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This paper provides an introduction to a new method for distributed optimization based
on collaborative optimization, a decomposition-based method for the optimization of com-
plex multidisciplinary designs. The key idea in this approach is to include models of the
global objective and all of the subspace constraints in each subspace optimization problem
while maintaining the low dimensionality of the system level (coordination) problem. Re-
sults from an analytic test case and an aircraft family design problem suggest that the new
approach is robust and leads to a substantial reduction in computational effort.

I. Introduction

Collaborative optimization (CO) is a method for the design of complex, multidisciplinary systems that
was originally proposed1 in 1994. CO is one of several decomposition-based methods that divides a design
problem along disciplinary (or other convenient) boundaries. The idea is to mirror the natural divisions
found in aerospace design companies. In these settings, engineers are often divided into design groups by
disciplinary expertise. Disciplinary analysis tools tend to be complex in nature, and it is often impractical
to integrate multiple analysis codes for the purpose of multidisciplinary optimization. Rather, CO offers a
means of coordinating separate analyses, even leveraging discipline-specific optimization techniques. Relative
to other decomposition-based methods, CO provides the disciplinary subspaces with an unusually high level
of autonomy. This enhances their ability to independently make design decisions pertinent primarily to their
discipline.

Collaborative optimization has been successfully applied to a variety of mathematical test problems and
practical engineering design problems. For example, it has been used for the conceptual design of launch
vehicles,2,3 high speed civil transports4 and unmanned aerial vehicles.5 However, it also suffers from some
challenges, as documented by Alexandrov,6,7 DiMiguel,8 and others. DeMiguel highlights features of CO
that have an adverse effect on robustness and computational efficiency. Three of these deficiencies are briefly
reviewed in the following paragraph, since they strongly motivated the development of enhanced collaborative
optimization (ECO).

The basic CO formulation is composed of two levels. The system level (top level) is given by Equation
1. Note that the variable set (z) includes only those variables required by more than one subspace. The x∗s
are subspace target responses that provide each subspace’s best attempt to meet the system level targets
(z). The x∗s are treated as dependent variables, which means that the subspaces must be re-optimized each
time that the system level evaluates its constraints.

min
z

F (1)

subject to Ji = ‖z− x∗s‖
2
2 ≤ 0, i = 1, . . . , n

where F (z) is the global objective
z are variables (i.e., system level targets for shared variables)
x∗s are dependent variables (i.e., subspace target responses)
n is the number of subspaces
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The subspace level (lower level) is illustrated in Equation 2. The subspace objective focuses entirely on
achieving compatibility by seeking to match targets for shared variables that have been sent by the system
level. The set of independent variables includes both “shared” (x) and “local” (xL) variables. The set of
shared variables includes both independent (x) and dependent (y) variables. The dependent variables are
also referred to as “coupling” variables.

min
x,xL

Ji = ‖xs − z‖22 (2)

subject to g(x,xL) ≥ 0
analysis y = y (x,xL)

where x are independent shared variables
xL are local variables (variables relevant only to the local subspace)
y are dependent shared variables (or “coupling” variables)
xs = [x,y] are shared variables (local copies of system level variables)
z are parameters (targets from the system level)
g(x,xL) are local constraints

Briefly consider three difficulties8 with the bi-level optimization problem stated in Equations 1 and 2.

1. The system level Jacobian is singular at the solution. This can be seen by noting that the constraint
gradients are given by ∇J = 2.0(z− x∗s). Even with a robust optimizer, this has an adverse impact on
the rate of convergence.

2. The Lagrange multipliers in the subspace problems are either zero or converge to zero as z converges
to z∗. This can adversely effect subspace convergence.

3. The subspace responses (Ji) are, in general, nonsmooth functions of the targets, z. As a result, the
system level constraints are nonsmooth, hindering local and global convergence proofs for the system
level problem.

In response to these performance challenges, several significant updates to the original CO framework have
been proposed. The following paragraphs highlight two of these methods.

