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Abstract

This paper presents a novel suboptimal policy for the
Dynamic Traveling Repairperson Problem (m-DTRP), a
problem requiring dynamic planning for a team of ve-
hicles. The suggested policy is adaptive, locally dis-
tributed, computationally efficient, and independent of
traffic load intensities. It is shown that the policy is
asymptotically optimal in the light traffic load case. Ex-
perimental results are provided to show that the perfor-
mance in the moderate and heavy load cases is compa-
rable to the best known policies.

1 Introduction

The problem of controlling a team of many entities such
as agents, robots, or vehicles has received much attention
from many fields. In this paper, we address the vehicle
routing problem (VRP). Traditionally, VRP has been a
problem in a static environment. In a static VRP, there
is no dynamic element in the problem structure in the
sense that all the relevant information is given and fixed
a priori. For example, the famous TSP (Traveling Sales-
person Problem) is a static environment VRP. However,
many real world problems are inherently dynamic: en-
vironments change over time while a team of vehicles is
routed to serve demands. For instance, many new ser-
vice demands may arrive randomly while vehicles move
around or serve prior demands. Furthermore, the service
time of each demand may vary or be random.

According to problem structures, e.g., static or dy-
namic, there are several classes of VRP. One of them is
the so-called m-DTRP (m-Dynamic Traveling Repairper-
son Problem), which was formulated by Bertsimas and
van Ryzin [3]. The m-DTRP considers the problem of
minimizing the average system time of demands in a dy-
namic environment. Due to the dynamic structure of the
problem, however, finding the optimal policy becomes a
challenging task. Even though many suboptimal poli-
cies for the m-DTRP have been suggested so far, most of
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them were shown to behave well only in the two extreme
cases: the light and heavy traffic load levels. The perfor-
mances of the suggested policies in the moderate traffic
load case, which are more important when considering
practical applicability, are not well known. Furthermore,
policies showing the best performance in the heavy load
case are rather computationally demanding or compli-
cated.

The main contribution of this paper is that it presents
a very simple and computationally efficient policy, which
is not only independent of traffic load levels but also com-
parable to the previously suggested policies in its perfor-
mance. Furthermore, the policy is adaptive: it is inde-
pendent of the number of vehicles, the network size, the
service region area, and environment changes. Also, the
policy is locally decentralized in the sense that it only re-
quires communication between neighboring vehicles. Al-
though this paper does not prove that the suggested pol-
icy is optimal over all traffic load levels, it is proved that
the suggested policy is asymptotically optimal in the light
traffic load level. Then it is shown by experiments that
the policy also works well in the moderate and heavy
traffic load levels.

2 Problem Formulation

The Dynamic Traveling Repairperson Problem (DTRP)
was first formulated and studied comprehensibly by Bert-
simas and van Ryzin [2, 3]. The m-DTRP problem can
be formulated as follows.

Let the environment A ⊂ R
d be a convex, compact

set with volume A. The case of d = 2, i.e., the planar
environment, is only considered in this paper. The re-
sult of this paper, however, is easily extensible to higher
dimensional environments.

Suppose that there are m vehicles in the environment
A and they can move to serve demands arriving to A.
Suppose also that the vehicles are identical and each ve-
hicle can move at a constant speed v and has unlimited
fuel and target-servicing capacity. Let

p(t) = (p1(t), . . . , pm(t)) ∈ Am

refers to the locations of the m vehicles at time t. A
demand is served by a vehicle that travels to it. Upon
arrival to a demand, the vehicle spends a random amount
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of on-site service time, which follows a given distribution
function ψ. The first and second moments of the distri-
bution function ψ are finite and are denoted by s̄ and s2,
respectively.

Demands arrive to the environment A following a Pois-
son process with rate λ. Upon arrival, each demand as-
sumes a location in A according to a given spatial distri-
bution function ϕ : A → R+, independently. The spatial
density ϕ is assumed normalized so that

ϕ(A) ,

∫

A
ϕ(q) dq = 1.

