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Abstract

We derive a simple condition under which a class of two
player linear quadratic optimal control problems can be
solved by two separate problems. The condition unifies
most of the previously known separable two player prob-
lems, and further enables us to explicitly solve a new
class of problems of which the optimal control was previ-
ously unknown. Moreover, natural interpretation of the
separated problems provides better understanding of the
optimal controllers’ dynamics.

1 Introduction

We consider decentralized control problems where a team
of multiple players cooperate to achieve a common collec-
tive objective, with limited communication and dynamics
propagation between each players. A variety of interest-
ing control problems can be described in this framework,
which include vehicle formation, salvo attack, structured
control, and so on. Systematic and efficient synthesis of
decentralized control policies in such architectures has
been a fundamental and central issue for networked con-
trol problems.

One of the critical factors limiting these technological
developments is that the model-based control synthesis
procedures which have been so effective at centralized
control do not currently have counterparts for decentral-
ized control. Although good heuristics are known in some
cases, and certain special cases have been solved exactly,
for the general problem there is currently no method that
can in general numerically compute, for example, the
optimal mean-square performance achievable by decen-
tralized control, even for the highly specialized scenario
of low dimensional linear time-invariant state-space sys-
tems. It no longer fits within the existing paradigm for
optimal centralized control problems such as semidefinite
programming, Riccati equations, et cetera. This is the
key obstacle to the overall problem, and a tractable algo-
rithm for finding the optimal controller, even the optimal
linear controller, does not yet exist [1].
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In this paper, we specifically focus on one of the sim-
plest setup among such problems. We consider two play-
ers in the nested structures [10], which implies 1) the
first player’s state and decision affects the second player,
and 2) the first player’s measurement is available to the
second player. We are interested in finding the struc-
tured H2 optimal control where the first player’s decision
is computed by its own information, while the second
player’s decision is made using the information from the
both players.

According to the recent work in [5], the two player
setup which we focus on is classified under the quadrati-
cally invariant category, and in fact the H2 problems can
be solved via convex programming. Numerical solutions
based on semidefinite programming or finite basis expan-
sion have been suggested [2, 3, 4, 5, 6]. More recently, an
explicit solution for the state feedback problems has been
developed using spectral factorization [8], and similar re-
sults have been obtained via the poset framework [7].
The result in [8] was extended to partial output feedback
cases recently [9].

We present a unified condition which characterizes all
the solvable problems described above. Under the condi-
tion, the problems are naturally separated into sequen-
tial problems whose solutions can be combined to pro-
duce the optimal solution of the original problem. The
separated problems provide clear interpretation of the
optimal controller’s dynamics. Furthermore, the prob-
lems are separated at the highest level, thus no compli-
cated argument is needed in deriving the results. Finally,
the condition enables us to explicitly solve another class
of problems, dynamically decoupled output feedback prob-
lems, of which the optimal solution was not previously
known.

2 Problem definition

In this paper, we consider the following two player dy-
namics. The system evolves with

[
ẋ1(t)
ẋ2(t)

]

=

[
A11 0
A21 A22

]

︸ ︷︷ ︸

A

[
x1(t)
x2(t)

]

+

[
B11 0
B21 B22

]

︸ ︷︷ ︸

B

[
u1(t)
u2(t)

]

+

[
H11 0
0 H22

]

︸ ︷︷ ︸

H

[
w1(t)
w2(t)

]
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where xi and ui denote the state and the control of the
i-th player. wi denotes the independent exogenous Gaus-
sian noise with unit intensity. For simplicity, we let
xi(0) = 0, and assume that A is stable. For unstable
A, we can work out the prestabilized A with the stabi-
lizability assumption. This would result in more com-
plicated algebra and problem descriptions but does not
fundamentally change the derivation and result.