Sobieski proposed the use of response surfaces within the collaborative optimization framework.9 So-
bieski’s key idea was to replace the system level constraints with response surface models of the subspace
optimal responses. This is in contrast to modeling the subspaces themselves, using a response surface. Ad-
ditional details can be found in his thesis10 and AIAA Journal article.9 Sobieski’s method resolves many
(though not all) of the computational challenges associated with CO. First, while the system level Jacobian is
still singular at the solution, the subspace responses (as represented by response surfaces) are inexpensive to
evaluate. Hence, slow system level convergence no longer adversely impacts computational efficiency. Second,
the subspace Lagrange multipliers still converge to zero. Thus, subspace efficiency is still adversely affected.
Third, the response surfaces provide smooth subspace responses, yielding smooth system level constraints.
However, representing a non-smooth function with a smooth surface may not be an ideal approach.

Modified collaborative optimization (MCO) takes a different approach to addressing the computational
issues associated with CO. DiMiguel proposed two related methods that lead to improved efficiency in
the subspace and system level problems. Both formulations have unconstrained system level problems,
eliminating CO’s singular Jacobian. The subspace problems have also been reformulated to ensure that the
Lagrange multipliers do not converge to zero. However, the subspace responses (x∗s) are still non-smooth
functions of the system level targets. Additional details can be found in DeMiguel’s thesis11 and AIAA
conference paper.8

In fact, the subspace responses are fundamentally non-smooth functions of the system level targets. This
non-smoothness is caused by changes in the active set of subspace constraints. The key idea in ECO is to
communicate the source of non-smoothness by sharing models of each subspace’s constraints with all other
subspaces. This has the added benefit that it prevents subspaces from engaging in a tug-of-war struggle over
appropriate choices for shared design variables. With careful formulation, constraint models can be shared
without increasing the dimensionality of the system level optimization problem. The ECO method leads to
a reformulation of both the subspace and system level problems, eliminating the ill-conditioning associated
with the original CO formulation.
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ECO also seeks to enhance subspace design authority. One of the strengths of the original CO method is
that subspaces have exclusive control over local design decisions (i.e., subspace-specific variables). However,
the subspace objective focuses exclusively on satisfying compatibility rather than directly reducing the global
objective. In contrast, in the design of a complex aerospace system, the aerodynamics group would expect to
work toward minimizing drag rather than trying to best match some set of targets. So, it seems preferable
to enable the subspaces to work directly on relevant portions of the global objective. This idea has been
incorporated into ECO, as described in the next section.

This paper is organized as follows. Section II-A provides an overview of the method. Sections II-B and
II-C offer a detailed description of each level of the bi-level problem. Sections III and IV illustrate the
application of ECO to an analytic test case and an aircraft design problem.

II. Description of the Method

This section provides an overview of enhanced collaborative optimization (ECO), a new method based on
collaborative optimization (CO). The first subsection provides a high-level introduction to the method. The
second and third subsections provide a precise, generalized, description of the method. The last subsection
describes the solution process.

A. High-level Introduction

The system level is an unconstrained minimization problem. The objective is to ensure that all subspaces
use the same values of shared variables while satisfying their local constraints. Note that the global objective
(i.e., the overarching design goal) is not present in the system level objective. The system level’s entire goal
is to achieve compatibility between subspaces. The following is a simplified definition of the system level.

min
z

Jsys =
∑

(z− x∗)2

subject to No constraints
where z are the system level targets (i.e., suggestions) for shared variables

x∗ represent each subspace’s best attempt to match the system level targets,
subject to local constraints

The subspaces are responsible for most of the design decisions. Their objective function includes three
components: a quadratic model of the global objective, a quadratic measure of compatibility, and a set of
slack variables. Their constraint set includes local constraints and models of constraints from other subspaces.
The ith subspace is defined as follows.

min
x̄=[x,xL]

