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Abstract We consider a control system in which sensor data is transmitted
from the plant to a receiver over a communication channel, and the receiver
uses the data to estimate the state of the plant. Using a feedback policy to
choose when to transmit data, the goal is to schedule transmissions to balance
a trade-off between communication rate and estimation error. Computing
an optimal policy for this problem is generally computationally intensive.
Here we provide a simple algorithm for computing a suboptimal policy for
scheduling state transmissions which incurs a cost within a factor of six of
the optimal achievable cost.

1 Introduction

We consider a control system in which sensor data is transmitted from the
plant to a receiver over a communication channel, and the receiver uses the
data to estimate the state of the plant. Sending data more frequently leads to
increased use of limited communication resources, but also allows the average
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estimation error to be reduced. Conversely, of course we may reduce the use
of the channel if we are willing to allow larger estimation errors.

We consider feedback policies for choosing when to transmit data. That
is, instead of simply choosing a transmission rate, at the plant measurements
are used to decide whether to transmit data to the controller. This type
of measurement is called Lebesgue or event-based sampling in [2]. Several
other authors have considered both control and filtering problems using such
sampling schemes, in particular [2, 8, 28, 7, 26, 18, 9].

The plant is modeled by a discrete-time linear system, and at each time
step the channel allows exact transmission of the state. The cost function of
interest in this problem is a weighted sum of the estimation error and the
transmission rate. The optimal controller for a given weight then lies on the
Pareto-optimal trade-off curve, and choosing the weight allows one to select
the trade-off between rate and error.

For this cost function, the problem of finding the optimal policy was con-
sidered in [27], where the authors show that the problem of computing an
optimal scheduling policy can be addressed in the framework of Markov de-
cision processes, and consequently the value iteration algorithm can be used
to compute an optimal policy. Although this provides an algorithm for com-
puting an optimal policy, the computation required to compute such a policy
quickly becomes prohibitive as the system’s state dimension increases.

Since the optimal policy is very difficult to compute, we consider approxi-

mately optimal policies. Specifically, the main result of this paper is to give
a simple algorithm for computing a policy, and show that this policy is guar-
anteed to achieve a cost within a factor of six of the optimal achievable cost.
This result is Theorem 1 below.

Approximation algorithms have been widely used for addressing computa-
tionally intractable problems. While some NP-hard problems may be approx-
imated to arbitrary accuracy, others may not be approximated within any
constant factor. It is therefore extremely promising that the particular prob-
lem of rate-error trade-off considered in this paper is approximable within a
constant factor of six. It is not currently known whether policies achieving
better approximation ratios may be efficiently obtained.

Finally, due to space constraints, all proofs have been ommitted from this
paper. Proofs of the theorems in this paper can be found in [6].

2 Problem formulation

Here we will present the problem that will be considered throughout this
paper. In the following subsection, it will be shown how this problem is a
generalization of the problem of networked estimation.

We have dynamics
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et+1 = (1 − at)Aet + wt e0 = 0, (1)

where A ∈ R
n×n, and for each t ∈ N the state is et ∈ R

n and the action is at ∈
{0, 1}. Here w0, w1, . . . is a sequence of independent identically distributed
Gaussian random vectors, with wt ∼ N (0, Σ), where Σ ≻ 0. Define the
function r : R

n × {0, 1} → R to be the cost at time t, given by

r(et, at) = (1 − at)e
T
t Qet + λat (2)

where Q ≻ 0 and λ > 0. We would like to choose a state-feedback control
policy µ : R

n → {0, 1} to make the average cost incurred by the policy µ
small. Here the average cost J is defined as

J(µ) = lim sup
N→∞

1

N

N−1
∑

t=0

E
(

r(et, µ(et)
)

(3)

See [1] for background on this choice of cost. Here, each at is determined ac-
cording to the static state-feedback policy at = µ(et), and then the sequence
e0, e1, . . . is a Markov process. Therefore, the problem of choosing a policy
which minimizes the cost J is can be addressed using the theory of Markov
decision processes. The cost J given by equation (3) is called the average

per-period cost, and we focus specifically on the problem of choosing a policy
to minimize this. For convenience, define the space of policies

P = { f : R
n → {0, 1} | f is measurable }

Then the above problem can be stated as follows.