The first player measures some linear function of x1,
while the second player measures another linear function
of both x1 and x2. They may be corrupted by noise, so
[
y1(t)
y2(t)

]

=

[
M11 0
M21 M22

]

︸ ︷︷ ︸

M

[
x1(t)
x2(t)

]

+

[
N11 0
0 N22

]

︸ ︷︷ ︸

N

[
w1(t)
w2(t)

]

where HNT = 0 and NiiN
T
ii > 0 if Nii 6= 0 are assumed.

Let us denote the set of all 2×2 block lower triangular
linear operators by S.

S =

{

S | S ∈

[
• ◦
• •

]}

The control synthesis problem is finding the optimal
lower triangular control K ∈ RL∞ ∩ S

[
u1

u2

]

=

[
K11 0
K21 K22

]

︸ ︷︷ ︸

K

[
y1

y2

]

minimizing the H2 norm of the following cost vector with
CT D = 0 and DT D > 0.

z(t) =
[
C1 C2

]

︸ ︷︷ ︸

C

[
x1(t)
x2(t)

]

+
[
D1 D2

]

︸ ︷︷ ︸

D

[
u1(t)
u2(t)

]

The problem description in the general framework is

P :

[
P11 P12

P21 P22

]

=

[
T U

V G

]

=

[
C(sI − A)−1H C(sI − A)−1B + D

M(sI − A)−1H + N M(sI − A)−1B

]

=





T1 T2 U1 U2

V11 0 G11 0
V21 V22 G21 G22





Since S is quadratically invariant under P22, the con-
troller, K ∈ S, and its Youla parameter, Q = K(I −
P22K)−1, have the same sparsity pattern. Therefore the
two player optimal H2 control problem can be described
as below [5].

Problem 1. (The two player problem)

minimize
Q∈RH∞∩S

‖T + UQV ‖
2

2

or in state space representation,




ẋ

z

y



 =





A H B

C 0 D

M N 0









x

w

u





The optimal controller K∗ ∈ RL∞ ∩ S is given by

K∗ = Q∗(I + GQ∗)−1

where Q∗ is the optimal solution of Problem 1.

3 Separated problems

This section shows that, under some conditions, Problem
1 can be solved by two separated problems of which the
optimal solutions are well known explicitly.

Let us call by Π the linear operator to be minimized.

Π(Q) = T + UQV

where Q =

[
Q11 Q12

Q21 Q22

]

∈ RH∞

We can partition Π(Q) =
[
Π1(Q) Π2(Q)

]
by,

Π1(Q) = T1 +
[
U1 U2

]
Q

[
V11

V21

]

Π2(Q) = T2 +
[
U1 U2

]
Q

[
0

V22

]

Since we are dealing with the H2 norm, we have that

‖Π(Q)‖2

2 = ‖Π1(Q)‖2

2 + ‖Π2(Q)‖2

2

and Problem 1 is equivalent to

minimize
Q∈RH∞∩S

‖Π1(Q)‖
2

2
+ ‖Π2(Q)‖

2

2

But we know that

min
Q∈RH∞∩S

‖Π1(Q)‖
2

2
+ ‖Π2(Q)‖

2

2

≥ min
Q∈RH∞∩S

‖Π1(Q)‖2

2 + min
Q∈RH∞∩S

‖Π2(Q)‖2

2

≥ min
Q∈RH∞

‖Π1(Q)‖2

2 + min
Q∈RH∞∩S

‖Π2(Q)‖2

2

Furthermore, Π2(Q) is a function of only Q22 if Q ∈ S.
So we simplify the notation by

Π2(Q) = T2 + U2Q22V22 = Π3(Q22)

and it follows that

min
Q∈RH∞∩S

‖T + UQV ‖
2

2

≥ min
Q∈RH∞

‖Π1(Q)‖2

2 + min
Q22∈RH∞

‖Π3(Q22)‖
2

2

This implies that the right hand side provides a lower
bound for the optimal value of Problem 1. We claim that,
under a technical condition, this lower bound is actually
tight, and the solution of Problem 1 is explicitly given in
terms of the solutions of the two problems in the right
hand side.