Ji = F̃ (xs) + λC

∑
(xs − z)2 + λF

∑
s

subject to g(i)(xs,xL) ≥ 0
g̃(j)(xs) + s(j) ≥ 0, j = 1..n, j 6= i

s ≥ 0
where x are independent shared variables

xL are local variables (i.e., relevant only to the current subspace)
y are dependent shared variables (or “coupling” variables)
xs = [x,y] are shared variables (i.e., relevant to multiple subspaces)
s are slack variables, which ensure a feasible subspace problem
z are parameters, provided by the system level, that act as targets
λC is a compatibility penalty parameter
λF is a feasibility penalty parameter
F̃ is a quadratic model of the global objective
g(i) are local constraints in subspace i

g̃(j) are linear models of the constraints in subspace j
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B. System Level Problem

This section provides additional details on the intended function and practical implementation of the system
level problem. The notation adopted in sections B and C precisely defines the most general system level and
subspace problems. The system level is defined as:

min
z

Jsys =
n∑

i=1

nsi∑
j=1

(zj − x∗(i)sj
)2 (3)

subject to No constraints
where n is the number of subspaces

nsi is the number of shared variables in subspace i

The original version of collaborative optimization (CO) provides a significant degree of independence for
each disciplinary subspace. This enables disciplinary experts to run their own codes using discipline-preferred
optimization techniques. However, each subspace has very limited knowledge of the actions and preferences
of the other subspaces. Information is only shared indirectly through the system level targets. As a result,
the system level must retain responsibility for selecting the shared variables. In contract, ECO provides each
subspace with a direct understanding of the other subspaces’ preferences (i.e., constraints). This enables the
transfer of most of the system level decision-making process to the individual subspaces. (The subspaces
direct the system level optimization process through target responses.) The system level coordination task
is now limited to providing dynamic “move limits,” which prevent the subspaces from taking large steps in
the wrong direction based on limited (i.e., linearly approximated) information from the other subspaces.

Two distinct approaches to the system level problem are possible. Both approaches have the same
functional form, as detailed in equation 3. However, they differ in their treatment of the x∗s. The first
method assumes that the x∗s are a function of z. This requires that the subspace optimization problems are
called (to update x∗s) each time that the system level objective is evaluated. (This process is equivalent to
the one that is used in the original version of CO.3) The second method eliminates the need for repeated
calls to the subspaces during the solution of the system level problem. In specific, the x∗s are treated as
parameters in the system level problem. The process proceeds as follows.

The system level sends an initial target set (z) to the constraint modeling subroutines and then to the
subspaces. The subspaces solve for the x∗s and return them to the system level. The system level treats the x∗s
as parameters (rather than functions of z), allowing it to solve its optimization problem without further calls
to the subspaces. The updated target set (z) is sent to the constraint modeling subroutines and subspaces.
This process is repeated until compatibility is achieved. Note that a similar iterative process has successfully
been implemented for a variety of practical problems using analytical target cascading (ATC).12–16 In fact,
since the system level problem is unconstrained, the system level optimum is simply the average of the target
responses returned from the subspaces. Both methods appear promising, and both have successfully solved
a suit of test cases. The remainder of this paper focuses on the use of simple averaging at the system level.

C. Subspace Problem

This section explores the subspace formulation in detail. First, it describes the subspace optimization
problem. Second, it presents the development of subspace constraint models. Third, it introduces a method
for modeling local subspace analyses. Fourth, it discusses appropriate selection of the penalty parameters
λF and λC .
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1. Subspace Description

The ith subspace is defined as:

min
x̄=[xs,xL,sg,sh,e]