We will consider static state-feedback control policies,
which are maps from the current state x(t) of the sys-
tem to the velocities of all the vehicles ṗ(t). The sets of
policies and states of the system can be defined in many
different ways. We will define them precisely in section 5.

Given a policy µ, let Tj be the total amount of time
that the j-th arrived demand spends in the system, i.e.,
the waiting time before service plus on-site service time.
If the system is stable, i.e., the number of demands wait-
ing to be served is not increasing to infinity over time,
then we can define the steady-state system time under
the policy µ as

Tµ , lim
n→∞

1

n

n
∑

j=1

E[Tj ].

The objective of the m-DTRP problem is to find an op-
timal policy, which minimizes the steady-state system
time.

This paper focuses on such policies that make decisions
only when a vehicle is idle or completes the service of a
demand. In other words, once a vehicle is assigned a
demand by a policy, the vehicle moves to the demand
and serves it. Also, a policy does not assign a demand
to multiple vehicles. Once a policy assigns a demand to
a vehicle, then the other vehicles never have the demand
as their targets.

3 Preliminaries

In this section, we introduce two important problems,
the continuous multi-median problem and the Euclidean

traveling salesperson problem. They play a crucial role in
the m-DTRP problem.

3.1 The continuous multi-median problem

The formulation of the continuous multi-median problem
in this subsection is almost the same as the one in [5].
Suppose that a set A ⊂ R

d is convex and compact. Sup-
pose also that m distinct points p = (p1, . . . , pm) ∈ A
and a spatial probability density ϕ on A are given. Let

a random point q be drawn according to ϕ. Then, define
a function Hm(p,A) as follows:

Hm(p,A) , E

[

min
i∈{1,...,m}

‖pi − q‖
]

=

m
∑

i=1

∫

Vi(p,A)

‖pi − q‖ϕ(q) dq

where Vi(p,A) is called the Voronoi cell of the generator
pi. The Voronoi cell of the generator pi, Vi(p,A), is the
set of points in A such that every point in Vi(p,A) is
closer to pi than to any other pj for j 6= i.

The collection V(p,A) , (V1(p,A), . . . ,Vm(p,A)) is
called the Voronoi partition of the set A generated by
the m points p. Therefore, each set consisting of finite
points in A has its own Voronoi partition. From the
above definition, Hm(p,A) is the expected distance from
a random point on A to the closest point in p. Therefore,
Hm(p,A) depends on p and the density function ϕ.

Given a density function ϕ on A, the m-median of
the set A is defined as follows:

p∗m(A) = arg min
p∈Am

Hm(p,A).

In other words, the m-median of the set A, p∗m(A),
is the global minimizer of Hm(p,A) as a function of
p. The continuous multi-median problem is to find the
global minimizer p∗m(A) given A and ϕ. Let H∗

m(A) =
Hm(p∗m(A),A) be the global minimum of Hm. It is
known that the discrete version of the m-median problem
for d ≥ 2 is NP-hard [8].

3.2 The Euclidean traveling salesperson prob-
lem

The Euclidean traveling salesperson problem (TSP) has
received much attention from various fields. It is known
that TSP is an NP-hard problem.

TSP can be formulated as follows: Suppose that a set
D of finite points in R

d is given. The objective is to find
the minimum length tour such that every point in D is
visited at least once.

The Euclidean TSP problem has the following inter-
esting asymptotic property. Let X1, . . . ,Xn be inde-
pendently and uniformly distributed random points in
a square of area A. Define Ln as the optimal tour length
through the n points. Then there exists a constant βTSP

such that

lim
n→∞

Ln√
n

= βTSP

√
A

with probability one [7]. It is known that βTSP ≈
0.712 [6].