To this end, let us define two minimization problems
regarding Π1(Q) and Π3(Q22) as follows.
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Problem 2. (Π1 problem)

minimize
Q∈RH∞

∥
∥
∥
∥
T1 +

[
U1 U2

]
Q

[
V11

V21

]∥
∥
∥
∥

2

2

or in state space representation,








ẋ1

q̇

zΠ1

y1

r









=









A11 0 H11 B11 0
A21 A22 0 B21 B22

C1 C2 0 D1 D2

M11 0 N11 0 0
M21 M22 0 0 0

















x1

q

w1

u1

p









Problem 3. (Π3 problem)

minimize
Q22∈RH∞

‖T2 + U2Q22V22‖
2

2

or in state space representation,




ẋ2 − q̇

zΠ3

y2 − r



 =





A22 H22 B22

C2 0 D2

M22 N22 0









x2 − q

w2

u2 − p





A set of intermediate variables (p, q, r) were labeled in
order to better understand these separated problems.

Note that the Π3 problem is a typical LQG problem,
therefore the optimal solution is explicitly given in terms
of two Riccati equations. The Π1 problem can be more
subtle and a little technical complicacy may be involved,
but without fundamental increase in computational com-
plexity. We will discuss more on this in the next section.

The following lemma on a simple linear algebraic con-
dition will be helpful in developing our proof.

Lemma 4. Suppose Z ∈ RH∞ and R ∈ RH∞ given in
appropriate sizes such that

π(Z) = ZR =

[
Z11 Z12

Z21 Z22

] [
R1

R2

]

is defined.

Then there exists Q ∈ RH∞ ∩ S such that

π (Q) = π (Z)

if there exists Ω ∈ RH∞ such that R2 = ΩR1.

Proof. Pick any Q22 ∈ RH∞ in the same size of Z22,

and consider

[
Q11

Q21

]

=

[
Z11 Z12

Z21 Z22 − Q22

] [
I

Ω

]

∈ RH∞.

Then Q =

[
Q11 0
Q21 Q22

]

satisfies π (Q) = π (Z).

This lemma gives a sufficient condition under which the
range of π can be represented by structured parametriza-
tion. Now we are ready to present the main lemma.

Lemma 5. Suppose that there exist optimal solutions for
Problem 2 and Problem 3. Also suppose that there exists
Ω ∈ RH∞ such that

V21 = ΩV11

Then the following equality holds.

min
Q∈RH∞∩S

‖T + UQV ‖
2

2

= min
Q∈RH∞

‖Π1(Q)‖2

2 + min
Q22∈RH∞

‖Π3(Q22)‖
2

2

Proof. Let Z =

[
Z11 Z12

Z21 Z22

]

and W be optimal for

Problem 2 and 3, respectively. Also, let Q∗
22 = W .

Since Ω satisfies V21 = ΩV11, Lemma 4 follows that
[
Q∗

11

Q∗
21

]

=

[
Z11 Z12

Z21 Z22 − W

] [
I

Ω

]

∈ RH∞

satisfies Π1(Q
∗) = Π1(Z), where Q∗ =

[
Q∗

11 0
Q∗

21 Q∗
22

]

achieves the lower bound of the left hand side.

Now the optimal solution of Problem 1 is explicitly
given as follows.

Corollary 6. Suppose that the assumptions in Lemma

5 hold. Let Z =

[
Z11 Z12

Z21 Z22

]

and W be the optimal solu-

tions of Problem 2 and Problem 3.

Then the optimal solution Q∗ of Problem 1 is given by

Q∗ =

[
Z11 + Z12Ω 0

Z21 + (Z22 − W ) Ω W

]

Proof. This follows from Lemma 5.

By applying this, we present the explicit solutions to
several classes of the two player control problems.