Problem 1 (Rate-Error Trade-off). Given A, Σ ≻ 0, Q ≻ 0, λ > 0, and
γ > 0, find a state feedback policy µ ∈ P such that

J(µ) ≤ γ

Minimizing the cost J balances a trade-off between the average size of et,
as measured by the quadratic form defined by Q, and the frequency with
which et is reset to the level of the noise by setting at = 1. The problem of
computing an optimal policy was considered in [27], and a numerical proce-
dure for finding such a policy was given. However, the computation required
to compute an optimal policy increases rapidly with the state dimension.
In the following section we present an easily computable and easily imple-
mentable policy for this problem which incurs a cost within a provable bound
of the optimal achievable cost. Specifically, we focus our attention on the set
of problem instances where Q and A are such that AT QA−Q ¹ 0 and Q ≻ 0.
In particular, this implies that ρ(A) ≤ 1 and the system is therefore at least
marginally stable. We show that in this case there is a simple policy which
always achieves a cost within a factor of six of the optimal cost. It is worth
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noting that, in general, both the policy which always transmits and the policy
which never transmits may achieve cost arbitrarily far from optimal.

2.1 Application to Networked Estimation

Suppose we have the dynamical system

xt+1 = Axt + wt x0 = 0

yt = atxt

where for each t ∈ N the state xt ∈ R
n and at ∈ {0, 1}. As above, w0, w1, . . . is

a sequence of independent identically distributed zero mean Gaussian random
vectors with covariance Σ ≻ 0. We have a per-period cost of

c(xt, at, bt) = (1 − at)(xt − bt)
T Q(xt − bt) + λat (4)

and we would like to choose two controllers. The first is the function µ :
R

n → {0, 1}, and the second is the sequence of functions φt indexed by t
where φt : {0, 1}t × R

nt → R
n. These are connected according to

at = µ(xt)

bt = φt(a0, . . . , at−1, y0, . . . , yt−1)

Again, we are interested in the cost

J(µ, φ0, φ1, . . . ) = lim sup
N→∞

1

N

N−1
∑

t=0

E
(

r(xt, at, bt)
)

The interpretation is shown in Figure 1, where the linear dynamics xt+1 =
Axt+wt is denoted by G. The dashed lines indicate a communication channel.
At each time t the transmitter µ chooses whether to transmit the signal
xt to the receiver φ. Each transmission costs λ. The receiver would like to
estimate the state xt of G, and choose bt to minimize the error xt − bt as
measured by the quadratic form Q. The cost r is used to compute the trade-
off, parametrized by λ, of estimation error against frequency of transmissions.

w G
x

µ

a

y

θ b

Fig. 1 Networked Estimation.
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The estimator φ considered in Xu and Hespanha [27] is as follows. Let
bt = φt(a0, . . . , at−1, y0, . . . , yt−1), and define φ by the realization

bt+1 = (1 − at)Abt + atAxt b0 = 0

If the random variables a0, a1, . . . are independent of x0, x1, . . . then this is
the time-varying Kalman filter, and bt is the minimum mean square error
estimate of xt given measurements y0, . . . , yt−1.

We now have the dynamics

[

xt+1

bt+1

]

=

[

A 0
atA (1 − at)A

] [

xt

bt

]

+

[

I
0

]

wt

We change coordinates to

[

et

ft

]

=

[

I −I
0 I

] [

xt

bt

]

to give
[

et+1

ft+1

]

=

[

(1 − at)A 0
atA A

] [

et

ft

]

+

[

I
0

]

wt

In these coordinates, the cost c specified in equation (4) is exactly equal to
the cost (2), and e evolves according to the dynamics (1). With this choice
of φ therefore the optimal choice of µ is found by solving the Rate-Error

Trade-off problem.

3 Main results

In this section we present the main result of this paper, which is that for
a slightly restricted version of the Rate-Error Tradeoff problem, there
is a simple policy which achieves cost within a constant factor of optimal.
Define for convenience

Jopt = inf
µ∈P

(

lim inf
N→∞

1

N

N−1
∑

t=0

E
(

r(et, µ(et)
)

)

The policy that we consider is a simple quadratic threshold policy. The main
result of this paper is as follows.

