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Abstract

We propose a large class of decentralized control prob-
lems with non-classical information structure for which
a coding strategy is optimal. This class is a generalized
version of the hats problem with statistically dependent
hat colors where implicit communication via action is al-
lowed. We propose a sufficient condition on the joint
distribution of the hat colors which guarantees the opti-
mality of a binary sum coding strategy. We explore the
connection between this version of the hats problem and
hypercube graph theory, and use that to show that verify-
ing our proposed sufficient condition is computationally
tractable.

1 Introduction and Prior Work

The decentralized control problems with non-classical in-
formation structures are known to be difficult. One of the
oldest problems in this area is Witsenhausen’s counterex-
ample [9] which is unsolved. Even the discrete variants
of such problems are computationally intractable [8].

The challenge faced by each decision maker under non-
classical information is the tension between signaling and
individual cost minimization. The distributed nature of
the problem leads to an information asymmetry between
different decision makers. Furthermore, the non-classical
structure of the information implies that the action of
the decision maker A is “overheard” by another decision
maker B who does not have access to all the information
available at A. This introduces an opportunity of com-
munication through the action of the decision maker A.
The challenging question here is whether A should use
its action to minimize its direct contribution to the cost
or to encode information which is potentially useful for
player B.

The above tension is particularly restrictive when the
communication between different decision makers are
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limited to the implicit communication through actions.
For example, in Witsenhausen’s problem, a larger con-
trol action by the first player gives him a higher encoding
capability but also increases his individual cost directly.

In [7] we presented a class of decentralized control
problems with non-classical information for which we an-
swered the above question by showing the priority of in-
formation encoding over the individual cost minimiza-
tion. In particular, we considered a multi-agent dis-
tributed estimation problem called the hats problem [2],
where we further assumed that the estimate given by each
player is heard by all the other players. For this problem
we proposed a binary sum coding strategy and proved
its optimality. Under this coding strategy, one player,
called the encoding agent, has to forgo his individually
optimal estimation in order to embed information in his
declared estimate. Having overheard this estimate, the
other players can use the encoded information to make
error-free estimations.

Under the setup considered in [7], the variable to be
estimated at the encoding agent is independent of the in-
formation observed by that agent. In fact we showed that
the individually optimal estimate for the encoding agent
in [7] is a constant value independent of his observations.
The question addressed in this paper is what happens if
the observations at each player are correlated with the
variable to be estimated by that player. As this corre-
lation can potentially increase the performance of esti-
mation by each player, one would expect more incentives
for individual cost minimization rather than information
encoding. However, we show that for a large class of
such correlated hats problems with communication, the
coding strategy considered in [7] is still optimal.

We propose a sufficient condition for the optimality of
the binary sum coding strategy over the hats problems
with dependent state variables. We will use the hyper-
cube graph representation of the hats problem to show
that verifying our sufficient condition is computationally
tractable. We will also introduce specific instances of the
hats problems for which our coding strategy is optimal.
In particular, we will see scenarios in which, under the
optimal strategy, the encoding agent has to make erro-
neous estimation although he perfectly observes his own
variable to be estimated.

The rest of the paper is organized as follows: In Sec-
tion 2 we present the problem formulation and show the
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optimality of deterministic strategies for any hats prob-
lem. In Section 3, we will review the binary sum coding
strategy and provide a sufficient condition for the op-
timality of this strategy. We characterize the problems
which satisfy the sufficient condition and present different
examples. The complexity of verifying the validity of the
sufficient condition for an instance of the hats problem is
discussed in Section 4, where we use a hypercube graph
representation of the hats problem. Section 5 concludes
the paper.

Notation. In the remainder of the paper we use bold
letters (e.g. x, u, I) to represent the random variables
and the corresponding regular letters (e.g. x, u, I) to
represent their realizations. We use subscripts to denote
particular elements of a vector. The indicator function
for event A is denoted by [A]. We denote Bn to be the
n-fold Cartesian product of the set {0, 1}. That is Bn =
{0, 1}× · · · × {0, 1} n-times, with the interpretation that
B0 = ∅.