4 Explicit solutions

4.1 State feedback

State feedback problems refer to the instances when each
player measures its own state perfectly, that is

M =

[
I 0
0 I

]

, N =

[
0 0
0 0

]

in which case, we have
[
V11

V21

]

=

[
(sI − A11)

−1H11

(sI − A22)
−1A21(sI − A11)

−1H11

]

therefore

ΩS = (sI − A22)
−1A21 ∈ RH∞

satisfies V21 = ΩSV11 and the problem can be separated
to the following two problems.

Problem 7. Π1 problem reduces to








ẋ1

q̇

zΠ1

y1

r









=









A11 0 H11 B11 0
A21 A22 0 B21 B22

C1 C2 0 D1 D2

I 0 0 0 0
0 I 0 0 0

















x1

q

w1

u1

p









which is a typical LQR problem.
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Problem 8. Π3 problem reduces to




ẋ2 − q̇

zΠ3

y2 − r



 =





A22 H22 B22

C2 0 D2

I 0 0









x2 − q

w2

u2 − p





which is another LQR problem.

The solutions to these two problems can be combined
to provide the optimal controller for the original two
player state feedback problem. The state space solution
is presented below.

Theorem 9. Suppose that there exist stabilizing solu-
tions X and Y for

AT X + XA − XB(DT D)−1BT X + CT C = 0

AT
22Y + Y A22 − Y B22(D

T
2 D2)

−1BT
22Y + CT

2 C2 = 0

and let

K = −(DT D)−1BT X

J = −(DT
2 D2)

−1BT
22Y

and AK = A + BK. Then the optimal control for the
state feedback problem is given by

[
u1(t)
u2(t)

]

=

[
K11 K12 0
K21 K22 J

]




x1(t)
q(t)

x2(t) − q(t)





where q is a controller state propagating by

q =

[
(AK)22 (AK)21

I 0

]

x1

Proof. The standard LQR solution together with
Corollary 6 show that the optimal solution Q∗ is

Q∗ =









AK 0

(
0

A21

)

+ B

(
K11

K21

)

0

0 AJ −A21 B22J

K

(
0
J

) (
K11

K21

) (
0
J

)









where AJ = A22 + B22J .

The optimal controller K∗ = Q∗(I + GQ∗)−1 is ob-
tained via a long algebra as follows.

K∗ =





(AK)22 (AK)21 0
K12 K11 0

K22 − J K21 J





This is identical to the optimal control presented in the
theorem.

This corresponds to the earlier result in [8]. Note that
the controller state q represents the first player’s predic-
tion of x2 based on its information.

Before we finish our discussion on the state feedback
case, notice that the second measurement, r, in Problem
7 is redundant, meaning that it can be deduced from
y1. Hence the problem can be further reduced to the
following, whose solution will be useful for solving the
partial output feedback case in the next section.

Problem 10. Problem 7 is further reduced to







ẋ1

q̇

zΠ1

y1







=







A11 0 H11 B11 0
A21 A22 0 B21 B22

C1 C2 0 D1 D2

I 0 0 0 0















x1

q

w1

u1

p









We show that the above can be solved via Problem 7.

Lemma 11. Suppose that Q is an optimal Youla param-
eter for Problem 7. Then,

Q̃ = Q

[
I

ΩS

]

is the optimal Youla parameter for Problem 10.

Proof. It follows from V21 = ΩSV11.

Corollary 12. Let X be a stable left inverse of

[
I

ΩS

]

,

and suppose that Q̃ is the optimal Youla parameter for
Problem 10. Then,

Q = Q̃X

is an optimal Youla parameter for Problem 7.

Proof. Note that

[
I

ΩS

]

is always left invertible in

RH∞. Then the proof follows from

Q

[
V11

V21

]

= Q̃X

[
I

ΩS

]

V11 = Q̃V11

This implies that the optimal solution of Problem 7 is
not unique. However the nonuniqueness does not transfer
to the original two player problem, since the left inverse
expression in Corollary 12 disappears when Corollary 6
generates the optimal solution to the original problem.