Ji = F̃ (xs) + λC

nsi∑
k=1

(xsk
− zk)2

+ λF

n∑
j=1

ngj∑
k=1

s(j)
gk

+ λF

n∑
j=1

nhj∑
k=1

(
s
(j)
hk

+ e
(j)
k

)
, j 6= i (4)

subject to g
(i)
k (xs,xL) ≥ 0, k = 1..ngi

h
(i)
k (xs,xL) = 0, k = 1..nhi

g̃
(j)
k (xs) + s(j)

gk
≥ 0, j = 1..n, k = 1..ngj , j 6= i

h̃
(j)
k (xs) + s

(j)
hk
− e

(j)
k = 0, j = 1..n, k = 1..nhj

, j 6= i

sg, sh, e ≥ 0

where F̃ is a quadratic model of the global objective
ngj

is the number of inequality constraints in subspace j

nhj
is the number of equality constraints in subspace j

g̃
(j)
k is a linear model of the kth inequality constraint in subspace j

h̃
(j)
k is a linear model of the kth equality constraint in subspace j

The subspace receives targets (z) and constraint model coefficients (∂g(j)/∂z) from the system level, which
are treated as parameters. The subspace returns target responses (x∗s). Note that each subspace (as illus-
trated by the ith subspace) requires models of the constraints from all other subspaces. Though the original
constraints are typically a function of both local and shared variables, the constraint models used in sub-
space i are functions only of the shared variables in subspace i. Consider a linear model of the kth inequality
constraint in subspace i. To ease the notation, the superscript (i) is dropped.

g̃k = gk|z,x∗L
+

∂gk

∂z1

∣∣∣∣
z,x∗L

(xs1 − z1) +
∂gk

∂z2

∣∣∣∣
z,x∗L

(xs2 − z2) + . . . = gk|z,x∗L
+

∂gk

∂z

∣∣∣∣
z,x∗L

(xs − z)

The coefficients in the constraint model are described in the next section.

2. Constraint Modeling

The goal of constraint modeling is to capture the effect of the target variables (z) on the subspace constraints.
To accomplish this task, consider the optimization sub problem shown in Equation 5.

min
x̄=[xL,sg,sh,eh]

JiCV M
=

ngi∑
k=1

sgk
+

nhi∑
k=1

(shk
+ ehk

) (5)

subject to gk(xs,xL) + sg ≥ 0, k = 1..ngi

hk(xs,xL) + sh + eh = 0, k = 1..nhi

sg, sh, eh ≥ 0
where xs are parameters with values, xs = z

gk(xs,xL) are local inequality constraints
hk(xs,xL) are local equality constraints
ngi

is the number of inequality constraints in subspace i
nhi

is the number of equality constraints in subspace i

The sub problem receives target values (z), which it treats as parameters. Its sole objective is to minimize
the cumulative constraint violation through optimal selection of the local variables (xL). This leads to its
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name: “constraint violation minimization” (or CVM) problem. The solution to the CVM problem provides
all of the information necessary for constraint modeling. First, it provides the constant coefficient, gk|z,x∗L

,
for each constraint model. This is obtained directly from the optimal values of the slack and excess variables.
Second, it provides each linear coefficient, ∂gk

∂zi

∣∣∣
z,x∗L

, as illustrated in Equation 6.

∂g

∂zi

∣∣∣∣
z,x∗L

=
(

∂g

∂xs

) (
dxs

dzi

)
+

(
∂g

∂xL

) (
dx∗L
dzi

)
=

(
∂g

∂xs

)
+

(
∂g

∂xL

) (
dx∗L
dzi

)
(6)

where
(

∂g

∂xs

)
is obtained from differentiating the constraints(

∂g

∂xL

)
is obtained from differentiating the constraints(

dx∗L
dzi

)
is obtained from 2nd-order post-optimality sensitivity analysis17

Note that this approach to constraint modeling indirectly captures the effect of the local variables without
sharing them outside of the subspace. The last term requires solution of the following set of linear equations,17

where the set of independent variables is x = [xL, sg, sh, eh].[
∇2

xxL ∗ −(A∗)T

A∗ 0

] [
dx
dzi

dλ∗

dzi

]
=

[
−∇2

zixL ∗

−∂c∗

∂zi

]
(7)

