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example, an 1-norm based Lyapunov function for a random three-di-
mensional stable system was found in 58 s using the internal global
solver for bilinear problems of the optimization interface YALMIP [19]
together with the BMI solver PENBMI [20] by PENOP as the local
node solver. The here proposed approach found a Lyapunov function
in 1:3 � 10�3 sec for the very same system.

X. SOFTWARE IMPLEMENTATION

The presented algorithm is implemented in the Multi-Parametric
Toolbox (MPT) [21] for MATLAB. The toolbox can be downloaded
free of charge at http://control.ee.ethz.ch/~mpt/.
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Global Stability Analysis of a Nonlinear Model of Internet
Congestion Control With Delay

Matthew Peet and Sanjay Lall

Abstract—We address global stability of a model for the TCP/AQM
congestion control protocol. This model represents the dynamics of a
single link and single source, and consists of a nonlinear differential
equation with a time-delay. We make use of absolute stability theory
and integral-quadratic constraints to give conditions under which the
dynamics are globally asymptotically stable.

Index Terms—Delay, integral quadratic constraints, Internet congestion
control, nonlinear, stability.

I. INTRODUCTION

The TCP/AQM congestion control protocol used in the Internet con-
trols the rate at which packets are sent from sources across the network.
This rate evolves according to dynamics determined by the round-trip-
time of the network and the control algorithms at the source and the
router. We address the question of global stability of these dynamics.

There are several different protocols, some proposed and some in
use, and we look at a specific protocol developed by [14], in which the
following model is given:

_p(t) =
1
c
(x(t)� c) ; if x(t) > c or p(t) > 0

0; otherwise

x(t) = e
��p(t��)=�

: (1)

This is a model for a network with a single source and single bottleneck
link. Here, the parameter � � 0 is the round-trip-time, and 0 < c <

1 is the capacity of the link. The scalar p(t) is called the price. It is
computed at the router, and is fed back to the source. The source then
sets x(t), its rate. For a system with multiple sources, the model is the
same in the special case that all sources have identical roundtrip time.
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An equilibrium solution of (1) is p(t) = peqm for all t, where

peqm = �
�

�
log c:

This corresponds to a rate of x(t) = c. The scalar � > 0 is a parameter
of the algorithm which may be chosen by the designer, called the gain.
The tradeoff is that a large gain increases the speed of local convergence
and reduces the required buffer sizes, but the system becomes unstable
if the gain is too large. Hence, we would like to determine the largest
� for which the system is stable. Roughly speaking, the main result of
this note is that if

� <
�c log c

2(c� 1)

then the system is asymptotically stable, that is for all initial conditions
we have

lim
t!1

p(t) = peqm

This result is stated in Theorem 9. The local stability of this system was
analyzed in [14], where it was shown that linearizing (1) and applying
the Nyquist theorem implies that, for all 0 < c < 1 and all � > 0, if

� <
�

2

then the system is locally stable. In particular, an important practical
feature is that this stability condition is independent of delay � . This
fact was one of the motivations for this protocol in [14].

The approach taken in this note is to decompose this system of dif-
ferential equations into a feedback loop, and prove stability of the dy-
namics by analyzing the input–output properties of the components of
the loop. This approach is often called absolute stability theory [3],
[21]. We make use of a specific approach called integral-quadratic con-
straints [13], which was first used for analysis of congestion control by
[19]. We use a result from [7] in our proof. We also make use of loop
transformations similar to those presented in [8], [17], [19].

Prior Work: There is a substantial body of literature modeling and
analyzing the dynamics of congestion control protocols, originating
with the work of [9]. Several models for TCP have been motivated by
gradient algorithms for constrained optimization of a utility function
[9], [10], and the model (1) may also be constructed in this way.

The closest work to this note is that of [16], [19], and [22]. In [16],
it is shown that the system is globally stable if

� < c:

In [19] it is shown that the previous system is globally stable if

� <
c log c

(c� 1)
:

In this note we show global stability for a strictly larger set of �. An-
other related result is as follows; if the model is modified to allow neg-
ative queue lengths, then [22] shows that stability holds if

� �
3

2

with a specific region of attraction.
Global stability of other models for TCP has been addressed in sev-

eral papers. Razumhikin theory has been used in [2], [6], [19], [20],
and [23], Lyapunov functions have been used to show stability in [1],
[12], [15], and [16] and an input–output approach was taken in [4], [19].