Theorem 1. Suppose A ∈ R
n×n, Q ≻ 0, Σ ≻ 0, and AT QA − Q ¹ 0. Then

there exists a unique matrix M ∈ S
n satisfying

1

1 + trace(ΣM)
AT MA − M +

Q

λ
= 0 (5)
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Furthermore, define the policy µ by

µ(e) =

{

0 if eT Me ≤ 1

1 otherwise
(6)

For this policy, the cost satisfies

J(µ) ≤ 6Jopt (7)

Proof. The result follows immediately from Theorems 2 and 3 which are
proved below.

Note that implementation of the policy µ requires an algorithm for com-
puting the unique solution M of equation (5). It is easily shown that this
equation can be solved by performing a bisection search and solving a se-
quence of Lyapunov equations.

4 Bounds for the Communication Cost

4.1 Upper bounds

We are now ready to the upper bound on J(µ) is obtained, where µ is the
policy in (6). The following lemma provides the upper bound and also shows
that one may use semidefinite programming, combined with a line search, to
find policies that minimize this upper bound.

Lemma 1. Suppose M º 0 and H º 0 are symmetric positive semidefinite

matrices, and α ∈ R. If

AT HA − H + Q − αM ¹ 0

(λ − α)M − H ¹ 0

α − λ ≤ 0

α ≥ 0

(8)

Then the policy

µ(e) =

{

0 if eT Me ≤ 1

1 otherwise

achieves a cost which satisfies

J(µ) ≤ trace(ΣH) + α

We now make use of this result to provide an explicit upper bound.
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Theorem 2. Suppose A ∈ R
n×n, Q ≻ 0, Σ ≻ 0 and AT QA−Q ¹ 0. Let M

be the unique solution to

1

1 + trace(ΣM)
AT MA − M + Q/λ = 0

Then the policy

µ(e) =

{

0 if eT Me ≤ 1

1 otherwise

achieves

J(µ) ≤
2λ trace(ΣM)

1 + trace(ΣM)

4.2 Lower bounds

For the class of instances of Rate-Error Tradeoff with A and Q satis-
fying AT QA−Q ¹ 0, we can show that the policy µ of equation (6) achieves
a cost within a constant factor of optimal. To complete the presentation of
the main result of this paper, we now determine a lower bound on Jopt which
guarantees that for this class of instances,

J(µ) ≤ 6Jopt

This result can be established using the lemmas below, the proofs of which
can be found in [6].

Lemma 2. Suppose Y º 0 and q ∈ R
n, and w ∼ N (0, Σ) is a Gaussian

random vector. Let f be the random variable

f = (q + w)T Y (q + w)

Then

Ef = qT Y q + trace(ΣY ) (9)

E(f2) = (qT Y q)2 + 4qT Y ΣY q +
(

trace(ΣY )
)2

(10)

+ 2 trace(ΣY ΣY ) + 2qT Y q trace(ΣY )

and further

E(f2) ≤ (qT Y q)2 + 6qT Y q trace(ΣY ) + 3
(

trace(ΣY )
)2

Lemma 3. Suppose there exists a positive semidefinite matrix C º 0 and

s ∈ R such that
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(

s − 6 trace(CΣ)
)

AT CA − sC + Q º 0

s2 ≤ 4λ

AT CA − C ¹ 0

(11)

Then for all policies µ ∈ P

J(µ) ≥ s trace(CΣ) − 3
(

trace(CΣ)
)2

Lemma 4. Suppose there exists M º 0 such that

1

1 + trace(ΣM)
AT MA − M + Q/λ = 0

AT MA − M ¹ 0

Then for all policies µ ∈ P we have

J(µ) ≥
λ trace(ΣM)

3
(

1 + trace(ΣM)
)

Lemma 5. Suppose Q ≻ 0 and AT QA−Q ¹ 0, and α ∈ R satisfies 0 ≤ α <
1. Then there exists a unique M ∈ S

n such that

αAT MA − M + Q = 0 (12)

and the matrix M is positive definite and satisfies

AT MA − M ¹ 0

Finally, the lemmas above can be combined to obtain the following theo-
rem.

