact, we 
can easily show that the additive diffusion process can he mim- 
icked with linear running averages by assuming that the re- 
sponse criterion gets smaller as processing goes on within a trial. 
The impact of  introducing nonlinearity into the evidence accu- 
mulator is less obvious. However, it need not exert a strong dis- 
totting effect, as long as the threshold is within the linear mid- 
portion of  the accumulation function. 

Attentional Selection 

The role of  attention in the model is to select one of  two com- 
peting processes on the basis of the task instructions. For this 
to occur, one of  two task demand specifications must be pro- 
vided as input to the model: "respond to color" or "respond to 
word." We assume that this information is available as the out- 
put from some other module and results from encoding and 
interpreting the task instructions. Clearly, this is a highly flexi- 
ble process and can adapt to the wide variety of  information- 
processing tasks that humans can perform. Our focus in this 
article, however, is not on how task interpretation occurs or on 
how decisions concerning the allocation of  attention are made. 
Rather, we are concerned with how information about the task 
and the corresponding allocation of  attention influences pro- 
cessing in the pathways directly involved in performing the task 
itself. By focusing on the influences that attention has on pro- 
cessing and specifying the mechanisms by which this occurs, we 
hope to show how attention interacts with strength of  processing 
to determine the pattern of  effects that are observed in the 
Stroop task. 

Task information is represented in the model in the same way 
as any other information: as a pattern of  activation over a set 
of processing units. For this purpose, two additional units are 
included in the network: one that represents the intention to 
name colors, another for reading words. A particular task is 
specified by activating one of  these task demand units. Task de- 
mand units modulate processing by adjusting the resting levels 
of  units in the two main pathways, putting task-appropriate 
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Figure 2. The logistic activation function. (Note that the slope of this 
function is greatest when the net input is 0.0 and decreases when the 
net input is large in either the positive or negative direction.) 

units in the middle of  their dynamic range and those for inap- 
propriate units near the bottom, where they will be relatively 
insensitive. We do not know whether attention is primarily ex- 
citatory (sensitizing task-appropriate units), inhibitory (desen- 
sitizing inappropriate units), or (as we suspect) some of  both. 
In any case, we assume that the connection strengths from the 
task demand units to intermediate units in each pathway are 
such that when the unit for a particular task is active, it sets the 
resting level of  units in the appropriate pathway to the middle 
of  their range, whereas units in the inappropriate pathway as- 
sume a more negative value. The modulatory influence that 
these changes in resting level have on processing is due to the 
nonlinearity of  the logistic activation function. To show how 
this occurs, we examine this function in greater detail. 

As described by Equation 4, the activation of  a unit is deter- 
mined by the logistic of its net input. The logistic function has 
roughly three regions (Figure 2). In the middle region, when 
the net input is near 0, the relationship between net input and 
activation is more or less linear, with a slope of  approximately 
I. In this region, the activation of  a unit is very responsive to 
changes in its net input. That is, changes in the net input will 
lead to significant changes in the unit's activation. In contrast, 
at each end of  the logistic ~ function, the slope is dramatically 
reduced. In these regions---when the magnitude of  the net input 
is large, either in a positive or negative direction--changes in 
the input to a unit have a small effect on its activation. This 
feature was an important factor in our choice of  a nonlinear 
activation function, allowing the responsiveness of  units to be 
modulated by adjusting their base levels of  activation. This ad- 
justment is accomplished by the activation of  the task demand 
units. 

In principle, task demand units are assumed to have connec- 
tions to the.intermediate units in each pathway, such that acti- 
vation of  a task demand unit drives the resting net input of  units 
in the appropriate pathway toward zero, and units in competing 
pathways toward more negative values. Driving the net input 
of  task-appropriate units toward zero places them in the most 
responsive region of their dynamic range, whereas making the 
net input of  task-inappropriate units more negative places them 
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Table 1 
Training Stimuli 

Task demand Color input Word input Output 

Color red - -  "red" 
Color green - -  "green" 
Word - -  RED "red" 
Word - -  GREEN "green" 

Note. Dashes indicate there was no input. 

in a flatter region of the activation function. In the current 
model, we implemented a simpler version of this general 
scheme. All intermediate units were assumed to have a negative 
bias, so that they were relatively insensitive at rest. Task demand 
units provided an amount of activation to intermediate units in 
the corresponding pathway that offset this negative bias, driving 
their net input to zero. Thus, task demand units had the effect 
of sensitizing units in the corresponding pathway, and units in 
the inappropriate pathway remained in a relatively insensitive 
state. 

Finally, we note that the connections between each task de- 
mand unit and all of the intermediate units within a given path- 

way are assumed to be uniform in strength, so that activation 
of a task demand unit  does not, by itself, provide any informa- 
tion to a given pathway. Its effect is strictly modulatory. 

S imula t ions  

We implemented the mechanisms described in the previous 
section in a specific model of the Stroop task. In the following 
sections, we describe how the model was used to simulate hu- 
man performance in this task. We start by describing some of 
the general methods used in the simulations. We then describe 
four simulations that provide an explicit account of the attri- 
butes of automaticity and how they relate to practice. These are 
followed by two simulations that address issues concerning the 
relationship between attention and automaticity. 

Simulation Methods 

All simulations involved two phases, a training phase and a test phase. 

Training Phase 

The network was trained to produce the correct response when infor- 
mation was presented in each of the two processing pathways. Training 
patterns were made up of a task specification and input to the corre- 
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"red . . . .  green" 

i 
Color Word 

INK COLOR Naming Reedlng WORD 
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Figure 3. Diagram of the network showing the connection strengths after training on the word-reading and 
color-naming tasks. (Strengths are shown next to connections; biases on the intermediate units are shown 
inside the units. Attention strengths---from task demand units to intermediate units--were fixed, as were 
biases for the intermediate units. The values were chosen so that when the task demand unit was on, the 
base input for units in the corresponding pathway was 0.0, whereas the base input to units in the other 
pathway was in the range of -4.0 to -4.9, depending on the experiment.) 
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sponding pathway (see Table 1). For example, an input pattern was 
"red--COlor-NULL" which activated the red input unit in the color path- 
way and the "respond to color" task demand unit but did not activate 
any word input units. The network was trained to activate the red out- 
put unit as its response to this stimulus. Conflict and congruent stimuli 
were omitted from the training set, reflecting the assumption that, in 
ordinary experience, subjects rarely encounter these kinds of stimuli. 

At the outset of training, the connection strengths between intermedi- 
ate and output units were small, random values. The connections be- 
tween input units and intermediate units were assigned moderate values 
(+2 and -2 )  that generated a distinct representation of each input at 
the intermediate level. This set of strengths reflects the assumption that, 
early in their experience, subjects are able to successfully encode sen- 
sory information (e.g., colors and word forms) at an intermediate level 
of representation but are unable to map these onto appropriate verbal 
responses. This ability only comes with training. This initial state of 
the network also allowed us to capture the power law associated with 
training, which we discuss later (see Simulation 3). 

The influence of attention was implemented in the simplest way pos- 
sible. Bias parameters for intermediate units and connection strengths 
from the task demand units were chosen so that when a particular task 
demand unit was on, the intermediate units in the attended pathway 
had a base net input of 0.0 and were thus maximally responsive to input 
(see earlier discussion). 4 Units in the unattended pathway had a much 
lower base activation. The value of the base activation of units in the 
unattended pathway (determined by their negative bias) reflected the 
effectiveness of filtering in a given task and was allowed to vary from 
experiment to experiment (see later text). 

In each training trial, an input pattern was presented to the network, 
and all of the units were allowed to reach their asymptotic values. 5 
Difference terms were then computed by comparing the actual activa- 
tion with the desired activation value for each output unit. These differ- 
ence terms were treated as error signals that were then used to calculate 
changes to the connection strengths following the backpropagation 
learning procedure (Rumelhart, Hinton, & Williams, 1986). 6 All of the 
connections along the word and color processing pathways were modi- 
fiable, and their values were set by the learning procedure just described. 
However, the connections from the task demand units to the intermedi- 
ate units in each pathway and the bias terms that established the resting 
activations of these units were assumed to be unmodifiable. Training 
proceeded until the network was capable of correctly processing all of 
the test stimuli (see the Test Phase section). 

One purpose of the model is to account for the relationship between 
practice effects and automaticity. In the context of the Stroop task, in- 
vestigators have proposed that word reading is more highly practiced 
than color naming (Brown, 1915; MacLeod & Dunbar, 1988; Posner & 
Snyder, 1975). To model this difference in practice, we gave the network 
differential amounts of training on the word and color patterns. Every 
word pattern was presented in every epoch, whereas the probability of a 
color pattern being presented in a given epoch was 0.1. Thus, on average, 
word patterns were seen 10 times as often as color patterns, and at any 
given point during training, the network had received a greater amount 
of practice with word reading than with color naming. 7 

Figure 3 displays the strengths on all of the connections in the network 
at the end of training. As expected, they were stronger in the word path- 
way than in the color pathway, due to the greater frequency of word 
training. 

Test Phase 

The network was tested on the 12 input patterns corresponding to all 
possible stimuli in a Stroop task in which there are two possible re- 
sponses (e.g., "red" and "green"). These patterns represented the con- 
trol stimulus, the congruent stimulus, and the conflict stimulus for each 

of the two inputs (red or green) in each of the two tasks (word reading 
and color naming; see Table 2). Presentation of a particular pattern con- 
sisted of activating the appropriate input unit or units and the task de- 
c0.and unit. For example, one of the conflict stimuli in the color-naming 
task (the word GREEN in red ink) was presented by activating the red 
color input unit, the "attend to color" task demand unit, and the GREEN 
word input unit. 

Each test trial began by activating the appropriate task demand unit 
and allowing the activation of all units to reach asymptote. This put the 
network in a ready state corl~sponding to the appropriate task. At this 
point, the intermediate units in the selected pathway and all of the out- 
put units had resting activation levels of 0.5, whereas the intermediate 
units in the competing pathway were relatively inactive (activations of 
approximately 0.0 l). The test pattern was then presented, and the sys- 
tem was allowed to cycle until the activation accumulated from one of 
the output units exceeded the response threshold. A value of 1.0 was 
used for the response threshold in all simulations. The number of cycles 
required to exceed this threshold was recorded as the reaction time to 
that input. The system was then reset, and the next trial began. Data 
values reported later represent the mean value of 100 trials run for each 
condition. A representative sample of the reaction time distributions 
obtained in this way is shown in Figure 4. This shows the skewed distri- 
bution typical of human data and standard random walk models (e.g., 
Rateliff, 1978). 

To simplify comparison between empirical reaction times and the 
model's performance, we report simulation reaction times as trans- 
formed values. For each simulation, we performed a linear regression 
of the simulation data on the empirical data. Simulation data are re- 
ported as the number of cycles transformed by this regression equation, s 

4 This article does not address the general issue of whether the con- 
nections strengths from task demand units to intermediate units are 
learned. In the simulations that we report, these connections strengths 
were fixed. In other simulations, we have found that they can be learned; 
however, the implications of this need to be explored more fully. 

5 Processing was deterministic during training; that is, units were not 
subject to noise. Individual simulations using noise during training indi- 
cated that this did not significantly alter the results, and the elimination 
of noise in this phase substantially reduced the length and number of 
simulations required to arrive at a normative set of results. 

Connection strengths were updated after each sweep through the set 
of training patterns. Learning rate was 0. i, and momentum was 0.0. 