2 The Hats Problem

An n-player hats problem with hats probability distribu-
tion P over Bn (simply referred to as the hats problem
P) can be described as follows. Player i is assigned a
binary state variable (hat color) xi. The state vector
(x1, . . . ,xn) is distributed according to the distribution
P. Player i observes state variables xi+1, ...,xn. The
action (estimate) of player i is a binary variable ui and
is observed by all other players. The cost of player i’s
action is [ui 6= xi]. The objective is to find a decision
strategy that minimizes the expected total cost

E

( n
∑

i=1

[xi 6= ui]

)

.

A randomized decision strategy, denoted by the pair
(ρ, γ), consists of a permutation ρ and a randomized de-
cision rule γ. The permutation ρ =

(

ρ1, · · · , ρn

)

is an
order in which the players make decisions. Thus ρk = i

implies that player i makes its decision at the kth step. A
player making a decision at the kth step knows the previ-
ous actions uρ1

, · · · ,uρk−1
as well as the state of players

xρk+1, · · · ,xn. Let I
ρ
k be the information vector available

to a player making a decision at the kth step under the
decision strategy (ρ, γ). Then, we have

I
ρ
k =

(

uρ1
, · · ·uρk−1

,xρk+1 · · · ,xn

)

For example if n = 3 and ρ = (2, 1, 3), then
Step 1: u2 is chosen based on I

ρ
1 = (x3),

Step 2: u1 is chosen based on I
ρ
2 = (u2,x2,x3),

Step 3: u3 is chosen based on I
ρ
3 = (u1,u2).

The second component of a randomized decision strat-
egy is the decision rule γ =

(

γ1, · · · , γn

)

which maps the
information available to a player making a decision at the
kth step to the probability of action uρk

= 0. That is,

γk : Bk−1+n−ρk → [0, 1],

and

uρk
=

{

0 with probability γk

(

I
ρ
k

)

1 with probability 1 − γk

(

I
ρ
k

) .

Given a strategy (ρ, γ), the cost function is given as

J(ρ, γ) = E

( n
∑

k=1

[uρk
6= xρk

]

)

,

where the expectation is with respect to the randomness
in the state vector (x1, . . . ,xn) and the uncertainty in the
decision rule. Note that a deterministic decision strategy
is a degenerate version of a randomized strategy when,
for any k, the function γk maps any information vector
to either 0 or 1. We denote a deterministic strategy by
the pair (ρ, µ) where ρ is the decision order and µ =
(

µ1, · · · , µn

)

is the set of decision functions such that

µk : Bk−1+n−ρk → B,

and the action uρk
= µk

(

I
ρ
k

)

. In the following theorem
we will show that for any instance of the hats problem,
there exists a deterministic strategy that achieves the
minimum cost.

Theorem 1. For any hats problem P, there exists a de-
terministic strategy that achieves its optimal cost.

Proof. Suppose the theorem does not hold. Denoting
the set of optimal strategies by Λopt, this implies that
all the strategies in Λopt should have a non-deterministic
component in their decision rule. Let’s define for any
(ρ, γ) ∈ Λopt, the set A(ρ,γ) of steps at which the decision
rule is non-deterministic. For any i ∈ A(ρ,γ), there exists
an information vector realization I

ρ
i such that

γi(I
ρ
i ) ∈ (0, 1).

Among all the optimal strategies consider the one for
which the first randomized decision making happens the
latest. That is, consider the strategy (ρ∗, γ∗) and the kth

step such that

(ρ∗, γ∗) = argmax(ρ,γ)∈Λopt
minA(ρ,γ), (1)

and

k = minA(ρ∗,γ∗), (2)
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We can write the expected cost corresponding to the pol-
icy (ρ∗, γ∗) as

J(ρ∗, γ∗) =
∑

x∈{0,1}n

P(x)E (J(ρ∗, γ∗)|x) , (3)

where x represents a realization of the state vector (hat
color configurations) and E (J(ρ∗, γ∗)|x) is the expected
cost (with respect to the randomness in the strategy)

when the state vector is x. Let uρ∗

i
(x) and I

ρ∗

i (x) de-
note the action variable and the information vector of
the player making a decision at the ith step, respectively,
when the state vector is x. Denoting the total cost in-
curred from step i to the last step by Ji(ρ