4 Prior Work

Bertsimas and van Ryzin were the first to formulate the
m-DTRP problem and suggest several policies [2, 3].
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In [2], they introduced the single vehicle DTRP problem
and presented several policies including an asymptoti-
cally optimal policy in the light load case. Because it is
difficult to find an optimal policy in the heavy load case,
they suggested several policies for the heavy load case
and proved that some of them show constant factor sub-
optimal performances to a lower bound of the optimal
system time. They also illustrated by simulation that
the Nearest Neighbor (NN) policy shows the best
performance among the suggested policies in the single
vehicle case [2]. Roughly speaking, the NN policy directs
each vehicle to the nearest unassigned demand upon ser-
vice completions. In [3], they extended the single vehi-
cle problem to the multiple vehicles problem (m-DTRP),
and performed similar analysis as in [2].

4.1 Lower bounds

Bertsimas and van Ryzin provided two lower bounds of
the optimal steady-state system time for the m-DTRP
problem that are useful in the light and heavy load
cases [2, 3]. Before presenting the lower bounds, it is
convenient to define the following quantity, which cap-
tures the notion of traffic intensity or traffic load level.

The traffic load level, which is denoted as ρ, is defined
as ρ = λs̄

m . If ρ is close to zero, then it means that the
traffic load is light. On the contrary, if ρ is close to one,
then it means that the traffic load is heavy. If ρ is greater
than or equal to one, then the system is unstable, i.e.,
the number of demands waiting in the system increases
to infinity as time grows.

The lower bounds of the optimal steady-state system
time in the light and heavy load cases are given as follows.
In the light load case (ρ → 0+), the following is satisfied:

T ∗ ≥ H∗
m(A)

v
+ s̄ (1)

where H∗
m(A) is the optimal value of the function

Hm(p,A) as defined previously. In the heavy load
case (ρ → 1−), the following is satisfied:

T ∗ ≥ γ2 λA

m2v2(1 − ρ)2
− s̄(1 − 2ρ)

2ρ
(2)

where γ ≥ 2
3
√

2π
≈ 0.266. The lower bound (1) is known

to be tight in the light load case: Bertsimas and van
Ryzin suggested an asymptotically optimal policy for the
case. The lower bound (2) is not known to be tight.

The lower bound (1) is given as the sum of the expected
on-site service time and the expected minimum time for
a demand to be reached by a server waiting at the near-
est median location on A. In other words, this lower
bound says that the optimal system time is achieved if
it is possible that each server can be located at the m-
median location of A before any new demand arrives in
the corresponding Voronoi cell.

The lower bound (2) indicates an interesting asymp-
totic behavior of the optimal system time as the traffic
intensity increases. The optimal system time increases
at least as fast as 1

(1−ρ)2 . In fact, it is known that the

system time of many stable policies in the heavy load
case is approximately given as

Tµ ≈ γ2
µ

λA

m2v2(1 − ρ)2
(3)

where γµ is a constant depending only on the policy µ [3].

4.2 An optimal policy in the light load case

In [2, 3], Bertsimas and van Ryzin presented an asymp-
totically optimal policy in the light load case, which is
called the Stochastic Queue Median (SQM) policy.

The mSQM Policy
Locate one vehicle at each of the m-median lo-
cations of the environment A. When demands
arrive, assign each of them to the nearest me-
dian location and its corresponding vehicle. Let
each vehicle serve its assigned demands in First-
Come First-Served (FCFS) manner, returning
to its median after each service completion.

It is intuitively plausible that the mSQM policy
achieves the lower bound (1) asymptotically in the light
load case. In other words, TmSQM → T ∗ as ρ → 0+. This
convergence result was shown in [3]. Although this pol-
icy achieves the lower bound asymptotically in the light
load case, it quickly destabilizes the system as the traffic
load increases, i.e., ρ → 1−.

4.3 A good policy in the heavy load case

It is difficult to analyze the m-DTRP problem in the
heavy load case and the lower bound in (2) is not known
to be tight. A policy showing the asymptotically best
performance in the heavy load case, the Modified G/G/m
policy, was presented in [3].