7 We focus on frequency of training as the primary difference between 
word reading and color naming because this has been the emphasis in 
the literature. However, other differences between these tasks might also 
be important. For example, it seems likely that word reading is also a 
more consistently mapped task than color naming: A particular se- 
quence of letters is almost invariably associated with the word they rep- 
resent (even if the word itself has an ambiguous meaning); hovo~er, col- 
o n  are often associated with words other than their name (e.g., red is 
associated with heat, embarrassment, and "stop"). Although this point 
has not been emphasized with regard to the Stroop task, it is a well- 
established finding that consistent mapping leads to the development of 
automaticity, whereas variable mapping impedes it (e.g., Logan, 1979; 
Shiffrin & Schneider, 1977). Our model captures this fact: The more 
consistently a stimulus is related to a particular response, the stronger 
will be the connections for processing that stimulus. Although we focus 
on frequency (i.e., amount of practice) as a determinant of pathway 
strength, keep in mind that consistency of practice is an equally impor- 
tant variable that may be a significant factor underlying the Stroop 
effect. 

s In all cases, the intercept of the regression equation was positive, 
reflecting components of processing (e.g., early visual processing and 
response execution) not simulated by the model. The intercept value 
for all simulations was in the range of 200-500 ms. 
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Table 2 
Test Stimuli 

Stimulus type Color input Word input 

Task demand: color 

Color naming 
Task specification - -  - -  
Control red 
Conflict red GREEN 
Congruent red RED 

Task demand: word 

Word reading 
Task specification - -  w 
Control - -  RED 
Conflict green RED 
Congruent red RED 

Note. Only those stimuli for which "red" was the correct response are 
shown. The network was also tested with the corresponding stimuli for 
which "green" was the correct response. Dashes indicate there was no 
input. 

Regression equations are provided in the figures accompanying each 
simulation. 

Free Parameters 

We undertook a large number of simulation experiments, varying 
different parameters of the model and examining how they affected the 
model's ability to account for the basic form of the empirical phenom- 
ena. In the Appendix, we describe the parameter values used in the re- 
ported simulations, as well as several trade-offs and interactions between 
parameters that we encountered. In 8~neral, we strove to use one set of 
parameters for all simulations. However, in comparing the results of 
different empirical studies, we found that nominally identical experi- 
mental conditions sometimes produce rather different interference and 
facilitation effects. In particular, in experiments where subjects had to 
say the color of the ink in which words were actually mitten, interfer- 
ence effects were sometimes more than twice as large as in experiments 
where color and word information occurred in physically different loca- 
tions. This difference probably reflected differences in subjects' ability 
to selectively modulate processing of task-relevant and task-irrelevant 
information. To capture this, we allo~xl the strength oftbe attentional 
effect to be adjusted separately for each simulation. This was done by 
varying the resting activation level of units in the unattended channel, 
thereby placing them in a more or less responsive state. 

ally no effect on the amount of time needed to read the word. 
That is, reaction times to read the word in the conflict and con- 
gruent conditions are the same as in the control condition. This 
phenomenon was originally discovered by Stroop (1935) and 
can be seen in the flat shape of  the graph for word reading in 
Figure 5A. This finding is extremely robust and is very difficult 
to disrupt. Even when the ink color appears before the word, it 
does not interfere with word reading (M. O. Glaser & Glaser, 
1982). Only when the task is changed radically will the ink color 
interfere with word reading (Dunbar & MacLeod, 1984; Gu- 
menik & Glass, 1970). 

Words can influence color naming. A conflicting word pro- 
duces a substantial increase in reaction time for naming the ink 
color relative to the control condition. The amount of  interfer- 
ence is variable but is usually approximately 100 ms (e.g., Dun- 
bar & MacLeod, 1984; M. O. Glaser & Glaser, 1982; Kahneman 
& Chajczyk, 1983). This finding is also extremely robust, and 
nearly all subjects show the effect. Even when the word and the 
ink color are presented in different spatial locations (e.g., the 
word is placed above a color patch), the word still interferes 
with naming the ink color (Gatti & Egeth, 1978; Kahneman & 
Henik, 1981). In the congruent condition, the word facilitates 
ink naming, producing a decrease in reaction time relative to 
the control condition (Hintzman ct al., 1972). The amount of  
facilitation can range from approximately 20 ms (Regan, 1978) 
to approximately 50 ms (Kahneman & Chajczyk, 1983). 

There is less facilitation than interference. Congruent stimuli 
have not been used as extensively as conflict stimuli, but  the 
general finding is that the  amount of  facilitation obtained is 
much less than the amount of interference (Dunbar & Mac- 
Leod, 1984). 

Figure 5A shows the findings in a standard Stroop experiment 
(Dunbar & MacLeod, 1984). Figure 5B presents the results of  
our simulation, which reproduces all of the empirical effects. 
These are explained as follows. 

Word reading was faster than color naming in the simulation 
because differential amounts of  training led to the development 

Strength o f  Processing 

Simulation 1: The Basic Stroop Effect 

The purpose of the first simulation was to provide an account 
for the set of empirical findings that comprise the basic Stroop 
effect. These are displayed in Figure 5A and are described" 
below. 

Word reading is faster than color naming. The time to read 
a color word is approximately 350-450 ms, whereas the time to 
name a color patch or a row of  colored Xs is 550-650 ms. Thus, 
word reading is approximately 200 ms faster than color naming 
(cf. Cattell, 1886; Dyer, 1973; M. O. Glaser & Glaser, 1982). 

Word reading is not affected by ink. color. Ink color has virtu- 
Figure 4. Distribution of reaction times for 100 trials of color 
naming (control condition) from Simulation 1. 
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Figure 5. Performance data for the standard Stroop task. (A: Data from an empirical study [after Dunbar 
& MacLeod, 1984, p. 62]. B: Results of the model's simulation of these data.) 

of  a stronger pathway for the processing of  word information 
than color information. The fact that the network was trained 
more extensively with word stimuli than with colors meant that 
units in the word pathway had a greater number of  trials in 
which to increment their connection strengths (see Figure 3). 
Stronger connections resulted in larger changes to the net input, 
and therefore to the activation, of  word units in each processing 
cycle (see Equations 1 and 2). This allowed activation to accu- 
mulate at the output level more rapidly in the word pathway 
than in the color-naming pathway. The faster the correct re- 
sponse unit accumulates activation (and competing units be- 
come inhibited), the faster the response threshold will be ex- 
ceeded. Thus, the strength of  a pathway determines its speed of  
processing. 

The difference in the strength of the two pathways also ex- 
plains the difference in interference effects between the two 
tasks. First, consider the failure of  color information to affect 
the word-reading task. Here, activation of the task demand unit 
puts intermediate units in the word-reading pathway in a re- 
sponsive state, so that information flows effectively along this 
pathway. In contrast, because no attention is allocated to the 
color pathway, units in this pathway remain in an unresponsive 
state, and accumulation of  information at the level of  the inter- 
mediate units is severely attenuated. Furthermore, because the 
connections from intermediate to output units are weaker in 
the color pathway, information that accumulates on intermedi- 
ate units is transmitted to the output level more weakly than 
information flowing along the word pathway. Both of these fac- 
tors diminish the impact of  color information on the network's 
response to a word. As such, reaction time in the word-reading 
task is only slightly affected by the presence of  either congruent 
or conflicting color input. 

Different results occur when color naming is the task. Atten- 
tion is allocated to this pathway, so that the intermediate units 
are placed in a responsive part of  their dynamic range, and in- 
formation flows unattenuated to the output level. Now it is the 
units in the word pathway that are relatively unresponsive. 
However, because of  the stronger connections in the word path- 

way, more activation can build up at the intermediate unit level. 
The amount of  this accumulation is greater than ~t was for color 
units in the word-reading task. 9 Furthermore, the connections 
from the intermediate units to output units in this pathway are 
also stronger than in the color pathway, so information that ac- 
cumulates on the intermediate units has a greater influence at 
the output level. Thus, some information flows along the wcird 
pathway even in the absence of  the aUocation of  attention. Al- 
though this flow of  information is only partial, and is not suffi- 
cient to determine which response is made, it is enough to affect 
the speed with which a response is made, thus producing inter- 
ference and facilitation in the color-naming task. This process- 
ing of  information in the word pathway without the allocation 
of  attention captures the involuntariness of  word reading and 
accounts for the interference and facilitation effects that are ob- 
served. All of  these effects are attributable to the fact that the 
word-reading pathway is stronger (i.e., has stronger connec- 
tions) than the color-naming pathway. 

The fourth finding is that the amount of  interference is con- 
sistently larger than the amount of  facilitation. In the model, 
there are two factors that contribute to this result. One is the 
nonlinearity of  the activation function. This imposes a ceiling 
on the activation of  the correct response unit, which leads to an 

9 As an example, consider the case in which the RED word input unit 
is activated. This has an excitatory connection to the ieftmost interme- 
diate unit in the word pathway, with a strength of 2.63. In the absence 
of input from the task demand unit (and ignoring the effects of noise), 
this intermediate unit receives a net input of 2.63 + (--4bi,~) = --1.37. 
After passing this through the logistic activation function, we arrive at 
an asymptotic activation of 0.2 for this unit. This is the amount contrib- 
uted to the net input of the "red" output unit. Now consider the situa- 
tion for the color-naming pathway. There, the strength of the connection 
from the red input unit to the corresponding intermediate unit is only 
2.20. In the absence of task demand activation, the intermediate unit 
will have a net input of 2.20 + (-4hi=,) = -1.8, which when passed 
through the logistic function, results in an activation of 0.14. Thus, in 
the absence of attention, activation o fan intermediate color unit is lower 
than that of a corresponding word-pathway unit. 
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Figure 6. Mechanisms underlying the asymmetry between interference and facilitation effects. (A: Effects 
of equal amounts of excitation [E] and inhibition [I] from a competing pathway on the asymptotic activation 
of an output unit. B: The effects of these different asymptotic levels of activation on the time to reach a 
particular level of activation. F = facilitation; I = interference.) 

asymmetry between the effects of  the excitation it receives from 
the irrelevant pathway in the congruent condition and the inhi- 
bition it receives in the conflict condition. To see this more 
clearly, consider the idealized situation depicted in Figure 6A: 
In this figure, the activation function for the correct response 
unit is shown. Its asymptotic activation is plotted for each of  
the three experimental conditions in a color-naming trial. Note 
that activation is highest in the congruent condition and lowest 
in the conflict condition. This occurs because in the congruent 
condition, the-irrelevant pathway contributes excitatory input 
to the response unit, increasing its net input, whereas in the 
conflict condition, it contributes inhibition, decreasing the re- 
sponse unit's net input. Note that although the increase in net 
input in the congruent condition is equal in magnitude to the 
decrease in the conflict condition, the effect on the activation of  
the response unit is not symmetric: Inhibition has a greater 
effect than does excitation. This difference occurs because the 
unit is in a nonlinear region of  the logistic activation function. 
In this region, increasing the net input has less of  an effect on 
activation than decreasing it.l° 

Figure 6A shows the asymptotic activation values for the re- 
sponse unit in each of  the three conditions. Figure 6B is a plot 
of the rise in response unit activation, over time, toward each 
of  these asymptotic values. Note that at any point the difference 
in activation between the control and conflict conditions is 
greater than the difference between the control and congruent 
conditions. Therefore, throughout the course of  processing, in- 
hibition has a greater influence than excitation on the accumu- 
lation of evidence at the output level. Thus, the nonlinearity of  
the logistic function and its interaction with the dynamics of 
processing help to produce the asymmetry between the size of  
interference and facilitation effects observed in the simulation. 

A second factor also contributes to the asymmetry in the 
magnitudes of interference and facilitation. This is the basically 
negatively accelerating form of the curve relating activation to 
cycles of processing. This negatively accelerating curve is an in- 
herent property of  the cascade mechanism (time averaging of  
net inputs) and would tend to cause a slight asymmetry in the 
interference and facilitation effects even if interference and fa- 
cilitation had exactly equal and opposite effects on asymptotic 
activation. However, this is a relatively weak effect and is not 

su~cient in and of itself to account for the greater than 2:1 ratio 
of  interference to facilitation that is typically observed. 