∗, γ∗), we can
write for any x ∈ {0, 1}n,

E (J(ρ∗, γ∗)|x) =

k−1
∑

i=1

[uρ∗

i
(x) 6= xρ∗

i
]

+ γ∗
k(Iρ∗

k (x))

(

[xρ∗

k
6= 0] + E

(

Jk+1(ρ
∗, γ∗)|x,uρ∗

k
= 0

)

)

+(1−γ∗
k(Iρ∗

k (x)))

(

[xρ∗

k
6= 1]+E

(

Jk+1(ρ
∗, γ∗)|x,uρ∗

k
= 1

)

)

= β(x) + γ∗
k(Iρ∗

k (x))α(x),

where

β(x) =

k−1
∑

i=1

[uρ∗

i
(x) 6= xρ∗

i
]

+ [xρ∗

k
6= 1] + E

(

Jk+1(ρ
∗, γ∗)|x,uρ∗

k
= 1

)

and

α(x) = [xρ∗

k
6= 0] + E

(

Jk+1(ρ
∗, γ∗)|x,uρ∗

k
= 0

)

− [xρ∗

k
6= 1] − E

(

Jk+1(ρ
∗, γ∗)|x,uρ∗

k
= 1

)

.

Note that given the assumption that decisions at steps
1, ..., k−1 are all deterministic, β(x) and α(x) do not de-
pend on the probability distribution of the decision rule
at the kth step. Also note that due to the same assump-
tion of deterministic decisions at steps 1, ..., k, given the

state x, there is no uncertainty in determining I
ρ∗

k (x).
Using the above facts and derivations, we can write the
total cost as

J(ρ∗, γ∗) =
∑

x∈{0,1}n

P(x)β(x) (4)

+
∑

ω∈Bk−1+n−ρ∗

k

γ∗
k(ω)

∑

x:Iρ∗

k
(x)=ω

P(x)α(x).

Now let’s define a new strategy (ρ′, γ′), where ρ′ = ρ∗ and
the only difference between γ′ and γ∗ is in the decision
rule at step k, where

γ′
k(ω) =

{

0 if
∑

x:Iρ∗

k
(x)=ω

P(x)α(x) ≥ 0

1 otherwise
,

for all ω ∈ Bk−1+n−ρ′

k . Note that in the above strategy,
players 1, .., k have deterministic decision rules. Also us-
ing (4), we can easily check that

J(ρ′, γ′) ≤ J(ρ∗, γ∗),

which contradicts our assumption that (ρ∗, γ∗) is the op-
timal decision strategy for which the randomization hap-
pens the latest (assumptions stated in equations 1 and
2).

Given the above result, we will only focus on determin-
istic strategies (ρ, µ) in the rest of the paper.

3 Binary Sum Coding Strategy

We showed in the previous section that one can always
find an optimal deterministic strategy for the hats prob-
lem. A simple yet useful class of deterministic strategies
for the hats problem is the binary sum coding strategy
introduced in [7].

Definition 2. The binary sum coding strategy (BSCS)
for an n-player hats problem, consists of the decision or-
der ρcode =

(

1, 2, · · · , n
)

and the decision rule µcode =
(

µcode
1 , · · · , µcode

n

)

, where

µcode
k (u1, · · · ,uk−1,xk+1, · · · ,xk) =

u1 ⊕ · · · ⊕ uk−1 ⊕ xk+1 ⊕ · · · ⊕ xn.

It is easy to check (and was proved in [7]) that BSCS
results in correct estimates for all players except possibly
player 1. We proved in [7] that BSCS is optimal for the
hats problems with i.i.d. Bernoulli state variables. In this
section, we show the optimality of BSCS over a broader
class of distributions. This includes a large subclass of
independent distributions, Markov distributions and the
distributions with star-shaped dependency graphs. The
proofs of all the results presented in this section are pro-
vided in the appendix.