Local stability results related to the model in this note may be found in
[11] and [18].

Notation: We use the following standard notation. The set C[a; b]
is the space of functions

C[a; b] = ff : [a; b]! jf is continuous and boundedg

We denote by L2 the Hilbert space of measurable functions
x : [0;1) ! n with the usual inner product and norm. For
G : [0;1) ! m�n, we use Ĝ to denote the Laplace transform of
G, and overload G to also mean the corresponding linear map defined
by convolution. We also define the space W2 as

W2 = fx 2 L2 j _x 2 L2g

For T � 0 define the projector PT by y = PT z if

y(t) =
z(t); if t � T;

0 otherwise.

The extended space L2e is the set of measurable functions
x : [0;1) ! n such that PTx 2 L2 for all T � 0. Simi-
larly W2e is the extended space of functions x whose truncation PTx
lies in W2 for all T � 0. A function f : [0;1) ! is called
absolutely continuous if for every " > 0 there exists � > 0 such
that for any x1; . . . ; xn with n�1

i=1 jxi+1 � xij � � the function f
satisfies n�1

i=1 jf(xi+1)� f(xi)j � ". If f 2W2 and f is absolutely
continuous then f(t) ! 0 as t ! 1.

II. A FEEDBACK MODEL OF THE DYNAMICS

For convenience, we use the change of variables

z(t) = p(t)� peqm

so that the new system has equilibrium z(t) = 0. We will eliminate
x(t) to give a nonlinear differential equation with a delay. Define the
function f by

f(z) = minfe��z=� � 1; 1=c� 1g (2)

and the function h : 2 ! by

h(x; y) =
f(y); if x > �peqm or f(y) > 0

0; otherwise.
(3)

The initial conditions of the system are specified by a function
z0 2 C[��; 0]. Then, the dynamics and boundary conditions are

_z(t) =
h (z(t); z(t� � )) ; if t � �

h (z(t); z0(t� � )) ; otherwise
z(0) = z0(0): (4)

The conditional construction in (3) forces the price p to be nonnegative.
Here, (2) includes a saturation, which does not change the dynamics,
as we require z(t) � �peqm for all t, and if this constraint is satisfied
by the initial conditions then z never leaves this set. The saturation will
allow us to give the useful sector bound

��x2 � xf(x) � 0 for all x 2 (5)

where � > 0 is given by

� =
�(c� 1)

�c log c

This bound is the main feature of the dynamics that ensures stability.
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Fig. 1. System u = h(Ku + Qz ), which is equivalent to (4) when z =
Eu + Q z .

III. LOOP TRANSFORMATIONS

Define the integrator E : L2e ! W2e by

(Eu)(t) =

t

0

u(s)ds

and the delay Z : L2e ! L2e by

(Zu)(t) =
u(t� � ); if t � �

0; otherwise

Define the map K : L2e ! W2e �W2e by

K =
E

EZ

Also define the map Q : C[��; 0] ! W2e �W2e by

Q =
Q1

Q2

(Q1z)(t) = z(0); for all t � 0

(Q2z)(t) =
z(t� � ); if t 2 [0; � )

z(0); otherwise.

We also interpret for signals u and y the statement u = h(y) to mean
u(t) = h(y(t)) for all t. It is now easy to see that if u 2 L2e and
z0 2 C[��; 0] and we define

z = Eu+Q1z0

then

u = h(Ku+Qz0)

if and only if z satisfies the differential equation and boundary condi-
tions (4). This feedback system is illustrated in Fig. 1.

The feedback loop here is not scalar. However, we can simplify the
analysis by closing one of the loops first. To do this, we will assume
temporarily that Q1z0 = 0.

Suppose u 2 L2e and y 2 W2e, and z = Eu. In particular, this
implies that z(0) = 0. Then

u = h(Eu; y)

if and only if

_z(t) = h (z(t); y(t)) ; for all t � 0 (6)

This is simply a scalar differential equation. Since h is a discontinuous
function of its first argument, we interpret solutions of this equation
in the sense of Filippov [5]. Specifically, the important property is that
there is an associated differential inclusion for which the corresponding

Fig. 2. System u = �y, which is one of the two feedback loops in Fig. 1, and
is equivalent to (6).