Neither the logistic function nor the cascade mechanism was 
included in the model specifically to produce an asymmetry 
between interference and facilitation. The logistic function was 
included to introduce nonlinearity into processing for the pur- 
pose of computational generality (see Mechanisms for Learning 
and the Time Course of  Processing section, presented earlier) 
and to allow attention to modulate the responsiveness of  units 
in the processing pathways. The cascade mechanism was intro- 
duced to model the dynamics of  processing. The fact that these 
mechanisms led to an asymmetry between interference and fa- 
cilitation is a by-product of  these computationally motivated 
features of  the model. 

Most theories have been unable to account for this asymme- 
try in terms of  a single processing mechanism. In fact, several 
authors have argued that separate processing mechanisms are 
responsible for interference and facilitation effects (e.g., M. O. 
Glaser & Glaser, 1982; MacLeod & Dunbar, 1988). Although 
this remains a logical possibility, our model demonstrates that 
this is not necessarily the case. We believe that the failure of  
previous theories to account for this asymmetry in terms of  a 
single mechanism has been due to their reliance, either explic- 
itly or implicitly, on linear processing mechanisms. 

Simulation 2: SOA Effects--Speed of  Processing and 
Pathway Strength 

The results of  the previous simulation demonstrate that the 
strength of  a pathway determines speed of  processing and 

to The reason that output activations fall in this region has to do with 
the nature of the activation function and training in this system. Early 
in training, the connections to an output unit are small, so that the net 
input it receives, regardless of the input pattern being presented, is near 
0.0, and its activation is approximately 0.5. If the correct response to a 
particular input pattern requires that output unit to have an activation 
value of 1.0, then learning will progressively adjust its connections so 
that its activation shifts from 0.5 to a value closer to 1.0 when that input 
pattern is present. The region between 0.5 and 1.0 (for units that should 
have an output of 1.0) is precisely the region of the logistic function that 
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Figure 7. Effects of varying stimulus-onset asynchrony (SOA) between word and color stimuli in the color- 
naming and word-reading tasks. (A: Data from an empirical study [after M. O. Glaser & Glaser, 1982]. B: 
Results of the model's simulation of these effects. Note. Thedata in panel A are from "Time Course Analysis 
of the Stroop Phenomenon" by M. O. Glaser and W. R. Glaser, 1982, Journal of Experimental Psychology.. 
Human Perception and Performance, 8, p. 880. Copyright 1982 by the American Psychological Association.) 

whether one process will influence (interfere with or facilitate) 
another. In this simulation, we demonstrate that pathway 
strength, and not just speed of  processing, is responsible for in- 
terference and facilitation effects. 

The speed-of-processing account of  the Stroop effect assumes 
that the faster finishing time of  the reading process is responsi- 
ble for the asymmetry in interference effects between word 
reading and color naming. If no other factors are assumed, then 
this account predicts that the Stroop effect can be reversed by 
presenting color information before the word." 

M. O. Glaser and Glazer (1982) tested this prediction and 
found no support for it: Color information failed to interfere 
with word reading even when color information preceded the 
word by 400 ms. Indeed, they found no effect of  colors on words 
over SOAs ranging from - 4 0 0  ms (color preceding word) to 400 
ms (word preceding color). Data from the word-reading condi- 
tion of  one of  their experiments are shown in the lower part of  
Figure 7A. 

We simulated the M. O. Glaser and Glaser (1982) experiment 
by activating the color input unit before and after the word in- 
put unit. This was done at the number of cycles corresponding 
to the SOAs used in the actual experiment) 2 To simulate the 
reduced interference and facilitation effects observed at the 0- 
ms SOA in this experiment, in comparison with the standard 
experiment using integral stimuli, we increased the size of the 
attentional effect for both pathways by decreasing the resting 
net input to units in the unattended from -4 .0  to -4 .9 .  The 
results of this simulation are presented in Figure 7B. 

The model shows little interference of  color on word, regard- 
less of  SOA, just as is seen in M. O. Glaser and Glaser's (1982) 

produces the asymmetry between interference and facilitation observed 
in our simulations. 

data. When color precedes word, the model shows a sight  effect 
of  color on word, but the effect is much smaller than the effect 
of  word on color (the maximum, and what appears to be the 
asymptotic amount of  interference produced by colors on 
words, is substantially less than the amount of  interference pro- 
duced by words on colors at the 0-ms SOA). In this way, the 
model concurs with the empirical data, suggesting that differ- 
ential speed of  processing is not the sole source of  interference 
observed in the Stroop task. The model shows that interference 
is substantially influenced by differences in strength of  process- 
ing: When attention is withdrawn from the weaker pathway, it 
is able to produce less activation at the output level than the 
stronger pathway is able to produce when attention is with- 
drawn from it. As a result, weaker pathways produce less inter- 
ference, independent of  their finishing time. 

Nevertheless, there is a discrepancy between the model and 
the empirical data in Figure 7. The simulation shows some in- 
fluence of  color on word reading when the color is presented 
sufficiently in advance of  the word, whereas the subjects do not. 
In fact, empirical data of  Neumann (cited in Piiaff, 1986) indi- 
cate that under some conditions, colors appearing early can pro- 
duce a small amount of  interference with word reading, just as 
the model implies. It is unclear, therefore, whether this mis- 
match between the simulation and the M. O. Glaser and Glazer 

H This requires spatial separation of color and word stimuli. This re- 
duces, but does not eliminate, the standard set of effects (see Gatti & 
Egeth, 1978). 

12 The number of cycles corresponding to each SOA was determined 
in the following manner: The simulation was tested at the 0-ms SOA 
(color and word presented simultaneously, as in Simulation I). A regres- 
sion was performed of these data on the M. O. Glaser and Glaser (1982) 
data at the 0-ms SOA. Other SOAs were then divided by the regression 
coefficient to arrive at the number of cycles to be used for each SOA in 
the simulation. 
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(1982) data represents a limitation of  the model or the involve- 
ment, in their experiment, of  additional processes that are not 
central to the Stroop effect. The latter possibility is suggested by 
another discrepancy between our simulation and the empirical 
results. 

In M. O. Glaser and Glaser's (1982) experiment, subjects 
showed very little interference in color naming when the word 
appeared more than 200 ms in advance of  the color (see upper 
part of  Figure 7A). In their original analysis, this result was at- 
tributed to strategic effects. More recently, the Glasers have sug- 
gested that a process of  habituation may be involved (W. Glaser, 
personal communication, September 16, 1988). Our model 
does not include such a process, and this may be why the simu- 
lation shows greater rather than lesser amounts of  interference 
at the longer negative SOAs. Note, however, that if habituation 
applies to color stimuli as it does to words, then it would also 
tend to reduce any effect that colors have on word reading at 
the longer SOAs. If  this effect were small to start with, it might 
be entirely eliminated by habituation. This may explain why 
Glaser and Glaser failed to observe any effect of  colors on words 
at long SOAs, but owing to lack o f  a habituation process in our 
model, a small effect was observed in the simulation. 

In summary, although the model does not capture all aspects 
of  the empirical data, it dearly demonstrates our central point, 
that differential strength of  processing can explain why present- 
ing a weaker stimulus before a stronger one fails to compensate 
for differences in processing speed with regard to interference 
and facilitation effects. 

Practice Effects 

A primary purpose of  this model is to show how the changes 
in strength that occur with practice can lead to the kinds of  
changes in speed ofprocessingand interference effects observed 
for human subjects. These phenomena are addressed by the fol- 
lowing two simulations. 

Simulat ion  3: The Power L a w  

Numerous studies have demonstrated that the increases in 
speed of  processing that occur with practice follow a power law 
(Anderson, 1982; Kolers, 1976; Logan, 1988; Newell & Rosen- 
bloom, 1981). This finding is so common that some authors 
have suggested that, to be taken seriously, any model ofautoma- 
ticity must demonstrate this behavior (e.g., Logan, 1988). The 
power law for reaction time (RT)  as a function of  number of  
training trials (N) has the following form: 

R T  = a + bN -c, (5) 

where a is the asymptotic value of  the reaction time, b is the 
difference between initial and asymptotic performance, and c is 
the learning rate associated with the process. When this func- 
tion is plotted in log-log coordinates, reaction time should ap- 
pear as a linear function of  number of  trials, with slope c. Typi- 
cally, R T is the mean of  the distribution of  reaction times for a 
process at a given point in training. Recently, Logan (1988) 
showed that, at least for some tasks, the standard deviation of  
this distribution also decreases with training according to a 
power law and that this occurs at the same rate as the decrease 
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Figure 8. Log-log plot of the mean and standard deviation for reaction 
time at various points during training on the color-naming task. (Re- 
gression equations are for mean reaction times and standard deviations 
separately, and are plotted as solid lines. Squared correlations between 
observed and predicted values are also provided. Dashed lines show the 
regression that best fits both sets of data simultaneously.) 

in mean reaction time (i.e., the coefficient c is the same for both 
functions). This means that in log-log coordinates, the plot of  
reaction times should be parallel to the plot of  standard devia- 
tions. 

To assess the current model for these properties, we trained 
the network on the color-naming task for 100,000 epochs. At 
regular intervals, the network was given 100 test trials (control 
condition) on this task. Figure 8 shows the log of  the mean reac- 
tion time minus its estimated asymptote and the log of  the stan- 
dard deviation minus its estimated asymptote, each plotted 
against the log of  the number of  training trials. Both mean reac- 
tion time and standard deviation are closely approximated by 
power functions of training. Furthermore, the exponents of  the 
two functions are very similar and are within the range of  varia- 
tion exhibited by Logan's (1988) empirical data. 

Learning follows a power law for two reasons. First, learning 
in the network is error driven. That is, the amount that each 
connection weight is changed is based on how much each out- 
put unit activation differs from its desired (target) value. Early 
in training, this difference is likely to be large (otherwise, the 
problem would already be solved), so large changes will be 
made to the connection strengths. As the appropriate set of  
strengths develops, the error will get smaller and so will the 
changes made to the connections in each training trial. How- 
ever, although weight changes will get smaller with practice, they 
will continue to occur as long as there is training. This is because 
target values are taken to be 1.0 for active units and 0.0 for all 
others. These target values can never actually he reached with 
finite input to units using the logistic activation function (see 
Figure 2). Thus, there is always some error and therefore always 
some additional strengthening of  connections that is possible. 
However, this strengthening will get progressively less with 
training; therefore, improvements in reaction time will become 
less as well. 



346 J. COHEN, K. DUNBAR, AND J. MCCLELLAND 

A second reason for the deceleration of  improvements in re- 
action time with practice is that as connections get stronger, sub- 
sequent increases in strength have less of an influence on activa- 
tion (and therefore reaction time). This is due to the nonlinear- 
ity of  the activation function: Once a connection (or set of 
connections) is strong enough to produce an activation near 0.0 
or 1.0, further changes will have little effect on that unit. Thus, 
smaller changes in strength compounded with the smaller 
effects of such changes combine to produce the pattern of  dou- 
bly diminishing returns that is captured by the log-log relation 
between reaction time and practice. 

The arguments just provided apply only when representa- 
tions in the next-to-last layer have already been fairly well estab- 
lished, and training involves primarily the connections between 
this layer and the output layer. In training a multilayer network 
from scratch, using backpropagation, there is a long initial 
phase of  slow learning, followed by one or more periods of  rapid 
acceleration, and then finally a phase that follows a power law. 
Accordingly, when both the input and output layers of  connec- 
tions in our network had to be learned, improvements in reac- 
tion time did not follow a power law from the start of  training. 
Adherence to the power law occurred only when meaningful 
and moderately strong connections from the input units to the 
intermediate units were already in place at the beginning of  
training. Although these input connections were modifiable and 
were augmented during trainin~ their initial values had to be 
such that the network could do the task by modifying only the 
output connections. 