Definition 3. Given n, the even parity set Seven and
the odd parity set Sodd are defined as

Seven = {x ∈ Bn | x1 ⊕ x2 ⊕ · · · ⊕ xn = 0} ,

Sodd = Bn − Seven.

Definition 4. For any set R ⊆ Bn we define the internal
Hamming distance of the set R (denoted by d(R)) as

d(R) = min
a,b∈R,

a6=b

n
∑

i=1

[ai 6= bi].
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Definition 5. A hats problem P is called strongly even

if
P(Seven) ≥ P(R),

for any R ⊂ Bn such that

d(R) ≥ 2.

As will be shown in the next section, any set R with
the above internal Hamming distance property is an in-
dependent set in the hypercube graph corresponding to
the hats problem.

Theorem 6. Given a hats problem P, the binary sum
coding strategy (ρcode, µcode) is optimal if P is strongly
even.

The sufficient condition provided in the above theorem
introduces a class of BSCS-optimal hats problems (dis-
tributions), namely strongly even problems. In the fol-
lowing, we characterize strongly even problems and show
some examples.

Proposition 7. Given a set Γ of strongly even n-player
hats problems (distributions), P is strongly even if

P ∈ Conv(Γ),

where Conv(Γ) is the convex hull of all the distributions
in Γ.

Proposition 8. Given n, the hats problem P is strongly
even if for all x ∈ Bn

P(x) =

n
∏

i=1

Pi(xi),

where for 1 ≤ i ≤ n, Pi is the probability distribution of
the ith state variable and

Pi(0) ≥
1

2
.

Proposition 9. Given n, the hats problem P is strongly
even if n is even and the following conditions hold

• P satisfies the Markov property

P(xi|xi−1, ..., x1) = P(xi|xi−1),

for all x ∈ Bn and for i = 2, ..., n

• P(xi = 0|xi−1 = 0) = P(xi = 1|xi−1 = 1) = q, for
i = 2, ..., n and for a fixed q ∈ [12 , 1]

• 1 − q ≤ P(x1 = 0) ≤ q.

Proposition 10. Given n, the hats problem P is strongly
even if n is even and the following conditions hold

• Given x1, all the other state variables are condition-
ally independent

P(x2, ...,xn|x1) =

n
∏

i=2

P(xi|x1),

• For i = 2, ..., n,

P(xi = 0|x1 = 1) ≤
1

2
≤ P(xi = 0|x1 = 0).

A special example covered by Proposition 10 is when
x1 = x2 and the states x3, ...,xn are independent of x1

and are i.i.d. with symmetric Bernoulli distributions.
The proposition implies that although the first player can
perfectly estimate his hat color through his observation of
the second hat, he should make a lossy guess by declaring
the sum of the other hats as his own estimate.

Note that while Theorem 6 shows the optimality of
BSCS over a potentially large class of hat problems,
BSCS (or any other linear coding strategy) is not always
optimal. As an example, consider a 3-player hat problem
P such that

P(0, 0, 0) = P(1, 1, 1) = 0.5.

Under this scenario, it is optimal for the first player to
estimate 0 when the other hats are all 0 and estimate 1,
when other hats are all 1, which means the action of the
first player does not follow the binary sum of the other
hats.

4 BSCS Optimality and Hypercubes

In this section we will show that verifying the strongly
even condition for P stated in Definition 5 is computa-
tionally tractable in terms of the size of the hats problem.
Here by the size of the hats problem we mean the degree
of freedom for the distribution on state vectors which is
2n.1

Theorem 11. Given n, the problem of determining
whether P is strongly even is solvable in polynomial time
in terms of the size of the hats problem. That is, there
exits a constant ζ > 0, such that the strongly evenness of
P can be verified in

O(2ζn).

We will prove the theorem by showing that the above
problem can be translated to a well-studied problem in
graph theory called the maximum weight independent set
(MWIS) problem on hypercube graphs. Let’s first define
a hypercube graph [6].