3. Modeling Subspace Analyses

The preceding paragraphs have focused on developing models of the subspace constraints that can be shared
with other subspaces. Since local analyses also effect the solution of the subspace optimization problem, it is
important to model these analyses in other subspaces. This is accomplished using the same process outlined
for constraints.18

4. Penalty Parameters

The subspace objective is a combination of three terms: (1) a quadratic model of the global objective, (2)
a compatibility term, and (3) a constraint violation term. Terms (2) and (3) are accompanied by penalty
parameters, λC and λF . The following is a brief description of the rationale for selecting λF and λC . λC

determines the compromise between exploration (small λC) and exploitation (large λC). While its selection
impacts ECO’s computational efficiency, convergence should be obtained for a reasonable range of values.
λF determines the relative weight that is placed on satisfying the constraint models. Since the constraint
models are only linear approximations of the original constraints, it is unwise for the subspaces to venture too
far from the design targets (z) while seeking to satisfy the constraint models. For the test cases investigated
in this paper and in Reference 18, convergence was obtained for a reasonable range of values. Specific details
are provided for each test case.

The compatibility term warrants an additional note. Unlike the original version of CO, the compatibility
term in the subspace objective does NOT ensure compatibility. As with any quadratic penalty function, it
will only be precisely satisfied in the limit as λC →∞. Rather, it acts as a dynamic “move limit,” guiding
the optimization process. This “guide” is needed since each subspace has only limited knowledge of the other
subspaces’ constraints. Without the “guide,” this limited knowledge might be wrongly exploited.

D. Solution Process

This section describes the solution process for ECO (Enhanced Collaborative Optimization). ECO requires
a two-step process to build constraint models and solve the subspace optimization problems. In step one,
the system level calls a set of subroutines that construct constraint models. (One subroutine corresponds
to each subspace.) These model-builders typically take the form of constraint violation minization (CVM)
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problems, as detailed in section C. The system level sends the current targets (z). The model-builders return
sets of “constraint model coefficients” that can be used to construct linear models of all subspace constraints,
linearized about z. In step two, the system level calls all subspaces. The system level sends targets, z, and
constraint model coefficients. The subspaces return target responses, x∗s. The system level problem is then
solved, and the targets (z) are updated. The process is repeated until compatibility is achieved.

III. Analytic Test Case

This section illustrates the application of ECO to an analytic test case. Results are compared with those
obtained via the original version of CO. Additional test cases can be found in [18]. The problem explored
in this section was introduced by Sellar, Batill and Renaud at Notre Dame in the context of concurrent
subspace optimization (CSSO).19 Others adopted the problem, using it to compare the performance of CO,
CSSO, and BLISS.20,21 Renaud20 concluded that CO was “ineffective and unreliable.” Chen21 concluded
that while CO was easy to implement, it suffered from slow convergence. Neither paper provided a table that
listed convergence details for a selection of starting points. However, both papers suggested that convergence
required approximately 2000 function evaluations. Both papers based their comments on an implementation
that used optimizers from the Matlab toolbox. As illustrated in this section, an SNOPT implementation
is more efficient and reliable. In addition, ECO provides an additional computational savings of more than
90%. It should be noted, however, that this problem is not an ideal test case for CO because it has no local
(non-shared) variables in the subspaces. Collaborative optimization is best suited to problems where local
variables far outnumber shared variables in each of the subspaces.