The Modified G/G/m Policy
For some fixed integer k ≥ 1, divide A into k
subregions of equal measure using radial cuts
centered at a common depot (suppose that a
common depot is at the median of A), i.e., form
k wedges of area A/k. Within each region, form
sets of demands of size n/k and, as sets are
formed, deposit them in a queue. Service the
queue in FCFS manner with the first available
vehicle by following optimal TSP tours connect-
ing all the demands in the set starting and end-
ing at the depot. Optimize over n.

In [3], it is shown that

TModG/G/m

T∗
≤ β2

TSP

2γ2
as ρ → 1−
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where γ was given in (2). This result is the best known
constant-factor approximation for the system time in the
heavy load case. In [4], it is conjectured that the Modified
G/G/m policy is, in fact, asymptotically optimal in the
heavy load case.

4.4 The sRH and mRH policies

Frazzoli and Bullo suggested another policy, the Reced-
ing Horizon Median/TSP policy [5]. The policy is de-
centralized, spatially distributed, and is provably locally
optimal in the light load case. Also, it achieves the same
performance as the best known policies in the single ve-
hicle, heavy load case.

The sRH Policy
While the set of demands is empty, move to-
ward p∗1(A) if the vehicle is not located in
p∗1(A), otherwise stop. While the set of de-
mands is not empty, do the following: (i) for
a given η ∈ (0, 1], find a path that maxi-
mizes the number of demands reached within
τ = max{diam(A), ηLTSP } time units; (ii) ser-
vice this optimal fragment from the current lo-
cation. Repeat.

For multiple vehicles case, Frazzoli and Bullo extended
the sRH policy to the mRH policy.

The mRH Policy
For all i ∈ {1, . . . ,m}, the i-th vehicle computes
its Voronoi cell Vi(p,A), where p = (p1, . . . , pm)
is the m locations of vehicles. Then, executes
the sRH(Vi(p,A)) policy with the single follow-
ing modification; while the vehicle is servicing
demands in an optimal fragment on Vi(p,A), it
will shortcut all demands already serviced by
other vehicles.

Frazzoli and Bullo showed that the mRH policy is lo-
cally asymptotically optimal in the light load case. How-
ever, no analytic result was available on the mRH policy
in the heavy load case, hence experimental results were
given [5]. Note that the mRH policy assumes that each
vehicle can determine its Voronoi cell and the locations
of all outstanding events in it in real time.

5 The ADP Policy

Even though many good policies for the m-DTRP prob-
lem have been suggested so far, they are not guaranteed
to show good performances in the moderate traffic load
case, which is more important than the cases of light and
heavy load when considering practical applicability. Fur-
thermore, many policies are computationally demanding.

In this section, we present a novel policy, which is
very simple and applicable regardless of traffic load lev-
els. The policy is also spatially distributed and adaptive
to environment changes. The computation requirement
is not demanding and the amount of information that
need to be communicated between neighboring vehicles
is not much. The main idea of the policy is that each
vehicle estimates the waiting times of its neighboring de-
mands approximately and makes decision based on the
estimates. This idea can be well phrased in the context
of the Approximate Dynamic Programming.

The Dynamic Programming has received much atten-
tion not only as its own academic interest but also as
a problem-solving principle for many applications. In
many practical cases, however, it is hard to apply dy-
namic programming recursion directly. In order to cir-
cumvent these difficulties, the approximate dynamic pro-
gramming and Q-factor is often employed [1].

The new policy which we present in this section is
based on approximating the Q-factor. Roughly speaking,
Q-factor Q(x, u) is the sum of the current cost incurred
by an action u under a state x and the optimal cost-to-
go thereafter. If we can compute the optimal cost-to-go
of each state for the m-DTRP problem, then we may be
able to compute the exact Q-factor. However, we are only
able to approximate Q-factor because it is almost impos-
sible to compute the exact optimal cost-to-go. The new
policy in this paper will use the finite-horizon nearest-
neighbor policy for approximating the Q-factor of each
state and action pair.

Before the policy is suggested, the following definitions
are introduced to define system states and possible poli-
cies for the m-DTRP. In the following definitions, time
notation t is omitted, e.g., D = D(t), and so on.