Theorem 3. Suppose A ∈ R
n×n, Q ≻ 0, Σ ≻ 0 and AT QA−Q ¹ 0. Let M

be the unique solution to

1

1 + trace(ΣM)
AT MA − M + Q/λ = 0

Then for all policies µ ∈ P we have

J(µ) ≥
λ trace(ΣM)

3
(

1 + trace(ΣM)
)
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5 Conclusions

In this paper we considered a simple, yet fundamental estimation problem
involving balancing the trade-off between communication rate and estimation
error in networked linear systems. This paper extended work of [27], where
it was shown that this problem can be posed as a Markov decision process.
Here we show that there is a simple, easily computable suboptimal policy for
scheduling state transmissions which incurs a cost within a factor of six of
the optimal achievable cost.
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9. O. C. Imer and T. Başar. Optimal estimation with limited measurements. In Proceed-

ings of the IEEE Conference on Decision and Control, pages 1029–1034, 2005.
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12. O. C. Imer and T. Başar. To measure or to control: Optimal control with scheduled
measurements and controls. In Proceedings of the American Control Conference, 2006.

13. M. Mazo Jr. and P. Tabuada. On event-triggered and self-triggered control over sen-

sor/actuator networks. Proceedings of the 47th IEEE Conference on Decision and

Control, 2008.
14. E. Kofman and J. Braslavsky. Level crossing sampling in feedback stabilization under

data-rate constraints. Proceedings of the 45th IEEE Conference on Decision and

Control, pages 4423–4428, 2006.
15. J.S. Baras M. Rabi, G.V. Moustakides. Adaptive sampling for linear state estimation.

Submitted to SIAM Journal on Control and Optimization, 2008.



10 Authors Suppressed Due to Excessive Length

16. M. Miskowicz. Bandwidth requirements for event driven observations of continuous
time variable. Proc. of IAFC Workshop on Discrete-Event Systems WODES04, pages
475–480, 2004.

17. M. Miskowicz. Efficiency of level-crossing sampling for bandlimited gaussian random

processes. 2006 IEEE International Workshop on Factory Communication Systems,
pages 137–142, 2006.

18. M. Rabi and J. S. Baras. Sampling of diffusion processes for real-time estimation. In
Proceedings of the IEEE Conference on Decision and Control, 2004.

19. M. Rabi and J.S. Baras. Level-triggered control of a scalar linear system. Proceedings

of the 2007 Mediterranean Conference on Control and Automation, 2007.
20. M. Rabi, J.S. Baras, and G. Moustakides. Multiple sampling for estimation on a finite

horizon. Proceedings of the 45th IEEE Conference on Decision and Control, pages
1351–1357, 2006.

21. M. Rabi and K.H. Johansson. Event-triggered strategies for industrial control over
wireless networks. Proceedings of the Fourth Annual Wireless Interned Conference,

2008.
22. P. Tabuada. Event-triggered real-time scheduling of stabilizing control tasks. IEEE

Trans. Automatic Control, 52(9):1680–1685, 2007.

23. K. Triantafyllopoulos. On the central moments of the multidimensional Gaussian
distribution. The Mathematical Scientist, 28:125–128, 2003.

24. X. Wang and M. Lemmon. Self-triggered feedback control systems with finite-gain
stability. To appear in IEEE Trans. Automatoc Control, 2009.

25. X. Wang and M.D. Lemmon. Event-triggered broadcasting across distributed net-
worked control systems. Proceedings of the 2008 American Control Conference, 2008.

26. Y. Xu and J. P. Hespanha. Communication logics for networked control systems. In
Proceedings of the American Control Conference, 2004.

27. Y. Xu and J. P. Hespanha. Optimal communication logics in networked control sys-
tems. Proceedings of the IEEE Conference on Decision and Control, pages 3527–3532,
2004.

28. J. K. Yook, D. M. Tilbury, and N. R. Soparkar. Trading computation for bandwidth:
Reducing communication in distributed control systems using state estimators. IEEE

Trans. Contr. Sys. Technol., 4(10):503–518, July 2002.