1Or more precisely 2n
− 1 since the probabilities should add up

to 1.
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Figure 1: n-dimensional Hypercubes for n = 1, 2, 3

Definition 12. Given n, an n-dimensional hypercube
graph is defined as an undirected graph Q = (VQ, EQ),
where VQ = Bn is the set of vertices and EQ is the set
of edges. Every two nodes x, x′ ∈ VQ are connected via
(x, x′) ∈ EQ iff x and x′ only differ in one component
i.e. d({x, x′}) = 1.

Figure 1 illustrates the hypercube graphs for n =
1, 2, 3.

Definition 13. An independent set of a graph G =
(V,E) is a subset R ⊆ V of its vertices such that no
two vertices in R are connected in G.

Given the above two definitions we can observe that
R ⊆ VQ is an independent set of the hypercube Q iff

d(R) ≥ 2. (5)

In particular, one can easily show that Seven and Sodd

are both independent sets of Q.

Definition 14. Given a graph G = (V,E) and a weight
function w : V 7→ R

+, the weighted independence number
αw(G) is defined as

αw(G) = max
R⊆V :R is independent

∑

x∈R

w(x).

Proposition 15. A hats problem P is strongly even iff

αP(Q) = P(Seven),

where αP(Q) is the weighted independence number of the
hypercube graph Q given the weighting function which as-
signs to each vertex the probability of its corresponding
vector under the distribution P.

Proof. Follows from Definition 5, inequality 5, Defini-
tion 14 and the fact that Seven is an independent set of
Q.

Lemma 16. Q is a bipartite graph. That is, VQ can be
partitioned into two independent sets.

Proof. Partition VQ into Seven and Sodd.

The problem of finding the weighted independence
number is NP−complete for general graphs [4]. How-
ever, it can be solved in polynomial time (as a function
of the size of the vertex set) for bipartite graphs. This is
a well understood result and can be shown using different
techniques (see for example [1] and [5]). In the following,
we adopt a recent exposition provided in [3] which shows
that the problem of finding the weighted independence
number of a bipartite graph is equivalent to finding the
minimum cut (maximum flow) in an induced st−graph
which is solvable in polynomial time [1].

Definition 17. Let G = (V,E) be a vertex-weighted bi-
partite graph G = (V,E) with independent sets S and
T = V − S and vertex weighting function w : V 7→ R

+.
We add two new vertices {s, t} and define the induced
st−graph for G as an edge-weighted directed graph Gst =
(V st, Est) with edge weighting function c : V st × V st 7→
R

+, such that

V st = V ∪ {s} ∪ {t},

Est = {(x, x′) : (x, x′) ∈ E, x ∈ S, x′ ∈ T}

∪ {(s, x) : x ∈ S}

∪ {(x, t) : x ∈ T},

and

c(x, x′) =



















0 if (x, x′) 6∈ Est

w(x′) if x = s and x′ ∈ S

w(x) if x ∈ T and x′ = t

∞ if (x, x′) ∈ E.

.

We also define a st−cut as a partition of V st into two
sets Vs and Vt where s ∈ Vs and t ∈ Vt. The capacity of
the cut is given by

C(Vs, Vt) =
∑

x∈Vs,x′∈Vt

c(x, x′)

Figure 2 illustrates sample st−cuts with finite capac-
ity on an induced graph for a 3-dimensional hypercube
whose vertices are weighted according to the distribution
P.

Lemma 18. Let Gst = (V st, Est) be an induced
st−graph of a bipartite graph G = (V,E) with vertex
weighting function w : V 7→ R

+. The weighted indepen-
dence number of G is related to the minimum capacity
cut of Gst as follows

αw(G) =
∑

x∈V

w(x) − min
Vs

C(Vs, Vt).

Proof. Let S and T = V − S denote the two indepen-
dent partitions of V . From any independent set R ⊆ V ,
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Figure 2: Induced graph and sample finite capacity cuts
for a 3-dimensional hypercube with vertex probability
(weight) distribution P

one can obtain a unique finite capacity cut (Vs, Vt) in Gst

such that

Vs = {s} ∪ (S ∩ R) ∪ (T − R),

Vt = {t} ∪ (S − R) ∪ (T ∩ R).