Although some might take these findings as an indictment of 
the backpropagation learning algorithm, we suggest that they 
may reflect constraints on the applicability of the power law: It 
may apply to only certain types of  learning. Specifically, it may 
not apply to situations in which an intermediate representation 
must be constructed to perform a task. These may involve more 
than one phase of  learning, as is observed in backpropagation 
networks when more than one layer of  weights must be learned. 
Along these lines, we have used a baekpropagation model to 
capture the stagelike character of  learning reported in a set of  
developmental tasks (MeClelland, 1989), and Schneider and Ol- 
iver (in press) have begun to explore how backpropagation nets 
can capture multiphase learning observed for certain tasks in 
adults. 

Simulation 4: Practice Effects and the Development of 
Automaticity 

Having demonstrated that the current model conforms to 
standard laws of  learning, we now apply it to empirical data 
concerning learning and the influence that learning has on in- 
terference effects. MacLeod and Dunbar (1988) have shown 
that both speed of processing and the ability of  one process to 
interfere with (or facilitate) another are affected by the relative 
amounts of training that subjects have received on each. In their 
experiments, subjects were taught to associate a different color 
name to each of  four different shapes. During the training 
phase, the shapes were all presented in a neutral color (white), 
and subjects practiced naming these for 20 days. Mean reaction 
times were calculated for each day of  training (see Figure 9A). 
After 1, 5, and 20 days of  practice, subjects were tested with 

neutral, conflict, and congruent stimuli in both the shape-nam- 
ing and color-naming tasks.~3 The results of  this experiment can 
be summarized as follows (these also appear in the top of  Figure 
12, presented later): 

• After 1 day (72 trials per stimulus) of practice on shape naming, 
this was still more than 100 ms slower than color naming. The 
shapes had no effect on the time to name the ink colors. However, 
the ink colors produced interferefice and facilitation in the shape- 
naming task. The amount of interference was greater than the 
amount of facilitation. 

• After 5 days (504 trials per stimulus) of practice, shape naming 
was significantly faster than on the first day. In addition, the 
shapes now interfered with color naming, although they did not 
produce facilitation. The colors continued to produce both inter- 
ference and facilitation in shape naming. 

• After 20 days (2,520 trials per stimulus) of practice, shape nam- 
ing was slightly faster than ink naming. The shapes produced a 
large amount of interference and a small amount of facilitation 
in naming colors. The colors now produced much smaller 
amounts of facilitation and interference in shape naming. 

MacLeod and Dunbar (1988) argued that these data contradict 
the idea that the attributes of  automaticity are all or none. They 
suggested instead that a continuum of automaticity exists, in 
which it is the relative amount of  training on two tasks that 
determines the nature of  the interactions between them. The 
current model provides a mechanism for this. 

To simulate the MacLcod and Dunbar (1988) experiments, 
we used the network from the previous simulations (which had 
already been trained on color naming and word reading), add- 
ing a new pathway that was used for shape naming. This path- 
way was identical in all respects to the two preexisting pathways, 
except that it had not received any training (see Figure 10). As 
with the color and word pathways, it was #oven a set of  initial 
connection strengths from the input to the intermediate units 
that allowed it to generate a useful representation at the level of  
the intermediate units, whereas small random strengths were 
assigned to the connections between the intermediate and out- 
put units. 

Using this expanded network, we examined how practice on 
a novel task (shape naming) affects its interaction with another 
task that has already received a moderate amount of  training 
(color naming). The word pathway was not used in this simula- 
tion. 

The simulation involved a series of  alternating phases of  
training and testing, as in the empirical study. During each 
training phase, the network was presented with only the two 
control shape patterns. Both of  these patterns were presented 
in every training epoch. Although only two shape stimuli were 
used in the simulation, the network received exactly the same 
number of  training exposures per stimulus that subjects re- 
ceived in the experiment. During testin~ the network was pre- 
sented with the conflict and congruent stimuli as well as the 
control stimuli in each task condition (color naming and shape 
/ 

t3 For the shape-naming task, these were (a) shapes in a neutral color 
(control condition), (b) shapes in a color that was inconsistent with the 
shape name (conflict condition), and (c) shapes in a color that was con- 
sistent with the shape name (congruent condition). The same stimuli 
were used for the color-naming task, except that the control condition 
used a neutral shape (square). 
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Figure 9. Training data for the shape-naming task in Experiment 3 of MacLeod and Dunbar (1988, p. 133), 
and the results of two simulations of this data. (A: Empirical data and the results of simulations with and 
without the indirect pathway for shape naming [see text]. B: Log-log plot of the empirical data and the 
results of the simulation using the indirect pathway for shape naming, with regression lines computed 
independently for each set of data.) 

naming). Reaction times to each stimulus type were recorded 
and averaged over each condition. 

In the empirical study, test sessions gave subjects additional 
practice with the stimulus items, including conflict and congru- 
ent stimuli. To accurately simulate these circumstances, we al- 
lowed the network to continue to adjust its connection strengths 
(in both the color and shape pathways) during each test phase. 
The network received exactly the same number of  exposures to 
each test stimulus as did human subjects. Furthermore, these 
were blocked by task and presented in the same sequence as in 
the empirical study. The network was tested after it had received 
the same number of  training exposures per stimulus received 
by subjects on Days 1 (72), 5 (504), and 20 (2,520). 

We simulated two components of  the MacLeod and Dunbar 
(1988) data: changes in the speed of  shape naming with practice 
and changes in interference effects between shape naming and 
color naming. We consider each of  these in turn. 

Practice effects. According to the findings for other tasks in 
which practice leads to automaticity, improvements in reaction 
time for shape naming should have followed a power law. Mean 
reaction time for shape naming on each day of  training are 
shown in Figure 9A (solid squares). These data are reasonably 
well fit by a power function (see Figure 9B). Figure 9A also 
shows the performance of  the model as we have described it so 
far (open triangles). The network exhibited significantly longer 
reaction times than did subjects early in training. This result 
suggested that, early on, subjects might be performing the task 
in a different way than they did later. This interpretation agrees 
with the general idea that flexible, general-purpose resources 
are required to perform novel tasks, and only with practice do 
automatic mechanisms come into play. Strategic (e.g., Posner 
& Snyder, 1975), controlled (Shiffrin & Schneider, 1977) and 
algorithm-based (Logan, 1988) processes would all fit into this 
category. This model was not intended to address the mecha- 
nisms underlying such processes in detail. However, to explore 
the influence that they might have, we added an auxiliary path- 
way to the model (see later discussion). We do not mean to sug- 

test, in having added this pathway, that something as simple 
as our implementation underlies strategic processes; rather, we 
included it as a way of  approximating the influence that we as- 
sume strategic processes would have on the time course ofinfor- 
marion processing. 

The new pathway was comprised of  connections from the in= 
termediate units in the shape pathway to a new set of  intermedi- 
ate units in a separate module, and connections from this mod= 
ule to the model's output units (see Figure I I). We call this new 
pathway the indirect pathway to distinguish it from the usual 
direct pathways used by the network. The indirect pathway was 
meant to represent the involvement of  a general=purpose mod- 
ule (or even set of modules) that has been committed to the 
shape=naming process for the current task. The connections in 
the indirect pathway were assigned a set of strengths that al- 
lowed it to be used for shape naming, before the effects of  train= 
ing had accrued in the direct pathway. This captured the as- 
sumption that such a mechanism can be rapidly programmed 
to perform a given task. Because the indirect pathway relied on 
an extra set of  units, processing was slower than in the direct 
pathway. This conforms to the common assumption that pro= 
cessing relying on general=purpose mechanisms is slower than 
automatic processing (e.g., Posner & Snyder, 1975). 

The results of adding the indirect pathway to the network are 
shown in Figure 9A (open circles): The simulation's perfor- 
mance is now much closer to that of the subjects. Figure 9B 
shows that the best fitting power functions for the empirical data 
and the simulation are almost identical. By comparing the 
model's performance with and without the indirect pathway, 
it can be seen that as training progresses, performance relies 
increasingly on the direct pathway. This increased reliance oc- 
curs because, as the connection strengths in the direct pathway 
increase with training, processing in this pathway becomes 
faster. Our finding that such a transition from one processing 
mechanism to another follows a power law is similar to one 
described by Logan (1988), in which the transition from an al- 
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Interference effects. Figure 12 shows the interference and fa- 
cilitation effects that were observed for the two tasks after l, 5, 
and 20 days of practice on shape naming. The top shows the 
empirical data from MacLeod and Dunbar (1988, Experiment 
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Figure 11. Detail of the pathways used for shape naming. (Highlighted 
elements make up the indirect pathway.) 

4), and the bottom shows the model's performance. Most im- 
portant, we observe that the model captures the reversal of roles 
of shape naming and color naming. For the subjects and for the 
simulation, shape naming was initially much slower than color 
naming. Shape naming also showed interference and facilita- 
tion from colors early on, whereas color naming was not 
affected by shapes. At the final point in training, the relation- 
ship between the two processes reversed: Shape naming became 
the faster process, whereas its sensitivity to interference was re- 
duced and its ability to produce interference (with color nam- 
ing) increased. At the intermediate point, the two processes 
were more comparable in their overall speed and were able to 
influence each other. 

In the model, shape naming started out as the slower process 
because early in training the strength of the connections in this 
pathway were still much smaller than those in the color pathway. 
The relationship between the two processes at this point was 
directly analogous to the relationship between word reading 
and color naming in Simulation I. Note, however, that in this 
simulation, color naming started out with the opposite role: Ini- 
tially, color naming was the process that was insensitive to inter- 
ference or facilitation and that was able to produce these effects. 
Color naming assumed this opposite role without any change in 
the strength of connections in its pathway. This makes it clear 
that the absolute strength of a pathway (i.e., the magnitude of 
connection strengths) is not the only relevant variable. Relative 
strength, compared with a competing pathway, is also impor- 
tant in determining whether a process will produce or be subject 
to interference in a Stroop-like task. This finding is further sub- 
stantiated by the patterns of performance at the end of training. 
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By this point, the strength of  the shape pathway exceeded that 
of the color pathway. Accordingly, shape naming became faster 
than color naming, insensitive to colors, and able to facilitate 
and interfere with color naming. 

On the basis of  their data, MacLeod and Dunbar (1988) sug- 
gested that the Stroop effect can be understood in terms of  the 
relative position of  competing tasks along a continuum of  auto- 
maticity and that the position of  the tasks along this continuum 
can be influenced by training. The results of  this simulation are 
consistent with such a view and demonstrate that the observed 
effects can be explained by increases in pathway strength that 
accompany training. This is an important  finding, for it suggests 
that the same process can appear to be automatic (faster and 
able to influence a competing process) or controlled (slower and 
influenced by a competing process), depending on the context 
in which it occurs. 

There is, however, one respect in which the behavior of  the 

model differs qualitatively from that of  the subjects in MacLeod 
and Dunbar 's  (1988) study. This concerns the degree of  interac- 
tion between processes that are of  comparable strength. At the 
intermediate point in training~ the empirical data show that 
each task interfered substantially with the other. In the simula- 
tion, although there was some mutual interference, the amount 
was rather small. This was a robust property of  the model: Pro- 
cesses of  comparable strength showed less influence on one an- 
other than stronger processes did on weaker ones. Thus, addi- 
tional factors outside the scope of  our model may be involved 
when competing processes are of  comparable strength. In fact, 
it is difficult to account for these findings even on other, more 
traditional grounds. :4 In this light, the mutual interference 

14 For example, mutual interference might be thought to reflect an 
underlying probability mixture of trials involving unidirectional inter- 
ference in each of the two directions. Thus, at an intermediate point in 



350 J. COHEN, K. DUNBAR, AND J. McCLELLAND 

effect remains a general challenge to models of  interference phe- 
nomena and warrants further research. 