Fig. 3. System u = �(EZu+w). This is equivalent to the dynamics (8).

set-valued operator is upper semicontinuous. The function y 2 W2e,
and this implies y is absolutely continuous. For any such y there exists
a unique z with z(0) = 0 satisfying (6), and this z is both absolutely
continuous and z 2W2e. Hence, we define a map � : W2e ! L2e by

u = �y

if and only if u is the unique solution of

u = h(Eu; y)

This corresponds to the feedback diagram shown in Fig. 2.
We now introduce an artificial input w to the system, to express the

dynamics (4) in terms of�. For any u 2 L2e andw 2W2e let z = Eu.
Then

u = �(EZu+ w) (7)

if and only if z and w satisfy

_z(t) =
h (z(t); z(t� � ) + w(t)) ; if t � �

h (z(t);w(t)) ; otherwise
(8)

This is illustrated in Fig. 3. Hence, in particular, if z0 2 C[��; 0] with
z0(0) = 0, then by choosing w = Q2z0 we have that u satisfies (7) if
and only if z = Eu satisfies (4).

Again, existence and uniqueness of solutions to (8) may be shown
using the results of [5]. In particular, on each interval [t; t + � ] (8)
is simply an ordinary differential equation of the form (6), and hence
solutions exist and are unique; existence for all positive time is then
shown by induction.

One further loop transformation is required, as illustrated in Fig. 4.
Here, we simply add and subtract Eu to one of the signals. We will
define the two inner loops to be � andG so that this feedback diagram
is equivalent to that in Fig. 5. First, define G = EZ � E.

Now, define � as follows. For any u 2 W2e and v 2 W2e, let
z = Eu. Then

u = �(Eu+ v)

if and only if

_z(t) = h (z(t); z(t) + v(t)) for all t � 0 (9)
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Fig. 4. System u = �(EZu � w), constructed from Fig. 3 by a loop trans-
formation.

Fig. 5. System u = �(Gu+w), equivalent to Figs. 3 and 4, and to (8).

Similarly to the previous cases, this system has a unique solution
z 2 L2e for all v 2W2e and, hence, it defines a map � : W2e ! W2e

such that

u = �v

if and only if u is the unique solution to u = �(Eu+ v).
The point of this loop transformation is that the map from w to u

shown in Fig. 3 is equal to that in Fig. 5, and this in turn is equivalent
to the system of differential equations (8). We summarize this in the
lemma that follows.

Lemma 1: For any u 2 L2e and w 2 W2e, the equation

u = �(Gu+ w) (10)

holds if and only if

u = �(EZu+ w)

and this holds if and only if z = Eu and w satisfy (8).
Proof: The proof follows immediately from the above system

definitions and the loop transformation result of [3, Th. III.3].
Thus, we can define the map � : W2e ! L2e by u = �w if u and

w satisfy (7).

IV. MAIN RESULTS

In this section, we prove the main results, that the system of differ-
ential equations (4) is asymptotically stable. The approach is as fol-
lows. First, we show input-output stability of (8), by constructing inte-
gral-quadratic constraints satisfied byG and � in Fig. 5. We then show
that this implies asymptotic stability. We first prove some preliminary
technical results. The sector bound implies the following.

Lemma 2: For all v 2 W2, we have
i) �v 2 L2 and k�vk � �kvk;

ii) h�v; �v + �vi � 0.
Proof: Let u = �v and z = Eu. Then, z satisfies z(0) = 0 and

the dynamics of (9). Also, since f has the above sector bound, we have

h(x; y)2 � ��yh(x; y); for all x; y 2

and, hence

_z(t)2 � �� (z(t) + v(t)) _z(t):

Therefore, for all T > 0 we have

kPT _zk2 � � �

T

0

(z(t) + v(t)) _z(t)dt

= � �

t

0

_z(t)v(t)dt�
�

2
z(T )2

� � �hPT _z; vi

:

Hence

kPTuk
2 � � �hPTu; vi

��kPTukkvk (11)

and, therefore, kPTuk � �kvk for all T > 0. This implies u 2 L2

and part i) of the desired result. Part ii) is then implied by (11).
Lemma 3: Consider the sequence a0; a1; a2; . . . 2 , and suppose

ak � 0 for all k. Suppose that for all � > 0 there exists n such that for
all k > j > n

ak � aj � �

then the sequence a0; a1; . . . converges.
Proof: The proof is straightforward and, hence, omitted.