The test case is defined as follows:

min
x̄=[x1,x2,x3]

f = x2
2 + x3 + y1 + e−y2

subject to (y1/y1a)− 1 ≥ 0
1− (y2/y2a) ≥ 0

Bounds −10 ≤ x ≤ 10
Analysis y1 = x2

1 + x2 + x3 − 0.2y2

y2 = y
1/2
1 + x1 + x3

Parameters y1a = 8
y2a = 24

Global Optimum [x1, x2, x3, y1, y2] = [3.0284, 0.0000, 0.0000, 8.0000, 5.8569]
f = 8.00286

Local Minima [x1, x2, x3, y1, y2] = [−2.8014, 0.0757, 0.1021, 8.0000, 0.1292]
f = 8.9867

The solution to this integrated problem is shown in Table 1. While just four samples are shown, the
optimization process converged for all starting points. Convergence (from 32 starting points) required an
average of 49 function calls.

Table 1. Solution Via Integrated Approach

Starting Type of System Level Avg Subspace Function
Point Minima Iterations Iterations Evaluations
z = [−10, 0, 5] Local 57 — 57
z = [−1, 5, 0] Local 55 — 55
z = [1, 0, 5] Global 54 — 54
z = [10, 5, 10] Global 62 — 62
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1. CO Formulation

The test case was also solved via the original version of CO. The problem decomposition is shown below,
and results are provided in Table 2.
System-level problem:

min
x̄=[z1,z2,z3,y1,y2]

f = x2
2 + x3 + y1 + e−y2

subject to (z1 − x
(1)
1 )2 + (z2 − x

(1)
2 )2 + (z3 − x

(1)
3 )2 + (y1 − y

(1)
1 )2 + (y2 − y

(1)
2 )2 ≤ 0

(z1 − x
(2)
1 )2 + (z2 − x

(2)
2 )2 + (z3 − x

(2)
3 )2 + (y1 − y

(2)
1 )2 + (y2 − y

(2)
2 )2 ≤ 0

Subspace 1 is defined as:

min
x̄=[x1,x2,x3,y2]

f1 = (x1 − z1)2 + (x2 − z2)2 + (x3 − z3)2 + (y1 − yz1)2 + (y2 − yz2)2

subject to (y1/y1a)− 1 ≥ 0
Analysis y1 = x2

1 + x2 + x3 − 0.2y2

Subspace 2 is defined as:

min
x̄=[x1,x3,y1]

f2 = (x1 − z1)2 + (x2 − z2)2 + (x3 − z3)2 + (y1 − yz1)2 + (y2 − yz2)2

subject to 1− (y2/y2a) ≥ 0

Analysis y2 = y
1/2
1 + x1 + x3

The solution to this problem is shown in Table 2. Convergence was achieved for a wide range of starting
points, four of which are shown in the table. Convergence required an average of 598 subspace objective
function evaluations (based on 32 starting points). These results are in contrast to published reports that
suggested inconsistent convergence and/or thousands of subspace evaluations required for convergence.20,21

Table 2. Solution Via CO

Starting Type of System Level Avg Subspace Function
Point Minima Iterations Iterations Evaluations
z = [−10, 0, 5] Local 97 6.70 650
z = [−1, 5, 0] Global 79 8.24 651
z = [1, 0, 5] Global 42 7.60 319
z = [10, 5, 10] Global 73 8.36 610

2. ECO Formulation

The test case has been successfully solved using ECO. The system level is defined as follows.

min
z1,z2,z3,z4,z5

Jsystem =
[
(z1 − x

(1)
1 )2 + (z2 − x

(1)
2 )2 + (z3 − x

(1)
3 )2 + (z4 − x

(1)
4 )2 + (z5 − x

(1)
5 )2

]
+

[
(z1 − x

(2)
1 )2 + (z3 − x

(2)
3 )2 + (z4 − x

(2)
4 )2 + (z5 − x

(2)
5 )2

]
subject to No Constraints
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Subspace 1 is given by:

min
x

J1 =
[
x2

2 + x3 + x4 + e−x5
]

+λC

[
(x1 − zz)2 + (x2 − z2)2 + (x3 − z3)2 + (x4 − z4)2 + (x5 − z5)2

]
+ λF [e1]

where x = [x1, x2, x3, x4, x5, e1, e2]
subject to g1 = (x4/y1a)− 1.0 ≥ 0

h1 = x4 − y1 = 0

g̃2 = g2(z) +
5∑

i=1

[(
dg2

dxi

)
(xi − zi)