Allocation of  Attention 

Simulation 5: Attention and Processing 

A primary reason for studying interference effects is that they 
can indicate something about the requirements of  different pro- 
cesses for attention. Thus, in the Stroop task, it is assumed that 
information in the irrelevant channel is not attended to. To the 
extent that this unattended information can produce interfer- 
ence, it must not rely on attention in order to be processed. The 
lack of  a requirement for attention is one of  the primary criteria 
for automaticity (Posner & Snyder, 1975; Shiffrin & Schneider, 
1977). It has often been assumed that automatic processes not 
only do not require attention but also are not influenced by 
attention (e.g., Posner & Snyder, 1975). Kahneman and Treis- 
man (1984) referred to this as the "strong automaticity" claim. 
They and others (e.g., Logan, 1980) have challenged this view, 
providing a large body of  evidence that suggests that few pro- 
cesses, if any, occur entirely independent of  attention (e.g., Kah- 
neman & Chajczyk, 1983; Kahneman & Henik, 1981; Treis- 
man, 1960). For example, Kahneman and Henik (1981) and 
Kahneman and Chajczyk (1983) showed that in the Stroop task, 
the allocation of  attention can influence the degree to which 
word reading interferes with color naming. 

On the basis of  these and related findings, Kahneman and 
Treisman (1984) have argued that automatic processes are sub- 
ject to control by attention, although individual processes may 
differ in their degree of susceptibility to such control. Our 
model presents a view of  automaticity that concurs with both 
of  these points. In Simulation l, we showed that although pro- 
cessing can occur in absence of  attention, capturing the invol- 
untariness of automatic processes, this autonomy was limited: 
Even though words were processed without the allocation of  
attention, thereby interfering with color naming, they did not 
determine the response. Thus, even the strongest processes were 
controlled by attention. Furthermore, the model shows that 
control by attention is a matter of  degree: This was seen in the 
gradual development of  interference effects that occurred as 
strength of processing increased with training in Simulation 4. 

In the following simulations, we examined the relationship 
between requirements for attention and strength of  processing 
more directly. First, we looked at the effects of  reducing atten- 
tion on performance of  the color-naming and word-reading 

training, the shape pathway might interfere with the color pathway for 
some stimuli (or subjects), whereas the reverse is true for others. The 
effect of averaging over items (or subjects) would be that interference 
would appear to be bidirectional. However, the size of this average 
should be less than the amount of interference produced by colors early 
in training or by shapes late in training, because at the intermediate 
point, only a subset of stimuli (or subjects) would be contributing to 
interference in each direction, whereas performance should be more 
homogeneous at the beginning and end of training. In fact, the data 
indicate that mutual interference was of roughly the same magnitude as 
the interference effects at the extremes of training. A probability mix- 
ture cannot explain this finding. 

tasks. The amount of attention allocated to a task was repre- 
sented as the activation value of  the task demand unit associated 
with that task. Figure 13.4 shows reaction times to control stim- 
uli in the word-reading and color-naming tasks as a function 
of task demand unit activation for each of  the corresponding 
processes. Two phenomena are apparent. For a given level of  
performance, color naming required more attention than did 
word reading. However, both tasks were influenced by the allo- 
cation of  attention. Even the word-reading process showed deg- 
radation with reduced attention. Indeed, the fact that stronger 
pathways are controlled by attention is what allows the model 
to perform a task using the weaker of two competing pathways. 

Although stronger pathways rely less on attention, require- 
ments for attention are influenced by more than just the abso- 
lute strength of  a pathway; they are also affected by the circum- 
stances under which a process occurs. Figure 13B shows the 
requirements that color naming had for attention under three 
different conditions: (a) no competing information, and con- 
flicting information from (b) a weaker process (shape naming, 
early in training) and (c) a stronger process (word reading), In 
the two conflict conditions, color naming showed very different 
requirements for attention, depending on the strength of the 
competing pathway. For a given level of  performance, greater 
activation of the task demand unit was required for competition 
with the stronger process than with the weaker process. 

The performance of the model under these conditions dem- 
onstrates that although processing can occur in the absence of 
attention, all processes are affected by attention. Like the other 
attributes of automaticity, requirements for attention vary ac- 
cording to the strength of  the underlying pathway and the con- 
text in which the process occurs. The stronger a process is, the 
less are its requirements for attention and the less susceptible it 
is to control by attention, increasing the likelihood that it will 
produce interference. 

Simulation 6: Response-Set Effects--Allocation of  
Attention at the Response Level 

In the preceding simulations, we explored the role that atten- 
tion plays in selecting information from one of  two competing 
pathways. Attentional selection occurred at the level of  the in- 
termediate units, where information in the two pathways was 
still separate. However, the attention-allocation mechanism 
used in this model is a general one and can be applied to other 
levels of processing as well. In the following simulation, this 
mechanism was used to select a particular set of  responses at 
the output level of  the network. This simulation provides an 
account for response-set effects that have been observed in em- 
pirical studies (e.g., Dunbar, 1985; Klein, 1964; Proctor, 1978). 

Response-set effects reflect the fact that information related 
to a potential response leads to more interference (and facilita- 
tion) than information unrelated to the task. In the standard 
Stroop experiment, information in the irrelevant dimension is 
always related to a potential response. Potential responses are 
said to make up a response set. For example, in the color-nam- 
ing task, when the word RED is written in green ink, although 
"red" is an incorrect response in that particular trial, it will be 
a correct response on other trials. Thus, both "red" and "green" 
are in the response set. However, if the color blue never appears, 
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then the word BLUE is not in the response set, because it is never 
a response in the task. Several studies, using both the color-nam- 
ing task (e.g., Proctor, 1978) and a picture-naming task (Dun- 
bar, 1985), have shown that words that are not potential re- 
sponses produce significantly less interference than do words 
that are in the response set. 

An explanation that is commonly offered for this effect is that 
members of  the response set are primed, either by instructions 
for the task (i.e., by informing the subjects of  the stimuli to 
which they will have to respond) or through experience with 
the stimuli in the course of  the task itself (e.g., Kahneman & 
Treisman, 1984). The current model provides a related account 
of  response-set effects, in terms of  the selective allocation of  at- 
tention to members of  the response set. The same mechanism 
that we used to allocate attention to a particular pathway in 
previous simulations can be used to allocate attention to a par- 
ticular response or set of  responses at the output level. In the 
previous simulations, allocation of  attention to a processing 
pathway placed the intermediate units in that pathway on a 
more responsive part of  their activation curve. This placement 
occurred through the activation of  a task demand unit that off- 
set the negative bias on intermediate units in that pathway. The 
same mechanism can be implemented at the response level by 
adding a negative bias to each of  the output units and having 
the allocation of  attention to a response offset the negative bias 
on the appropriate output units.l~ 

We simulated the response-set effects observed for a picture- 
naming task used in an experiment by Dunbar (1985). In this 
task, a word was placed in the center of  a picture, and subjects 
were required to name the picture and ignore the word. Sub- 
jects' performance in this task was almost identical to that in 
the standard color-naming task: Picture naming was slower than 
was word reading, the word both interfered with and facilitated 
picture naming~ and the picture had no effect on word reading 
(for similar studies, cf. Fraisse, 1969; W. R. Glase r& Dfingel- 

hoff, 1984; and Lupker & Katz, 1981). In Dunbar 's  experiment, 
there were five pictures of  animals (horse, hear, rabbit, sheep, 
and cat ~6) and thus five possible responses. Some of  the word 
stimuli used were potential responses (e:g., HORSE and BEAR), 
whereas others were animal words that were not  m the response 
set (e.g., COAT and DONKEY). Dunbar found that words in the 
response set produced significantly more interference than did 
words that were not (see Table 3). 

To simulate this experiment, the model used for Simulation 
1 was extended in the following ways. First, we increased the 
number of  units at each level of processing in each of  the two 
pathways to 10 (see Figure 14). One pathway was used to repre- 
sent picture naming, and the other was used to represent word 
reading. Five output units were used to represent potential re- 
sponses and were labeled "horse" "bear; '  "rabbit," "sheep" 
and "cat." The remaining 5 were used to represent words that 
were not part of  the response set, and these were labeled "goat," 
"donkey," "dog, . . . .  mouse," and "seal." The 10 input units in 
each pathway corresponded to these output units and were la- 
heled accordingly.17 

The new network was trained in a way that was analogous to 

15 This mechanism was implicit at the output level in the previous 
simulations. To see this, imagine that a negative bias was associated with 
each of the output units, just as it was with the intermediate units. How- 
ever, because both output units were in the response set, attention was 
maximally allocated to each. This would offset the negative bias on both 
of them. That is, the bias terms on the output units would always be 
equal to 0. 

e~ To reflect the analogy between picture stimuli in this task and color 
stimuli in the classic Stroop task, we refer to picture stimuli in lowercase 
letters, as we do for color stimuli. 

1~ The network was trained on input to the non-response-set picture 
units, but because the corresponding stimuli were not in the response 
set, they were never used in testing. These units were included strictly 
to maintain symmetry between the two pathways in the network, so 
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Figure 14. The network used to simulate response-set effects. (Numbers that appear inside each output 
unit are the bias terms that were assigned to these units during testing.) 

training in Simulation 1. Both pathways were trained on all l0 
of  their inputs, with stimuli in the picture pathway receiving 
10% of the amount of  training received by those in the word 
pathway. During training, attention was allocated maximally to 
all of the units in both pathways, as was the case in previous 
simulations. During testing, however, several adjustments were 
made in the allocation of  attention. First, to simulate the some- 
what smaller effects of  words on picture naming (Dunbar, 1985) 
than on color naming (Dunbar & MacLeod, 1984), we in- 
creased the size of  the attentional effect at the level of  the inter- 
mediate units, much as we d id  in Simulation 2 (resting negative 
bias on all intermediate units of -4 .5;  strengths from the task 
demand units to intermediate units of 4.5).~s In addition, atten- 
tion was allocated differentially among the output units: Non- 
response-set units (e.g., "goat" and "donkey") were given a par- 
tial negative bias (-0.1).  This differential allocation corre- 
sponded to the hypothesis that, during testing, subjects allocate 
attention maximally to relevant responses and disattend to ir- 
relevant responses, although not completely (cf. Deutsch, 1977; 
Kahneman & Treisman, 1984). The amount of  negative bias 
applied to nonresponse items was chosen to capture the empiri- 
cal data as accurately as possible. However, the fact that the size 

that differences in processing between them could not be attributed to 
architectural asymmetries. 

of tbe bias ( -0 .  l) was smaller than the negative bias for interme- 
diate units in the disattended pathway ( -4 .0)  is consistent with 
empirical data demonstrating that selection by stimulus set is 
easier than selection by response set (cf. Broadbent, 1970; Kah- 
neman & Treisman, 1984; Keren, 1976). The difference in bias 
between intermediate and output units is also consistent with 
the view that subjects are less able to allocate attention selec- 
tively to different representations within a module than to rep- 
resentations in different modules (e.g., Navon & Miller, 1987; 
Wickens, 1984). 