Note that the edges from Vs to Vt in the above cut only
consist of the ones connected to the nodes outside R from
s or the ones originated from outside R and connected
to t. Therefore, using the definition of edge weighting in
an induced graph, we have

∑

v∈R

w(v) =
∑

x∈V

w(x) − C(Vs, Vt). (6)

Conversely, given a finite capacity cut (Vs, Vt), we know
that no edge in the original graph G appears between Vs

and Vt. Therefore, since the graph is bipartite, we can
construct an independent set as follows

R = (Vs ∩ S) ∪ (Vt ∩ T ).

Similarly, one can check that equation 6 is true in this
case as well. The proof of the lemma follows from the
one to one mapping between the finite capacity cut sets
and independent sets and the validity of equation 6.

Proof of Theorem 11 From Proposition 15, checking
strongly evenness of P is equivalent to solving maximum
weight independent set problem on the hypercube graph
Q with weighting distribution P. Therefore, since Q is
bipartite (Lemma 16), Lemma 18 implies that verifying

strongly evenness is equivalent to the minimum cut prob-
lem on the hypercube’s induced graph whose vertex car-
dinality is |V st| = O(2N ). It is well known that the min-
imum cut problem is equivalent to the maximum flow
problem which is solvable in polynomial time in terms of
the vertex size of the graph (for e.g. see [1]).

5 Discussion and Conclusion

This paper presents optimal coding strategies for a class
of distributed estimation problems with implicit commu-
nication among the different decision makers. We consid-
ered a variant of the hats problem with communication
[7] in which the colors of the hats are statistically depen-
dent. While the dependence of the hat colors in general
motivates individual cost control rather than encoding
information through the actions, we showed that coding
is optimal over a large class of hats problems (hat color
distributions). We presented a sufficient condition for
the optimality of our proposed coding strategy and used
the connection between the hats problem and the hyper-
cube graph theory to show that verifying our sufficient
condition is computationally tractable.

A Proof of Theorem 6

The proof follows from the similar steps as in [7]. We
first define a perfect set for a deterministic strategy as
follows.

Definition 19. For the n-player hats problem and for
any deterministic strategy (ρ, µ), the perfect set associ-
ated with that strategy (denoted by S(ρ, µ)) is given by

S(ρ, µ) =
{

x ∈ Bn | uρk
= xρk

for all k = 1, 2, · · · , n
}

,

where uρk
= µk

(

I
ρ
k

)

and I
ρ
k =

(

uρ1
, · · ·uρk−1

, xρk+1 · · ·xn

)

.

In other words, the perfect set associated with any
strategy is a set of all possible initial hat configura-
tions such that all resulting actions (estimates) match
the states (hat colors).

Lemma 20. Given n, the even parity set Seven is the
perfect set associated with the binary sum coding strategy

Proof. See the proof of Lemma 4 in [7].

Lemma 21. Given any deterministic decision strategy
(ρ, µ) and a hats problem P, we have J(ρ, µ) ≥ 1 −
P(S(ρ, µ)) with equality if the strategy is the binary sum
coding strategy.
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Proof. See the proof of Lemma 7 in [7].

Lemma 22. For any strategy (ρ, µ), the internal Ham-
ming distance associated with the perfect set S(ρ, µ) is at
least 2. That is,

d(S(ρ, µ)) ≥ 2.

Proof. See the proof of Lemma 10 in [7].

Proof of Theorem 6. Given the result of Theorem 1, it
is sufficient to show the optimality over all deterministic
strategies. For any deterministic strategy (ρ, µ), we can
write

J(ρ, µ) ≥ 1 − P(S(ρ, µ))

≥ 1 − P(Seven)

= J(ρcode, µcode),

where the first inequality follows from Lemma 21, the
second inequality follows from the combination of Lemma
22 and the assumption that P is strongly even and the
third inequality follows from Lemma 20.