4.2 Partial output feedback

Partial output feedback cases arise when the first player
perfectly measures its state, while the second player’s
measurement is a usual linear output measurement with
noise. In other words, it corresponds to

M =

[
I 0

M21 M22

]

, N =

[
0 0
0 N22

]

in which case

V11 = (sI − A11)
−1H11

V21 =
{
M21 + M22(sI − A22)

−1A21

}
(sI − A11)

−1H11

therefore

ΩP = M21 + M22(sI − A22)
−1A21 ∈ RH∞

satisfies V21 = ΩPV11. The problem can be separated to
the following two problems.
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Problem 13. Π1 problem reduces to









ẋ1

q̇

zΠ1

y1

r









=









A11 0 H11 B11 0
A21 A22 0 B21 B22

C1 C2 0 D1 D2

I 0 0 0 0
M21 M22 0 0 0

















x1

q

w1

u1

p









The solution can be obtained by applying Lemma 11
and Corollary 12 to Problem 7.

Lemma 14. Suppose that QS is an optimal Youla pa-
rameter for Problem 7, and let XP be a stable left inverse

of

[
I

ΩP

]

. Then

QP = QS

[
I

ΩS

]

XP

is an optimal Youla parameter of Problem 13.

Proof. Lemma 11 implies QS

[
I

ΩS

]

is optimal for Prob-

lem 10. Applying Corollary 12 to Problem 13 follows that

QS

[
I

ΩS

]

XP is optimal for Problem 13.

Problem 15. Π3 problem is equal to Problem 3.

Now we present the optimal solution for the partial
output feedback problem using the solutions of Problem
13 and Problem 15.

Theorem 16. Suppose that there exist stabilizing solu-
tions X, Y , and Ψ for

AT X + XA − XB(DT D)−1BT X + CT C = 0

AT
22Y + Y A22 − Y B22(D

T
2 D2)

−1BT
22Y + CT

2 C2 = 0

A22Ψ + ΨAT
22 − ΨMT

22(N22N
T
22)

−1M22Ψ + H22H
T
22 = 0

and let

K = −(DT D)−1BT X

J = −(DT
2 D2)

−1BT
22Y Γ = −ΨMT

22(N22N
T
22)

−1

and AK = A+BK, AΓ = A22 +B22J +ΓM22. Then the
optimal control for the partial output feedback problem is
given by

[
u1(t)
u2(t)

]

=

[
K11 K12 0
K21 K22 J

]




x1(t)
q(t)
ξ(t)





where q and ξ are controller states propagating by

q =

[
(AK)22 (AK)21

I 0

]

x1

ξ =

[
AΓ −Γ
I 0

]

(y2 − M21x1 − M22q)

Proof. Standard LQR/LQG solutions with Corollary
6 show that the optimal solution Q∗ is given by

Q∗ =











AK 0 0

(
0

A21

)

+ B

(
K11

K21

)

0

0 AΓ −ΓM22 ΓM22 −Γ
0 B22J A22 −A21 0

K

(
0
J

)

0

(
K11

K21

)

0











It can be shown via a long algebra that the optimal
controller satisfying K∗ = Q∗(I + P22Q

∗)−1 is

K∗ =







(AK)22 0 (AK)21 0
ΓM22 AΓ ΓM21 −Γ
K12 0 K11 0
K22 J K21 0







which is a minimal realization of the optimal control pre-
sented in the theorem.

Compared to the earlier result in [9], this is a differ-
ent realization for which the implication of the controller
states are more obvious. As in the state feedback case, q

is the first player’s prediction of x2 given its own informa-
tion. Recalling the notation of Problem 3, it is obvious
that ξ is the best estimate of (x2 − q) given the second
player’s information , i.e., y2 − (M21x1 + M22q).