Table 3 shows data from Dunbar 's  (1985) experiment as well 
as the results of  the simulation. In both cases, stimuli that were 
not in the response set produced less interference than did re- 
sponse-set stimuli. In the model, this difference was due to the 
partial negative bias on the non-response-set output units, 
which simulated failure to maximally attend to corresponding 
responses. This negative bias led to partial inhibition of these 
units, reducing the degree to which they were activated by input 
stimuli. As a result, they contributed less to competition within 
the response mechanism than did output units that were in the 

~s This difference does not seem to be due to a difference in strength 
between picture naming and color naming, because both have compara- 
ble reaction times in the control condition (approximately 650 ms). The 
comparability of naming times for colors and pictures was first noted 
by Cattell (1886). 
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Table 3 
Response-Set Effects 

Condition Dunbar ( 1985 ) Simulation 

Response-set conflict 781 777 
Non-response-set conflict 748 750 
Control 657 664 
Congruent 634 628 

Note. Empirical data are reaction times in milliseconds. Simulation 
data are cycles × 4.5 + 488. 

be due to the fact that the model does not include mechanisms 
for the processing of strategic components in a task (e.g., inter- 
pretation of task demands, evaluation of the response set, and 
compensation for a preceding conflicting stimulus). Further re- 
search and development are needed to capture these and other 
aspects of performance. Nevertheless, the successes of the 
model to date indicate the usefulness of the general approach. 
In the remainder of this discussion, we consider the implica- 
tions of the approach for issues beyond those directly addressed 
in our simulations. 

response set. The simulation demonstrated that attention can 
be allocated to the response units with exactly the same mecha- 
nism that was used to allocate attention to a pathway. When 
attention is allocated with this mechanism, standard response- 
set effects are obtained. 

General Discussion 

We have shown that the mechanisms in a simple network- 
based model can explain many of the phenomena associated 
with attention and automaticity. With regard to the Stroop 
effect, the model shows that these mechanisms can capture a 
wide variety of empirical effects. Among these are the asymme- 
try of interference effects between word reading and color nam- 
ing, the fact that interference effects are typically larger than 
facilitation effects (Dunbar & MacLeod, 1984), that presenting 
the color before the word produces substantially less interfer- 
ence than would be expected simply from differences in the 
speed of processing (M. O. Glaser & Glaser, 1982), and that 
words that are not in the response set produce less interference 
with color naming than words that are (Dunbar, 1985; Klein, 
1964). In addition, the model exhibited many of the phenom- 
ena associated with the development of automaticity, including 
reductions in reaction time and variance that follow a power 
law (Logan, 1988; Newell & Rosenbloom, 1981), gradual devel- 
opment of the ability to produce interference accompanied by a 
reduction in susceptibility to interference (MacLeod & Dunbar, 
1988), and a reduction of the requirements for attention as 
learning occurs (Logan, 1978; Shiffrin & Schneider, 1977). 

The model provides a common explanation for these findings 
in terms of the strength of processing pathways. This account 
goes beyond many other theories of automaticity by describing 
an explicit set of processing mechanisms from which the empir- 
ical phenomena are shown to arise. These mechanisms provide 
a basis for learning, the time course of processing, and the in- 
fluence of attention. Several important features of automaticity 
emerge from this account, including the facts that the properties 
of automaticity are continuous and that their emergence de- 
pends largely on the strength of a process relative to the 
strengths of competing processes. 

The model is not perfect in its present form. For example, it 
does not account for the fact that presenting a word sufficiently 
in advance of the color reduces interference (M. O. Glaser & 
Glaser, 1982). It also shows less interaction between processes 
of comparable strength than the available data seem to indicate 
(MaeLeod & Dunbar, 1988). Some of these shortcomings may 

Reconsidering Controlled and Automatic Processing 

The model demonstrates that differences in interference 
effects are not sufficient to make a distinction between different 
types of processes. A common assumption is that if one process 
interferes with another, the process that produces interference 
is automatic and the other is controlled. However, the model 
shows that this disparity can be explained by differences in the 
strength of two processes that use qualitatively identical mecha- 
nisms. Furthermore, both the model and recent empirical evi- 
dence demonstrate that the same process can, according to in- 
terference criteria, appear to be controlled in one context and 
automatic in another. 

In this respect, our model provides a very different account 
of the Stroop effect from other models, such as one described 
by Hunt and Lansman (1986; also, see Reed & Hunt, 1986). 
Their model is based on a production-system architecture that 
is a modified version of the one used in ACT* (Anderson, 1983). 
Their model distinguishes between controlled and automatic 
processing on the basis of the manner in which one production 
influences the firing of others. In controlled processing, one 
production activates a representation in working memory that 
matches the criteria for another, increasing the activation value 
for that production, and hence its likelihood of firing. In auto- 
matic processing, however, productions can influence each 
other without relying on working memory through the direct 
spread of activation from one production to another. In the 
Hunt and Lansman model, color naming is assumed to be a 
controlled process, which relies on working memory. As such, 
it is highly influenced by the contents of working memory. In 
particular, in the conflict condition, when there is competing 
word information in working memory, processing is slowed, re- 
sulting in Stroop-like interference. In contrast, word reading is 
assumed to be automatic, and thus to occur largely through the 
direct spread of activation between production rules. This 
makes it less susceptible to influence by the contents of working 
memory. 

The Hunt and Lansman (1986) model provides an explicit 
account of the nature of controlled processing (in terms of 
working memory and productions), which our model does not. 
However, their model faces serious limitations. First, it fails to 
capture some of the basic features of the Stroop task: In the 
control conditions, color naming and word reading are per- 
formed at the same speed. Furthermore, the color can interfere 
with and facilitate word reading, neither of which occurs in em- 
pirical studies. It is not clear whether these failures to fit the 
empirical data result from fundamental limitations in their 
overall approach or the particular implementation they report. 
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Most important, however, is that their model accounts for 
differences in interference effects between color naming and 
word reading by assuming that these tasks represent different 
types of processes: One is controlled, the other is automatic. By 
making such qualitative distinctions, it seems that this ap- 
proach cannot in principle account for the MacLeod and Dun- 
bar (1988) findings, which show that color naming can appear 
to be controlled in one context but automatic in another (i.e., 
when it is in competition with a less practiced task). In contrast, 
our model accounts for these findings in terms of differences in 
the relative strengths of two competing pathways, both of which 
might be considered to be automatic. 

Although our model indicates that there is a continuum of 
automaticity, it does not reject the existence of controlled pro- 
cessing. At the extreme low end of the automaticity continuum, 
where there is no preexisting pathway to perform a task, pro- 
cessing must occur in a very different way. Consider, for exam- 
ple, a subject who is told to say "red" when a particular random 
figure is presented and to say "green" "blue" and so forth for 
each of several other shapes. Initially, the subject will lack the 
relevant connections for performing the task. At this point, the 
task might be performed with the assistance of the experi- 
menter (e.g., the subject may be reminded of the color word that 
corresponds to the shape on the screen). The subject might try 
to learn each correspondence, using verbal associations to the 
shapes (e.g., orange is the name of the shape that looks like Flor- 
ida) or other mnemonics. We assume that such processes rely 
on indirect pathways that can be used to establish at least a few 
arbitrary associations relatively quickly, but we also assume that 
processing in such pathways is slow and requires effort to main- 
rain. At the same time, as practice progresses and the subject 
receives feedback regarding responses, connections would be 
starting to build in a pathway that will ultimately allow the 
shape to directly activate the correct response, without recourse 
to indirect verbal mediation, mnemonic mediation, or both. Al- 
though learning occurs more gradually in such direct pathways, 
it leads to processing that is faster and stronger than is possible 
using indirect pathways. 

Thus, whereas subjects can respond correctly without exter- 
nal help after only a few trials, we assume that the direct path- 
way would generally not at this point be sufficient to produce 
the response. The activation of a response would be based on the 
combination of information from both the direct and indirect 
mechanisms, with the relative importance of the direct pathway 
growing steadily over trials and the contribution made by the 
indirect pathway diminishing. In summary, what we see during 
the early phases of practice may reflect a gradual transition 
from a reliance on indirect to direct pathways. 

There is a partial correspondence between our direct-indi- 
rect distinction and the traditional distinction between con- 
trolled and automatic. As already noted, a process based on 
indirect pathways would have all the earmarks of what is typi- 
cally called a controlled process: It would be slow, it might con- 
sist of a series of steps that could be disrupted or interfered with, 
and it might depend on declarative (verbal) memory (e.g., 
"Florida is orange") or other explicit mnemonics requiring 
effort and the allocation of attention. On the other hand, at high 
extremes of practice, direct performance would correspond 
closely to what typically has been called automatic: Processing 
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Figure 15. Types of processing: The relationship of the proposed dis- 
tinction between direct and indirect processing to the traditional dis- 
tinction between controlled and automatic processing with regard to 
degree of practice. 

would be much faster, less susceptible to interference, more ca- 
pable of producing interference, and less influenced by the allo- 
cation of attention. In between, however, the correspondence 
between these distinctions breaks down. As the simulations pre- 
sented in this article demonstrate, a process that is completely 
direct can, under some circumstances, exhibit all of the proper- 
ties usually ascribed to a controlled process. Thus, we propose 
that processes that have previously been classified as controlled 
might more profitably be segregated into those that are direct 
and those that are indirect. Within the range of direct processes, 
there would be a continuous spectrum of pathway strengths that 
span the range of different degrees of automaticity. Figure 15 
illustrates the correspondence between traditional usage and 
the terms proposed here. 

The model provides an explicit account of direct processes 
and shows how changes in the strength of these processes, which 
result from practice, can lead to seemingly qualitative chang~ 
in performance. The model is less explicit about indirect pro- 
cesses. Because our focus was on the nature and interaction of 
direct processes, indirect processes were included in only one 
simulation (Simulation 4) to capture performance of the shape- 
naming task early in training. 

The significant aspects of our implementation of an indirect 
process (see Simulation 4) were that it relied on an extra module 
in the processing pathway and that the connections in this path- 
way were available early in training, beforeeonnections had de- 
veloped in the direct pathway. This implementation captured 
the slower dynamics of indirect processes that commonly have 
been observed. However, it did not capture other features of 
indirect processes, such as their flexibility, and the general-pur- 
pose nature of the mechanisms involved. Nevertheless, there 
are extensions of our model that might capture some of these 
features. For example, the single additional module used in 
Simulation 4 could be replaced with a series of modules--per- 
haps participating in several different processing pathways-- 
that had highly adaptive but quickly decaying connections. 
These properties would capture the flexible, general-purpose, 
but slower and less stable, nature of indirect processing. Al- 
though PDP research in this area is just beginning, several PDP 
models that use such mechanisms have already begun to appear 
(e.g., Hinton & Plaut, 1987; Schneider, 1985; Schneider & Det- 
weiler, 1987). 

Attention and the Control of  Processing 
We have argued that an important difference heCw~n our di- 

rect-indirect distinction and the traditional dichotomy be- 
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tween controlled and automatic processing is that in our dis- 
tinction, processes of either type can exhibit performance char- 
acteristies traditionally associated with controlled processing, 
such as slower speed and susceptibility to interference. The 
same difference can be found between these two approaches 
concerning attentional control of processing. 

At the heart of the theoretical distinction between controlled 
and automatic processing are two basic assumptions: Con- 
trolled processing depends on the allocation of attention; auto- 
matic processing occurs independently of attention. As we dis- 
cussed in Simulation 5, there is reason to believe that few, if any, 
processes are entirely immune to the affects of attention. In the 
simulations we present, even the strongest pathways, in which 
processing exhibited all of the other attributes of automaticity, 
processing was affected by the allocation of attention. For exam- 
ple, in Simulation 1, although processing in the word pathway 
occurred without the allocation of attention, leading to interfer- 
ence with color namingo this processing was only partial and 
was insufficient to determine which response was made. Simu- 
lation 5 showed that the word-reading process was directly in- 
fluenced by changes in the allocation of attention. 