B Proofs of Propositions 7-10

The proof of Proposition 7 simply follows from the lin-
earity of the condition stated in Definition 5 for strongly
evenness.

Before we prove Propositions 8-10, let’s first present a
simple lemma which will be used in the proofs frequently.
Given a set R ⊆ Bn and a binary sequence (b1, ..., bl) ∈ Bl

for l < n we define the set R(b1,...,bl) ⊆ Bn−l as follows

R(b1,...,bl) = {x ∈ Bn−l : (b1, ..., bl, x) ∈ R}.

Lemma 23. Consider a set R ⊆ Bn which satisfies
d(R) ≥ 2. The following holds for any l < n

1. Given any (b1, ..., bl) ∈ Bl,

d(R(b1,...,bl)) ≥ 2

2. Given (b1, ..., bl), (b
′
1, ..., b

′
l) ∈ Bl, if

d({(b1, ..., bl), (b
′
1, ..., b

′
l)}) = 1

R(b1,...,bl) ∩ R(b′
1
,...,b′

l
) = ∅

Proof. The proof of the first part follows from the
fact that d(R(b1,...,bl)) ≤ d(R). To prove the second part,
note that any common element between R(b1,...,bl) and
R(b′

1
,...,b′

l
) leads to two vectors in R with a Hamming dis-

tance equal to 1.

The proofs presented in the following include inductive
steps which involve iterations over different values of n.

To distinguish between parity sets for different values of
n, we will use subscript n (e.g. Seven

n , Sodd
n ).

Proof of Proposition 8 The case of n = 1 is trivial.
Let’s assume the validity of the proposition for values of
n up to k and consider the case of n = k + 1. Let’s
consider the distribution P ′ over x ∈ Bk as follows

P ′(x) =

k
∏

i=1

Pi+1(xi).

Note that given the definition of the even parity set we
have

P(Seven
k+1 ) = P1(0)P ′(Seven

k ) + P1(1)(1 − P ′(Seven
k )).

(7)

For any R ⊆ Bk+1, if R satisfies d(R) ≥ 2, we can write

P(R) = P1(0)P ′(R(0)) + (1 − P1(0))P ′(R(1))

≤ P1(0)P ′(R(0)) + (1 − P1(0))(1 − P ′(R(0)))

= (2P1(0) − 1)P ′(R(0)) + 1 − P1(0)

≤ (2P1(0) − 1)P ′(Seven
k ) + 1 − P1(0)

= P(Seven
k+1 ),

where the first inequality is a consequence of Lemma 23.2,
the second inequality follows from Lemma 23.1, the in-
duction assumption and the fact that 2P1(0) − 1 ≥ 0,
and finally the last equality follows from equation 7.

Proof of Proposition 9 The validity of the proposi-
tion for n = 2 can be verified by inspection. Assuming
the proposition holds for even values of n up to 2k, we
consider the case of n = 2(k + 1). Note that given the
Markov property, we have

P(x3, ...,x2(k+1)|x1,x2) = P(x3, ...,x2(k+1)|x2).

Let’s define for b = 0, 1, the distribution P ′
b over B2k as

P ′
b(v1, ..., v2k) = P(x3 = v1, ...,x2(k+1) = v2k|x2 = b).

Note that P ′
b satisfies the conditions stated in the propo-

sition and therefore, according to the induction assump-
tion, for b = 0, 1, P ′

b is strongly even. For any R ⊆
B2(k+1), if R satisfies d(R) ≥ 2, we can write

P(R) =
∑

x1,x2

P(x1, x2)P(R(x1,x2)|x2)

= P(x1x2 = 00)P ′
0(R(0,0)) + P(x1x2 = 10)P ′

0(R(1,0))

+ P(x1x2 = 11)P ′
1(R(1,1)) + P(x1x2 = 01)P ′

1(R(0,1)).