Lemma 4: Suppose v 2 W2 and let z = E�v. Then

lim
t!1

z(t) = 0:

Proof: Suppose T2 > T1 > 0, and let H = PT � PT . Then,
as in the proof of Lemma 2

kH _zk2 =

T

T

_z(t)2dt

� � �

T

T

(z(t) + v(t)) _z(t)dt

= � �hH _z;Hvi �
�

2
z(T2)

2 � z(T1)
2

and, hence

z(T2)
2 � z(T1)

2 � 2kH _zkkHvk:

Now by choosing T1, T2 sufficiently large we can make kHvk as small
as we like and, hence, for any increasing sequence T0; T1; . . . the result
of Lemma 3 implies that the sequence z(Tk)2 converges as k ! 1.
Since z is continuous this implies z(t) tends to a limit as t ! 1. Let
z1 be this limit.

We now show that z1 = 0. To see this, notice that v 2 W2 and,
hence, v(t) ! 0 as t ! 1. Suppose for the sake of a contradiction
that z1 6= 0. Then, if z1 < 0 then for all t sufficiently large we have
z(t) + v(t) < 0 and, hence

_z(t) =h (z(t); z(t) + v(t))

= f (z(t) + v(t)) :

Similarly, if z1 > 0, then for all t sufficiently large we also have

_z(t) = f (z(t) + v(t)) :

Then, since f is continuous, _z(t) converges to a limit as t ! 1, and
since _z 2 L2 this limit must be zero. Hence, f(z1) = 0 and, therefore,
z1 = 0.

Lemma 5: For all v 2 W2, we have

h�v; _v +�vi � �v(0)2
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Proof: For convenience, let u = �v, z = Eu and r = z + v.
Then, we have z(0) = 0 and

_z(t) =
f (r(t)) ; if t 2 V

0; otherwise

where the set V is

V = t � 0 j z(t) >
�

�
log c or r(t) < 0 :

Now, z and r are continuous and, hence, if r(0) � 0, then V is the
countable union of disjoint open intervals

V = (a1; b1) [ (a2; b2) [ . . .

If r(0) < 0, then similarly

V = [0; b0) [ (a1; b1) [ (a2; b2) [ . . .

We claim now that for i � 1 we have r(ai) = 0. To see this, notice
that ai 62 V and hence z(ai) � (� log c)=� and r(ai) � 0. Therefore,
_z(ai) � 0 and, hence, z(ai+") � (� log c)=� for all sufficiently small
" > 0. Now, since ai + " 2 V we must therefore have r(ai + ") < 0
for all " > 0 sufficiently small and, therefore, r(ai) = 0. Now, we
have

h�v; _v +�vi = h _z; _ri

=

1

0

_z(t) _r(t)dt

=

V

f (r(t)) _r(t)dt:

If r(0) < 0, then we have

h�v; _v +�vi =

b

0

f (r(t)) _r(t)dt+
i�1

b

a

f (r(t)) _r(t)dt

and, hence

h�v; _v +�vi =

r(b )

r(0)

f(q)dq+
i�1

r(b )

r(a )

f(q)dq:

Now, since r(ai) = 0 we have

h�v; _v +�vi =

0

r(0)

f(q)dq+
i�0

r(b )

0

f(q)dq:

Now since f is sector-bounded, we have for all a 2

��a2 �

a

0

f(q)dq � 0:

The previous sum converges, since each term is negative and it is
bounded by the value of the inner-product, which is finite since
_z; _r 2 L2. Therefore

h�v; _v +�vi �

0

r(0)

f(q)dq

� �r(0)2

= �v(0)2

as desired. The same result holds for r(0) � 0 by a similar argument.

A. Input–Output Stability

We will prove input–output stability by constructing inte-
gral-quadratic constraints satisfied by G and �. First, define the
set of transfer functions A as follows. The function Ĝ 2 A if and only
if Gu 2 W2e for all u 2 L2e and there exists J0 2 L1[0;1), real
numbers �1; . . . ; �N and t1; . . . ; tN � 0 such that sĜ(s) = Ĵ(s),
where J is

J(t) = J0(t) +

N

i=1

�i�(t� ti)

We use the following result from [7, p. 71].
Theorem 6: Suppose � 2 , and � : j ! n�n is bounded

and measurable, and �(j!) is Hermitian for all ! 2 . Suppose the
transfer function Ĝ 2 A and � : L2e ! L2e, and the following
conditions hold.

i) For all � 2 [0; 1] and w 2 W2 and g 2 L2e there exists unique
v 2 W2e and u 2 L2e such that

v =Gu+ w

u =��v + g

and the resulting map (w; g) 7! (v; u) is causal.
ii) There exists � > 0 such that for all ! 2

Ĝ(j!)