The proposal that direct processes are subject to attentional 
control is quite different from the proposal that a particular task 
is subject to attentional control. Thus, others (e.g., Shiffrin, 
1988) have attempted to explain the fact that automatic pro- 
cessing tasks such as word reading are subject to attentional 
control by arguing that behavior reties on numerous processes, 
some of which are automatic and some of which may be con- 
trolled. In this view, control over the performance of a task 
could be explained by the allocation or withdrawal of attention 
from the controlled processes involved, preserving the indepen- 
dence of the automatic processes from the effects of attention. 
Although we do not dispute the claim that behavior is com- 
posed of many component processes, our model asserts that all 
of these processes may be subject, in varying degrees, to control 
by attention. 

Attention as the Modulation of Processing 

Given that all cognitive processes are subject, in some degree, 
to attentional control, the question arises about how this control 
is achieved. Attention is implemented in the model as the mod- 
ulation of processing in a pathway. This occurs by input from 
attention (task demand) units, which cause a shift in the respon- 
siveness of units in a processing pathway. 

Attention uses exactly the same processing mechanisms as 
the other components of the model. The connections from the 
attention units to the units in a processing pathway are of the 
same type as the connections within the pathway itself, and at- 
tentional information is represented in the same way as any 
other information in the network: as a pattern of activation over 
a set of units. As such, the input that a pathway receives from 
the attention units is qualitatively the same as input received 
from any other source of inforrnation in the network. Attention 
can be viewed simply as an additional source of information 
that provides a sustained context for the processing of signals 
within a particular pathway. Thus, attentional mechanisms are 
not given special status in the model, and in general, an atten- 
tional module can be thought of as any module that has a set 

of connections that allow it to modulate processing in another 
pathway. There may be many such modules within a system, a 
given module may modulate one or many pathways, and it 
might even participate directly in one set of processing path- 
ways while it serves to modulate others. This view ofattentional 
control is similar to the multiple-resources view that has been 
expressed by others (e.g., Allport, 1982; Hirst & Kalmar, 1987; 
Navon & Gopher, 1979; Wickens, 1984). 

Our implementation of attentional modulation is different 
from several other recent accounts of attention. In Anderson's 
(1983) ACT* theory, attention is related to the competition for 
representation in working memory rather than the modulation 
of processing in otherwise automatic pathways. Schneider 
(1985) provided an account of attention as the modulation of 
information in a PDP network. However, his model uses a 
mechanism for attentional modulation (multipticative connec- 
tions) that is qualitatively distinct from other types of process- 
ing in the network, unlike the model we have presented. 

The notion of attention as a modulator, together with the idea 
that processing is continuous and that the resulting activations 
are graded in strength, has a long history in the attention litera- 
ture; the idea is essentially the same as that suggested by Treis- 
man (1960). Treisman claimed that messages outside of the fo- 
cus of attention were not completely shut out; rather, the flow of 
information was simply attenuated on the unattended channel. 
This is exactly what happens in our model. Indeed, the very 
same mechanisms of pathway modulation that we have used to 
implement task selection in the Stroop task (color or word) 
could be used to implement channel selection in dichotic listen- 
ing (e.g., Treisman, 1960), spatial allocation of attention (e.g., 
Kahneman & Henik, 1981), category search (e.g., Schneider & 
Shiffrin, 1977; Shiffrin & Schneider, 1977), or other tasks in- 
volving selective attention. 

Many of these phenomena have begun to be explored produc- 
tively within the PDP framework (e.g., Mozer, 1988; Phaff, 1986; 
Schneider & Detweiler, 1987 ). For example, Mozer (1988) has ad- 
dressed the spatial allocation of attention using PDP mechanisms 
similar to the ones we have described, By introducing a network 
of units corresponding to retinal locations (rather than feature di- 
mensions), and having attention bias units representing particular 
locations, attention can be allocated to specific locations. As in our 
model, information that is in the focus of attention is processed to 
a greater degree than information that is not in the focus of atten- 
tion. Extension of our model along these tines would provide a 
means for simulating spatial allocation of attention in the Stroop 
task(e.g., Kahneman & Henik, 1981). 

Finally, with regard to the mechanisms of attentional modu- 
lation, an important general issue is whether attention facili- 
tates processing within the attended pathway, suppresses it in 
the unattended pathway, or both. Our framework is, in princi- 
ple, agnostic on this issue; attention could be implemented ei- 
ther as a facilitative or an inhibitory effect, or a combination of 
both. In the simulations we presented, however, attention had 
primarily a facilitative effect: Task specifications put units in 
the attended pathway in a more responsive portion of their dy- 
namic range. This succeeded in capturing the central phenom- 
ena of the Stroop effect and the relationship between practice, 
automaticity, and attention that we set out to explain. However, 
there are reasons to suspect that effort is also required to filter 
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out potentially interfering messages. For example, processing is 
typically slower on control trials if these are mixed with interfer- 
ing trials. One way to account for this is to assume that attention 
is required both to suppress the unattended channel and to en- 
hance processing in the attended one and that suppressing one 
requires resources that take away from the ability to facilitate 
the other. The modeling framework we have described could be 
used to explore, in simulations, which of these explanations can 
best account for the relevant empirical data. 

Continuous Nature of Processing 

The assumption that information is graded and propagated 
continuously from one level to the next distinguishes our model 
from discrete stage models, in which processing must be com- 
plete at one stage before information becomes available at oth- 
ers. In the model presented here, information at one level is 
continuously available at subsequent levels. As such, a process 
need not be completed for it to affect performance. It is pre- 
cisely the partial processing of information in the stronger of 
two pathways that produces interference and facilitation effects. 

In this respect, our model is similar to one proposed by Logan 
(1980). Both models make use of continuous processing mecha- 
nisms and explain interference (and facilitation) effects in terms 
of the relative strength of the pathways used by competing pro- 
cesses. According to Logan's (1980) model, "evidence is as- 
sumed to accumulate over time in some composite decision 
process until a threshold is exceeded and a response is emitted" 
(p, 528). Different sources of evidence (e.g., different stimuli 
or different stimulus dimensions) are weighted so that evidence 
accumulates from each at different rates. This model accounts 
for the Stroop effect by assigning stronger weights to word read- 
ing than to color naming. The strength of the connections in a 
pathway in our model are analogous to the weights assigned to 
a process in Logan's (1980) model. In both models, attention 
acts by modulating the effectiveness with which information ac- 
cumulates from each process in a manner that is responsive to 
the demands of the current situation. 

However, our model differs from Logan's (1980) in several 
important respects, some of which lead to significant differ- 
ences in performance. First, Logan's (1980) model is a linear 
model, with respect to the way in which information accumu- 
lates both as a function of time and as a function of pathway 
strength. The processing mechanisms in our model are nonlin- 
ear in both of these respects. This allows the model to account 
for the asymmetry between interference and facilitation. Lo- 
gan's (1980) model cannot account for this finding. However, 
perhaps the most important difference between the two models 
is that Logan's (1980) model does not include any mechanisms 
for learning. The weights associated with automatic processes 
are fixed. One of the primary strengths of our model is that it 
can directly address the relationship between training and auto- 
maticity in terms of an integrated set of learning and processing 
mechanisms. 

Strength and Instance-Based Accounts of Automaticity 

The model presented in this article is based on the assump- 
tion that direct processes develop through the strengthening of 

connections between processing units. In this respect, it is one 
of a general class of models that explain learning in terms of a 
strengthening process. An alternative approach to learning and 
automaticity is instance based (e.g., Hintzman, 1986; Logan, 
1988). According to instance theory, each exposure to a stimu- 
lus is encoded separately in memory. In Logan's (1988) model, 
both encoding as well as the retrieval of stimulus-related in- 
stances is obligatory. Retrieval times for individual instances 
are normally distributed, with the first instance retrieved con- 
trolling the response. Logan (1988) has demonstrated that in- 
stance theory accurately predicts practice effects in nonconflict 
tasks, accounting for the fact that both the mean and the stan- 
dard deviation of reaction times decrease according to a power 
law with the number of trials (i.e., instances encoded). The the- 
ory also predicts that the exponent for both functions should be 
the same. 

Several strength-based accounts have provided fits to the 
power law for mean reaction time (e.g., Anderson, 1983; 
Schneider, 1985), and the model we present satisfies the addi- 
tional constraint that standard deviation decrease at the same 
rate as mean reaction time. However, Logan (1988) has ex- 
pressed other concerns about strength-based theories of learn- 
ing. For example, he claimed that strength-based accounts must 
rely on fixed prototypes: It is the strengthening of the connec- 
tion between "generic stimuli" and "generic responses" that 
constitute learning in such systems (Logan, 1988). This criti- 
cism applies primarily to theories using discrete, or local, repre- 
sentations of stimuli. Elsewhere (McClelland & Rumelhart, 
1985), it has been shown that this limitation of the strength- 
based approach can be overcome with the use of distributed 
representations. In such systems, memory for an event is not 
encoded in a single connection between a generic stimulus and 
a generic response, but in the strengths of a set of connections 
involving several different units that are used to provide over- 
lapping but nevertheless distinct representations of individual 
stimuli and responses. In the current model, local representa- 
tions were used. However, in preliminary investigations using 
distributed representations, we have had no difficulty repro- 
ducing the basic interference phenomena (resulting from un- 
equal amounts of training) reported in this article. These effects 
appear to be general to cascaded PDP networks composed of 
continuous nonlinear processing units. 

For the moment, instance- and strength-based theories seem 
equally able to explain learning behaviors. However, it is not 
clear how an instance-based account will explain some of the 
interference phenomena we have addressed. As an assumption 
of his theory, Logan (1988) stated that "attending to a stimulus 
is sufficient to retrieve from memory whatever has been associ- 
ated with it in the past" (p. 493). That is, retrieval is obligatory 
and, by implication, unmodulated. Interference is produced in 
this system when retrieved information associated with a stimu- 
lus conflicts with the desired response, and this information is 
retrieved before the relevant information. As with the simple 
speed-of-processing account, this assumption suggests that 
given sufficient time for retrieval, colors should interfere with 
word reading as much as words do with color naming. However, 
we know from M. O. Glaser and Glaser's (1982) data that this 
is incorrect. Thus, instance theory faces the same difficulties 
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that simple speed.of-processing accounts face in explaining 
Stroop interference effects. 

More generally, as instance theory is currently developed, it 
does not specify mechanisms for attentional influences on be- 
havior. Logan (1988) suggested that "the retrieval process can 
be controlled by manipulating retrieval cues or stimulus input, 
or both, and the subsequent decision process can be inhibited 
before it results in an overt response" (p. 513). However, no 
mechanism is provided for these processes, nor has it been dem- 
onstrated whether these processes can account for the interac- 
tions between interference and practice effects that we have ad- 
dressed in this article. Although we have not provided a mecha- 
nism that determines how and where attention will be allocated, 
we have specified a mechanism by which the allocation of atten- 
tion can influence processing, and we have shown how this 
mechanism interacts with learning. 