Definition 1. Let D be the set of demands that are being

served currently or waiting to be served, i.e., all demands

still in the system. Let m be the number of vehicles. We

define oi to be the target demand of vehicle i, for all

i = 1, . . . ,m as follows:

oi =











d if vehicle i is heading toward or

serving a demand d,

idle if vehicle i is idle.

The target demand of each vehicle will be a part of the
system state.

Definition 2. Let m be the number of vehicles. We de-

fine ri to be the elapsed service time of vehicle i for all

i = 1, . . . ,m as follows:

ri =











s if vehicle i has been serving a

demand for s time units,

noserving if vehicle i is not serving a demand.

The elapsed service time of each vehicle will also be a
part of the system state.
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Definition 3. The state x of the system is defined as

x = (p,D, (o1, . . . , om), (r1, . . . , rm)) ∈ Am × 2A × (A ∪
{idle})m × (R+ ∪ {noserving})m, where p = (p1, . . . , pm)
refers to the locations of the m vehicles.

Note that the state of the system retains all the in-
formation about the system except the arrival times of
all the demands in D. Because demand arrival follows
a Poisson process, state transitions are independent of
the prior demand arrival times due to memoryless prop-
erty of Poisson processes, assuming that policies do not
consider the order of demand arrivals. Note that, in the
m-DTRP problem, we do not care the order of demand
arrivals because the objective function considers only the
mean of system time, not the variance.

With the above definitions, we consider policies defined
as follows.

Definition 4. A stationary state-feedback policy is a

map µ : Am×2A×(A∪{idle})m×(R+∪{noserving})m →
Am, which determines the destination points of all the

idle vehicles at every time. In other words, µ(x) ∈ Am is

the vector of the destination points of all the m vehicles.

Now, we define a set consisting of the nearest unas-
signed demands for each vehicle.

Definition 5. Let U be the set of demands not assigned

as targets to any vehicle, i.e.,

U =
{

d ∈ D | d 6= oi ∀i = 1, . . . ,m
}

.

For any positive integer l ∈ Z+, let U i
l be the set of the

l nearest demands from the vehicle i in U for all i =
1, . . . ,m. If |U | < l, then we let U i

l = U . In other words,

U i
l can be defined inductively as follows:

{

U i
0 = ∅,

U i
j = U i

j−1 ∪
(

arg mind∈U\Ui
j
‖d − pi‖

)

, j = 1, . . . , l.

We assume that the argmin above can have at most
one element.

Now, we introduce a new policy called the ADP policy.
Roughly speaking, the ADP policy computes the total
sum of waiting times of k demands, which are visited by
a unit speed vehicle. In particular, the approximate Q-
factor Q̃(x, u) is defined to be the total sum of waiting
times of a set of k demands provided that the k demands
are visited in the nearest order except the first demand
u. Finally, the policy picks up the demand u which has
the least total sum of waiting times assuming that there
is no new demand arrival until k demands are visited.
Note that the ADP policy tries to consider the waiting

time rather than the traveling distance. This is important
because the objective of the m-DTRP is to minimize the
expected waiting time, hence solving the Euclidean TSP,
which minimizes the total distance, is not enough.

The ADP Policy
Let k and l be fixed positive integers. Initially,
locate the m vehicles to the m-median locations
p∗m(A) of the environment A. When demands
arrive, dispatch the nearest idle vehicle, if any,
to the demand. After completing the service
of any demand, each vehicle does the following:
Suppose that the vehicle is the i-th vehicle. If
U is empty, move to its own median location
(p∗m(A))i. Otherwise, compute the approximate
Q-factor Q̃i(x, u) for all u ∈ U i

l and move to

the minimizer u∗ ∈ arg minu∈Ui
l
{Q̃i(x, u)} and

serve it, where Q̃i(x, u) is given as

Q̃i(x, u) , M‖pi − u‖+

M−1
∑

j=1

(M−j)‖dj+1 − dj‖

where M = min{k, |U |}, pi is the vehicle loca-
tion, and dj is defined recursively as d1 = u,
dj+1 ∈ arg mind∈U\{d1,...,dj}‖d − dj‖. Optimize
over k and l.