I

�

(�(j!) + �(j!))
Ĝ(j!)

I
� ��I

where � is

�(j!) =
0 �j!�

j!� 0
:

iii) The map � is bounded on L2 and causal, and there exists 
 > 0
such that for all � 2 [0; 1], v 2 W2 and u 2 L2 such that
u = ��v we have

1

2�

1

�1

v̂(j!)

û(j!)

�

�(j!)
v̂(j!)

û(j!)
d!

+2�

1

0

u(t)T _v(t)dt � �
 jv(0)j2 :

Then, there exist �1; �2; �3 > 0 such that for all w 2W2 and g 2 L2e

the unique solution v 2 W2e, u 2 L2e to

v =Gu+ w

u =�v + g

satisfies for all T > 0

T

0

jv(t)j2 + ju(t)j2 dt��1kwk
2 + �2k _wk2 + �3

T

0

jg(t)j2 dt:

The following result shows that the system under consideration is
input–output stable.

Theorem 7: Suppose �� < �=2. There exists �1; �2 > 0 such that
for any w 2 W2, the unique u 2 L2e and v 2 W2e such that

v =Gu+ w

u =�v

satisfy

kvk2 + kuk2 � �1kwk
2 + �2k _wk2:
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Proof: We will apply Theorem 6 using � = �2=� and

�(j!) =
0 ��

�� �2� 4=�
:

To show condition i), define the map 	 : (v; u) 7! (w; g) by

w = v �Gu

g = � ��v + u
:

Then we need to show that 	 is invertible and has a causal inverse for
all � 2 [0; 1]. To show invertibility, first notice that for any w 2 W2e

there exists a unique u 2 L2e such that

u = ��(Gu+ w)

since the corresponding set of differential equations is simply (8) scaled
by �. Hence, we can define the causal map � : W2e ! L2e such
that �w = u, the unique solution corresponding to w. Then, 	�1 :
(v; u) 7! (w; g) is given by

w =(I +G�)(v +Gu)

g =��(I +G�)(v +Gu) + u:

Since G, � and � are causal, the map 	�1 is also causal.
Condition iii) holds, since � is causal, and it is bounded by

Lemma 2. Also, since with v 2 W2 and u 2 L2 we have

1

2�

1

�1

v̂(j!)

û(j!)

�

�(j!)
v̂(j!)

û(j!)
d! + 2�

1

0

u(t)T _v(t)dt

� �
 jv(0)j2

= �2�hu; vi � 2 +
4

�
hu; ui �

4

�
hu; _vi

= �2hu; �v + ui �
4

�
hu; u+ _vi:

Now, with u = ��v and � 2 [0; 1], this equals

� 2hu; �v + ui �
4

�
hu; u+ _vi

= �2h��v; �v + ��vi �
4

�
h��v; ��v + _vi

� �2�h�v; �v +�vi �
4�

�
h�v;�v + _vi

� �
4

�
�� jv(0)j2

� �
4

�
� jv(0)j2

where we used Lemmas 5 and 2.
Condition ii) holds, because

Ĝ(j!) =
e�j!� � 1

j!

and, hence, for all ! 2 , we have

Ĝ(j!)

I

�

(�(j!) + �(j!))
Ĝ(j!)

I

= �2�
4 cos(!� )

�
+

2� sin(!�)

!

< ��

where the latter inequality holds for some � > 0 if �� < �=2.

B. Asymptotic Stability

We now address asymptotic stability. We first show that we can
achieve a response corresponding to an initial condition applied to (4)
by applying an appropriate input to (8).