Resources and Capacity 

A final issue concerns the notions of processing resources and 
capacity limitations. The model instantiates processes similar 
to the multiple-resources view that has been expressed by others 
(e.g., Allport, 1982; Logan, 1985; Navon & Gopher, 1979; 
Wickens, 1984) and to the notion of functional cerebral dis- 
tance described by Kinsbourne and Hicks (1978). These theo- 
ries share the view that performance of a task typically involves 
many processes, which in turn depend on a multiplicity of re- 
sources. They predict that two behaviors will compete for pro- 
cessing capacity and may interfere with one another to the ex- 
tent that they rely on the same resources for different purposes. 
Our approach suggests ways in which we can begin to think, in 
more specific terms, about the nature of these resources and 
how limitations in their capacity can affect performance. Thus, 
the modules that make up processing pathways can be thought 
of as a set of resources within the system. These resources are 
shared by two or more processes to the extent that their path- 
ways intersect--that is, they rely on a common set of modules. 
In the model, when two signals to be processed by a particular 
module are disparate (i.e., they involve different patterns of ac- 
tivation), they will compete for representation within that mod- 
ule. In this sense, the processing capacity of that module, or 
resource, can he thought of as being limited; that is, it cannot 
fully support the processing of both signals at once. Schneider 
0985; Schneider & Detweiler, 1987) has presented a similar 
view of capacity limitations in terms of cross talk within mod- 
ules (also see Navon & Miller, 1987). 

Although we have not pursued a quantitative analysis of ca- 
pacity in this article (see Rosenfeld & Touretzky, 1988, for an 
example of how this can be done in PDP systems), the model 
showed that when information from two sources converged on 
a common module (the response module of the network), inter- 
ference occurred. We have obtained similar results in other sim- 
ulations, in which two stimuli (e.g., two words) processed con- 
currently within the same pathway also led to interference. 

As in the multiple-resources view, our account of interference 
effects focuses on the capacity limitations of modules directly 
involved in a processing pathway, that is, modules that lie in the 
pathway along which information flows from input to output. 
However, the model also suggests ways in which to think about 

other types of capacity limitations. For example, the attention 
module did not lie directly along one of the processing pathways 
in the network. Nevertheless, it played an important role in pro- 
cessing: Simulation 5 showed that all processes relied to some 
extent on the allocation of attention. For a given process, this 
required that a particular pattern of activation be present in 
the attention module. This pattern was different for different 
processes, so that any attempt to specify more than one process 
would lead to competition of representations within the atten- 
tion module. From this perspective, the capacity of the atten- 
tion module can be seen as limited, it may not always be possi- 
ble to allocate attention maximally to all processes at once. Be- 
cause stronger processes have weaker requirements for 
attention (see Simulation 5), such processes may be less suscep- 
tible to capacity limitations in the corresponding attentional 
module. This is consistent with the traditional notion that auto- 
maticity is associated with greater independence from capacity 
limitations of attentional resources. However, our approach al- 
lows that there may be more than one attentional resource 
(module) within the system and that different processes may 
rely on different modules. As such, the extent to which limita- 
tions in attentional capacity will affect performance will depend 
on the particular processes involved in performance of the task 
(or set of tasks), the extent to which these processes rely on at- 
tentional resources, and whether the attentional resources are 
the same or different for the various processes involved. 

The significance of different sources of capacity limitations 
(e.g., those arising directly within a pathway or within associ- 
ated attentional modules) are in need of further clarification, 
both theoretically and empirically. However, we recmphasize, 
in this context, that attentional information is not qualitatively 
different from other information in our framework. The compe- 
tition between patterns of activation within an attentional mod- 
ule is analogous to the competition that can occur between pat- 
terns of activation in any other module. This suggests that mod- 
ulatory resources, such as the attentional module in our model, 
may be governed by the same sorts of principles and constraints 
that govern more local resources within the system. 

Conclusion 

The model that we have presented provides not only an ac- 
count of the empirical data on the Stroop effect, but also a more 
general model of processing in highly practiced tasks and its 
relation to attention. Like other theorists (e.g., Kahneman & 
Treisman, 1984; Logan, 1980; Schneider, 1985), we have noted 
that there are many problems with an all-or-none view of auto- 
maticity. Our model suggests that a more useful approach is to 
consider automaticity in terms of a continuum based on 
strength of processing. We have outlined a set of mechanisms 
that can produce gradual and continuous strengthening, and 
we have shown how these mechanisms can account for various 
empirical phenomena concerning automaticity. In particular, 
these mechanisms capture the continuum that appears to exist 
in the attributes of automaticity and relate this continuum di- 
rectly to the effects of practice. Differences in practice lead to 
differences in the strength of processing, and this makes it possi- 
ble to capture asymmetries of performance such as those ob- 
served in the Stroop task. The model also indicates that Stroop- 
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like effects can arise from the competit ion between two qualita- 
tively similar processeswwhich differ only in their s t rength- -  
leading us to question the traditional view that interference 
effects can be used reliably to distinguish between controlled 
and automatic processes. Finally, the model suggests ways to 
characterize the not ion of  capacity in greater detail. 

The mechanisms used in this model show how the principles 
of continuous processing, expressed in terms of the PDP frame- 
work, can be applied to the study of  at tention and the control of  
what we have called direct processes. A challenge for our  model, 
however, and for the PDP approach in  general is to characterize 
the mechanisms underlying indirect processing. We see this as 
an important  direction for future research. 
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Appendix 

P a r a m e t e r s  o f  t h e  M o d e l  

Performance of the model depended on many different parameters. 
Several of these were tightly constrained by the data, whereas the values 
of others seemed to be less critical. Here, we review all of the parameters 
that were relevant to the simulations reported and provide a rationale 
for how the value of each was chosen, how critical that value was, and, 
where appropriate, other parameters with which it interacted. 

N u m b e r  of  Uni t s  per  Modu le  

This was essentially a free parameter. To keep the networks as simple 
as possible, we chose the fewest number of units necessary to simulate 
each task. 

Rat io  o f  Training Frequencies  

The network used in the first 2 simulations was trained on words and 
colors in a 10:1 ratio. This value was chosen to capture both the differ- 
ence in the speed of processing between word reading and color naming 
and the size of the interference and facilitation effects observed for color 
naming (see Figure 5.4). This parameter interacted primarily with the 
magnitude of the attentional influence in the model, the parameters of 
the response mechanism, and the maximum response time (see later 
descriptions). The actual value of this parameter did not appear to be 
critical, and values ranging from 5:1 to 20:1 gave comparable results, 
providing the size of the parameters just mentioned were adjusted to 
compensate. The actual value was not considered to be crucial, but the 
asymmetry in training that it represented is theoretically important: 
It is differential amounts of training that lead to differential pathway 
strengths. This is consistent with the common assumption that word 
reading is more highly practiced than color naming. 

Learn ing  Rate  

This parameter sealed the size of the changes made to connection 
weights in each learning trial. Its value was tightly constrained by the 
MacLeod and Dunbar (1988) data. The exact same number of training 
trials per stimulus were used in the simulation as were used in the empir- 
ical study. We chose a learning rate that, given this number of trials, 
produced the closest fit to the interference data at each test point. This 
parameter was the same for all of the connections in each direct pathway 
in the network (including the input connections) in each simulation. 
However, the connections in the indirect pathway used in Simulation 4 
were fixed; that is, they had a learning rate of 0. 

M a x i m u m  Response Time 

This parameter functioned as our training criterion for Simulation 1. 
After specifying a learning rate (see earlier description), we needed some 
way of deciding when to stop training on colors and words. Training 
ended when the network could respond accurately to all of the test stim- 
uli (control, conflict, and congruent stimuli in each task) within a speci- 
fied number of cycles, which we call the maximum response time. A 
lower value (faster response) meant more training and a higher value 
meant less training. The value we used was 50 cycles. There were two 
primary constraints on this value: (a) Test performance after training 
had to simulate the basic Stroop effect (see Figure 5), and (b) regression 
of simulation cycles on empirical reaction time data had to yield a posi- 
tive intercept value of reasonable magnitude. A small or zero-valued 

intercept would suggest, unreasonably, that our model simulates all of 
the processes involved in human performance; a negative intercept 
would indicate that the effects of interest were only a small part of the 
model's overall performance. The intercept values for all simulations 
reported were in the 200- to 400-ms range. Both of these constraints 
on the maximum reaction time were relatively weak, and reasonable 
performance was achievable with a broad range of values. This parame- 
ter interacted with the training frequency ratio (see earlier description) 
and the noise parameters in the network (see later descriptions). 

Preset  I npu t  Weights 

The weights from the input to the intermediate units in each pathway 
were given preassigned values at the outset of training. This was re- 
quired for changes in reaction time with training to follow a power law. 
This finding is theoretically important, for it suggests that the power law 
may only apply to the learning of simple mappings and that learning at 
the early stages of processing (e.g., stimulus encoding) are not involved 
in the tasks we have simulated. The actual values preassigned to the 
input weights were picked on the basis of weights that are achieved when 
the network is allowed to learn this set of weights on its own. 

Indi rec t  Pathway 

This was the module and corresponding set of weights that was added 
to the basic network for Simulation 4. The number of units in this mod- 
ule was the same as in all others (two). The strengths assigned to the 
connections in this pathway were chosen to best fit the empirical data 
concerning reaction times and interference effects early in training on 
shape naming. 

Cascade Rate  

This parameter determined the rate at which each unit accumulated 
activation. Its value was the same for all units in the network (except 
input units, which were always maximally excited or inhibited). The 
cascade rate interacted with the response rate and response threshold 
to determine both reaction time and the pattern of interference effects 
between processes. Values for these parameters were chosen to provide 
the best fit to the basic Stroop effect, given the constraints imposed by 
the other parameters of the models (i.e., learning rate, maximum re- 
sponse time, and attentional influence). 

Noise 

This scaled the magnitude of Gaussian distributed noise added to the 
net input of each unit (except the input units). Values of this parameter 
and the noise in the response mechanism (see later description) were 
chosen to provide maximum variance without sacrificing accuracy of 
performance. These parameters interacted with the maximum response 
time to determine the amount of training received by the networks used 
in Simulations 1, 2, 5, and 6. They also had an influence on the relation- 
ship between mean reaction time and variance as a function of training. 
Values were chosen to provide the closest match between the exponents 
of the power functions describing the changes in mean reaction time 
and standard deviation with practice. 

Magni tude  o f  At ten t iona l  Inf luence 

Two parameters determined the magnitude of attentional effects in 
the model. These were the size of the resting negative bias on intermedi- 
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ate units in the two processing pathways and the size of the weights from 
the task demand units to these intermediate units. The magnitudes of 
these two parameters were constrained to be equal, so that with full 
activation of a given task demand unit, intermediate units in the corre- 
sponding pathway had a resting net input of 0 and an activation of 0.5 
(the rationale for this is explained in the Attentional Selection subsec- 
tion in The Model section). The main effect of varying these parameters, 
therefore, was to change the resting activation level of intermediate units 
in the unattended pathway (because their task demand unit was not 
active, and therefore their negative bias was not offset). The magnitude 
of the attentionai influence affected the size of the interference and facil- 
itation effects observed. A set of values was chosen that provided the best 
fit to the empirical data in each experiment (see the Free Parameters 
subsection of Simulation Methods). 

Parameters  o f  the  Response  M e c h a n i s m  

Three parameters were associated with the response mechanism: the 
rate at which evidence accumulated, the noise associated with this pro- 

cess, and the threshold for a response. The rate and threshold parame- 
ters were inversely related to one another: Doubling the accumulation 
rate was equivalent to halving the response threshold. Together, these 
values interacted with the maximum response time (see earlier descrip- 
tion) to determine the network's performance for a given amount of 
training. They also showed a complex interaction with the cascade rate 
(see earlier description), which affected the relative magnitude of inter- 
ference effects versus speed-of-processing differences between the path- 
ways. Values for these parameters were chosen that provided the best fit 
to the basic Stroop effect, given the constraints imposed by the other 
parameters of the models (i.e., learning rate, maximum response time, 
and attentional influence). The amount of noise associated with the re- 
sponse mechanism interacted with the amount of noise added to the 
net input of processing units. The constraints on both noise parameters 
are discussed in the Noise subsection. 
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