The ADP policy considers the l nearest demands for
possible choices for the next target. The policy can be
understood as a receding horizon policy. For each possi-
ble nearest demand, the policy estimates the total time
that would affect the cost directly by choosing the de-
mand. The policy uses the NN policy to estimate the
total time by summing up all the waiting times of k de-
mands visited by the nearest manner. In other words, k
determines the amount of receding demands that are to
be considered.

The following theorem says that the ADP policy is
asymptotically optimal in the light load case, i.e., the
performance is identical to the mSQM policy. The proof
is similar to the proof of Theorem 4.3 of [5], hence is
omitted due to space constraint.

Theorem 6. The ADP Policy is asymptotically optimal

in the light load case, i.e.,

TADP → T ∗ as ρ → 0+

Since it is hard to analyze the performance of the ADP
policy except in the light load case, experimental results
in the moderate and heavy load cases are presented in
the next section.

6 Experimental Results

In [2, 4], the nearest neighbor (NN) policy showed a per-
formance comparable to the best known policy over all
traffic load ranges, even though it is not an asymptoti-
cally optimal policy in the heavy traffic load case.

The system time of a policy µ in the heavy load case
is known to follow the approximation (3), hence the con-
stant γµ in (3) determines the heavy traffic load perfor-
mance of a policy µ. By simulation results, it was shown
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that γNN ≈ 0.64 and γTSP ≈ 0.51, where TSP represents
the best known policy in the heavy load case [4].

In this section, experimental results showing the per-
formances of the NN policy and the ADP policy are pre-
sented. Simulations were performed for the single vehi-
cle and three vehicles cases varying the traffic intensity
ρ. All the vehicles were set to move at unit speed and
the environment A was defined to be a square of area
A = 25. The on-site service times were randomly gener-
ated by exponential random variables, whose mean s̄ was
varied to simulate various traffic intensities.

Since it was proved that the ADP policy is asymptot-
ically optimal in the light load case, experiments were
performed for the moderate and heavy load cases. For
the ADP policy, experiments were performed varying the
k values. The value of l was set to be equal to k for all
the cases. However, these used values of k and l are not
optimal, hence the performance of the ADP policy can
be better than the experimental results presented here.

Figures 1 and 2 show the average system times for the
single vehicle and multiple vehicles cases, respectively,
where ‘LB’ stands for the lower bounds (1) and (2) pre-
sented in [2, 3]. From the experimental results, it can
be observed that the ADP policy always shows better
performances than the NN policy.

Using the experimental results, the constant γADP can
be estimated by (3) and is given as γADP ≤ 0.57. There-
fore, the performance of the ADP policy in the heavy
traffic case is close to the one of the best known policy.
The experimental results indicate that the ADP policy
shows a performance comparable to the best known one.
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Figure 1: The average system times of the NN and ADP
policies for the single vehicle case

7 Conclusion

We presented a novel policy, the ADP policy, for the
m-DTRP. The ADP policy has many advantages over
previously suggested ones. First of all, it can be applied
universally regardless of traffic load intensities. Secondly,
it is locally decentralized and highly adaptive to environ-
ment changes. Finally, it requires much less computation
than the best known ones. In particular, many of the

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

ρ

S
ys

te
m

 T
im

e

Performance of the NN and ADP policies

 

 

NN
ADP
LB

Figure 2: The average system times of the NN and ADP
policies for the three vehicles case

previously suggested policies require the solution of the
TSP (Traveling Salesperson Problem) at every decision
moment in real time.

We showed that the ADP policy is asymptotically op-
timal in the light load case. Experimental results were
provided to illustrate the performance in the moderate
and heavy load cases. Over all traffic load intensities,
the ADP policy was shown to be superior to the NN pol-
icy, which is known to show a performance close to the
best known ones.
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