Lemma 8: Suppose q0 2 C[��; 0], and let q 2 W2e be the unique
solution to

_q(t) =
h (q(t); q(t� � )) if t � �

h (q(t); q0(t� � )) otherwise

q(0) = q0(0):

Then, there exists w 2W2e and T � 0 such that z = E�w satisfies

q(t) = z(t+ T ); for all t � 0:

Proof: First assume q0(��) < 0 and q0(0) > 0, and define
y 2 W2e parametrized by " and T by

y(t) =

�"t; if t < �q0(��)="

q0(��); if �q0(��)=" � t < T

q0(t� T � � ); if T � t < T + �

q(t� T � � ); otherwise

Now, let x = E�y. Then, we have x(0) = 0 and

_x(t) = h (x(t); y(t)) ; for all t � 0:

With this choice of y we can make x(�q0(��)=") arbitrarily small by
choosing " sufficiently large. For t 2 [�q0(��)="; T ] we have y(t) is
a negative constant, and hence _x(t) is a positive constant, and so x(t)
is linearly increasing on this interval. Hence, we can choose " > 0
sufficiently large and T > 0 such that

x(T ) = q0(0):

If the signs of q0(��) and q0(0) are not as before, then a similar ap-
proach may be used to construct a continuous y such that x(T ) =
q0(0). Now for t 2 [T; T + � ), we have

_x(t) = h (x(t); q0(t� T � � )) :

Now let w = PT+� (y � EZ�y) and z = E�w. Then

PT+�z =PT+�E�PT+� (y � EZ�y)

=PT+�E�(y � EZ�y)

=PT+�E�y

=PT+�x

where the second equation holds because E� is causal, and the third
equation holds since for any y 2 W2e we have �(y � EZ�y)= �y:
Then, w 2W2e and one may also verify that the function w is contin-
uous, in particular at time T+� . Hence, for t 2 [T; T+�) the function
z also satisfies

_z(t) = h (z(t); q0(t� T � � ))

and z(T ) = q0(0), since this is satisfied by x. Also, since z = E�w
we have for all t � �

_z(t) = h (z(t); z(t� � ) + w(t))

and hence for t � T + � we have

_z(t) = h (z(t); z(t� � ))

as desired.
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Asymptotic stability now follows from input–output stability, as
stated later. This is the main result of this note.

Theorem 9: If � satisfies

� <
�c log c

2(c� 1)

then the system is asymptotically stable. That is, for any q0 2 C[��; 0]
let q 2 W2e be the unique solution to

_q(t) =
h (q(t); q(t� � )) ; if t � �

h (q(t); q0(t� � )) ; otherwise

q(0) = q0(0):

Then

lim
t!1

q(t) = 0:

Proof: Lemma 8 implies that there exists w 2 W2 such that
z = E�w satisfies q(t) = z(t + T ) for all t � 0. Let u 2 L2e

and v 2 W2e be the unique solution to

v =Gu+ w

u =�v

then z = E�v. Using the definition of �, Theorem 7 now implies that
u 2 L2 and v 2W2e \L2, and hence _v = (Z � I)u+ _w and, hence,
v 2W2. Then, Lemma 4 implies the desired result.

V. SUMMARY

In this note, we have analyzed global stability of a single-source
single-link model of congestion control, and have shown both
input–output and asymptotic stability if

� <
�c log c

2(c� 1)

To do this, we made use of integral-quadratic constraints and the sector-
bounded property of the system. The gap between the condition for
linear stability that � < �=2 and that for nonlinear stability tends
to zero as the link capacity c approaches 1. It is currently unknown
whether the dynamics is globally stable for all � < �=2 for any ca-
pacity 0 < c < 1.
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Assigning Frequencies via Determinantal Equations: New
Counterexamples and Invariants

John Leventides

Abstract—The problem of arbitrary pole-zero assignment by fixed struc-
ture compensators has been addressed so far in terms of either necessary
or sufficient conditions. The strongest existing condition is based on the
rank of the differential of a related map on a degenerate controller and
holds true generically when the degrees of freedom of the compensator ex-
ceed the number of frequencies to be assigned ( for the output
feedback problem). The complete (nongeneric) solvability of the problem
is still open, even when complex controllers are considered. A simple nec-
essary solvability condition is that the linear map, appearing as a factor
of the main determinantal map, defining the assignment problem, is onto.
Here we examine the special problem of assignment of matrix pencil zeros
via diagonal perturbations and we present a new necessary and sufficient
condition for complex solvability in terms of a new invariant involving the
minors of this linear map. Based on this result, we demonstrate that for the
important case where the degrees of freedom of the controller are equal to
the number of frequencies to be assigned, the surjectivity of this linear map
although it is necessary, it is not sufficient for the solvability of the problem.

Index Terms—Algebraic geometry methods, feedback systems, linear
systems, pole assignment.
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