4.3 Dynamically decoupled output feedback

Consider cases when each player evolves and take noisy
measurements independently, but the second player has
access to the first players measurement information to
comply with the two player framework. We call such
cases dynamically decoupled output feedback problems.
Although the dynamics is decoupled in this case, the
problem is still coupled through the cost function. The
case is characterized by

A =

[
A11 0
0 A22

]

, M =

[
M11 0
0 M22

]

For generality B is left block lower triangular. In this
case,

[
V11

V21

]

=

[
M11(sI − A11)

−1H11 + N11

0

]

therefore
ΩD = 0

satisfies V21 = ΩDV11. The problem can be separated to
the following two problems.

Problem 17. Π1 problem reduces to







ẋ1

q̇

zΠ1

y1







=







A11 0 H11 B11 0
0 A22 0 B21 B22

C1 C2 0 D1 D2

M11 0 N11 0 0















x1

q

w1

u1

p









which is an LQG problem with an unobservable mode.
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Solving the above involves a reduced size filter Riccati
equation, which is computationally cheaper.

Problem 18. Π3 problem is equal to Problem 3.

By solving the above two, we present the optimal con-
trol for our last case.

Theorem 19. Suppose that there exist stabilizing solu-
tions X, Y , Φ, and Ψ for

AT X + XA − XB(DT D)−1BT X + CT C = 0

AT
22Y + Y A22 − Y B22(D

T
2 D2)

−1BT
22Y + CT

2 C2 = 0

A11Φ + ΦAT
11 − ΦMT

11(N11N
T
11)

−1M11Φ + H11H
T
11 = 0

A22Ψ + ΨAT
22 − ΨMT

22(N22N
T
22)

−1M22Ψ + H22H
T
22 = 0

and let

K = −(DT D)−1BT X Θ = −ΦMT
11(N11N

T
11)

−1

J = −(DT
2 D2)

−1BT
22Y Γ = −ΨMT

22(N22N
T
22)

−1

and AΘ = A + BK +

(
ΘM11 0

0 0

)

, AΓ = A22 + B22J +

ΓM22. Then the optimal control for the dynamically de-
coupled output feedback problem is given by

[
u1(t)
u2(t)

]

=

[
K11 K12 0
K21 K22 J

]




x̂1(t)
q(t)
ξ(t)





where x̂1, q and ξ are controller states propagating by

[
x̂1

q

]

=




AΘ −

(
Θ
0

)

I 0



 y1

ξ =

[
AΓ −Γ
I 0

]

(y2 − M22q)

Proof. Standard LQG solutions together with Corol-
lary 6 show that the optimal solution Q∗ is given by,

Q∗ =













AΘ −

(
ΘM11 0

0 0

)

0 0 −

(
Θ
0

)

0

BK A 0 0 0 0
0 0 AΓ −ΓM22 0 −Γ
0 0 B22J A22 0 0

K 0

(
0
J

)

0 0 0













The optimal controller K∗ = Q∗(I + P22Q
∗)−1 can be

found via a long algebra.

K∗ =









AΘ 0

(
−Θ
0

)

0
(
0 ΓM22

)
AΓ 0 −Γ

K

(
0
J

)

0 0









This is a minimal realization of the optimal control pre-
sented in the theorem.

Note that x̂1 and q is the first player’s best estimate
of x1 and x2, respectively, and ξ is the best estimate of
(x2−q) given the second player’s information, , y2−M22q.

5 Conclusion

In this paper, we characterized a class of explicitly solv-
able two player optimal control problems. We showed
that, under a simple algebraic condition, the two player
H2 optimal control problems can be separated to two
conventional optimal control problems.

Previously known problems including state feedback
problems and partial output feedback problems fall into
this category, therefore we are able to prove the same
results using a simple unified technique. In addition, we
presented a new class of interesting problems satisfying
the condition, and derived an explicit state space solution
which was previously unknown.

The problems separate at the very top level, therefore
they have natural interpretations which in turn provide
clear understanding of the controller dynamics.

Future research directions may include extension to
general n-player problems or general output feedback
problems.
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