According to Lemma 23.2, R(0,b)∩R(1,b) = ∅ for b = 0, 1.
Therefore using P ′

b(R(1,b)) ≤ 1−P ′
b(R(0,b)), we can upper

bound the above quantity by

P(R) ≤ (P(x1x2 = 00) − P(x1x2 = 10))P ′
0(R(0,0))

+ (P(x1x2 = 11) − P(x1x2 = 01))P ′
1(R(1,1))

+ P(x1x2 = 10) + P(x1x2 = 01).
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It can be easily verified that the conditions on P(x1) and
P(x2|x1) stated in the proposition guarantee that

P(x1x2 = 00) − P(x1x2 = 10) ≥ 0

P(x1x2 = 11) − P(x1x2 = 01) ≥ 0 .

Therefore, we can extend the upper bound on P(R) as
follows

P(R) ≤ (P(x1x2 = 00) − P(x1x2 = 10))P ′
0(S

even
2k )

+ (P(x1x2 = 11) − P(x1x2 = 01))P ′
1(S

even
2k )

+ P(x1x2 = 10) + P(x1x2 = 01)

=
∑

x1⊕x2=0

P(x1, x2)P
′
x2

(Seven
2k )

+
∑

x1⊕x2=1

P(x1, x2)P
′
x2

(B2k − Seven
2k )

= P(Seven
2(k+1)),

where in the first inequality, we have used the strongly
evenness of P ′

b for b ∈ B (induction assumption) which
implies that for any (b1, b2) ∈ B2, P ′

b(R(b1,b2)) ≤
P ′

b(S
even
2k ).

Remark 24. Using the inductive step of the above proof,
one can show that if P ′ and P ′′ are strongly even over
Bn−2, then P is strongly even over Bn if

• For all (x1, x3, ..., xn) ∈ Bn−1,

P(x1, 0, x3, ..., xn) = P(x1,x2 = 0)P ′(x3, ..., xn),

P(x1, 1, x3, ..., xn) = P(x1,x2 = 0)P ′′(x3, ..., xn).

• For b ∈ B

P(x1 = b,x2 = b) ≥ P(x1 = 1 − b,x2 = b).

Proof of Proposition 10 Assuming n = 2k, let’s define
for b = 0, 1, the distribution P ′

b over B2k−1 as

P ′
b(v1, ..., v2k−1) =

2k
∏

i=2

P(xi = vi−1|x1 = b).

Given the condition on P(xi = 0|x1 = 0) stated in the
proposition and using the result of Proposition 8, we can
conclude that P ′

0 is strongly even. Now let’s define the
inverting function Inv : B2k−1 7→ B2k−1 as Inv(v) = (1 ⊕
v1, ..., 1⊕ v2k−1) and consider the distribution PInv such
that

PInv(v) = P ′
1(Inv(v)).

Given the condition on P(xi = 0|x1 = 1) stated in the
proposition and using the result of Proposition 8, we can
conclude that PInv is strongly even. This implies that
for any R ⊂ B2k−1 with d(R) ≥ 2

PInv(Seven
2k−1) ≥ PInv(R).

One can easily verify that Sodd
2k−1 = Inv(Seven

2k−1) and there-
fore

PInv(Seven
2k−1) = P ′

1(S
odd
2k−1),

which further leads to

P ′
1(S

odd
2k−1) ≥ P ′

1(R), (8)

for any R ⊂ B2k−1 which satisfies d(R) ≥ 2. Note that
the sets Seven

2k , Seven
2k−1 and Sodd

2k−1 are related by the fol-
lowing equation

P(Seven
2k ) = P(x1 = 0)P ′

0(S
even
2k−1) + P(x1 = 1)P ′

1(S
odd
2k−1).

(9)

Using the above derivations, we can now write for any
S ⊂ B2k which satisfies d(R) ≥ 2

P(R) = P(x1 = 0)P ′
0(R(0)) + P(x1 = 1)P ′

1(R(1))

≤ P(x1 = 0)P ′
0(S

even
2k−1) + P(x1 = 1)P ′

1(S
odd
2k−1)

= P(Seven
2k ).

The first inequality in the above derivation is a conse-
quence of the strongly evenness of P ′

1 and equation 8.
Also the last line is copied from equation 9.
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