]
+ e1 ≥ 0, i 6= 2

h̃2 = h2(z) +
5∑

i=1

[(
dh2

dxi

)
(xi − zi)

]
+ e2 ≥ 0, i 6= 2

Analysis: y1 = x2
1 + x2 + x3 − 0.2x5

Subspace 2 is given by:

min
x

J2 =
[
x3 + x4 + e−x5

]
+ λC

[
(x1 − zz)2 + (x3 − z3)2 + (x4 − z4)2 + (x5 − z5)2

]
+ λF [e1 + e2]

where x = [x1, x3, x4, x5, e1, e2]
subject to g2 = 1.0− (x5/y2a) ≥ 0

h2 = x5 − y2 = 0

g̃1 = g1(z) +
5∑

i=1

[(
dg1

dxi

)
(xi − zi)

]
+ e1 ≥ 0, i 6= 2

h̃1 = h1(z) +
5∑

i=1

[(
dh1

dxi

)
(xi − zi)

]
+ e2 ≥ 0, i 6= 2

Analysis: y2 = x
1/2
4 + x1 + x3

Consider constructing a model for h2. Since y2 is a local, dependent variable, it cannot be directly included
in the model. Rather, finite differencing (or analytic differentiation, if available) should be used to construct
a linear model of the analysis response, y2, as a function of the shared variables, x1, x3, x4, and x5. This
yields h̃2 = h2(z) + 1.0(x5 − z5)−

[
1.0(x1 − z1) + 1.0(x3 − z3) + 0.5z−0.5

4 (x4 − z4)
]
.

The solution to the test case using ECO is shown in Table 3. Results were generated using λF = 10
and λC = 0.1. Convergence required an average of 58.8 subspace objective function evaluations (based on
32 starting points). This highlights an average computational savings of more than 90% over the original
version of CO. Note that the ECO subspace problems require 40% fewer iterations for convergence. This
highlights the fact that the ECO subspace problems no longer suffer from the ill-conditioning inherent in the
original version of CO. In summary, enhanced collaborative optimization (ECO) consistently and efficiently
solves this test case.

Table 3. Solution Via ECO

Starting Type of System Level Avg Subspace Function
Point Minima Iterations Iterations Evaluations
z = [−10, 0, 5] Global 12 5.1 61
z = [−1, 5, 0] Global 15 4.3 65
z = [1, 0, 5] Global 7 4.7 33
z = [10, 5, 10] Global 15 4.3 64
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IV. Design of an Aircraft Family

A product family is a set of individual products that share common components or subsystems and
address a related set of market applications.22 In an aerospace context, a product family is usually comprised
of a baseline aircraft and its derivatives or variants. A typical approach is to design the family members
sequentially, beginning with the baseline design. In this approach, shared components are designed primarily
for the needs of the baseline aircraft. An alternative is to design all family members at the same time.23 This
yields shared components that are non-optimal from the perspective of individual family members, but are
family-optimal. In other words, designing all family members at the same time yields common components
that provide an optimal compromise between the competing needs of all family members.

In this paper we consider a family composed of two aircraft. The aircraft share a common main wing
section, and are allowed to have unique wing tip extensions. The objective function includes cost measures
that distinguish between unique aircraft and families of aircraft, namely, a detailed model of acquisition cost
and a reasonable estimate of fuel cost.

The acquisition cost model used in this paper is based on recent work by Markish.24 Acquisition cost is
split into manufacturing and development costs. A manufacturing learning curve is applied such that cost
decreases with the number of units produced. For example, the 100th unit costs less to manufacture than
the 1st unit. Development cost is non-recurring and is averaged over the total number of aircraft produced.
For every part of a new aircraft design that has already been developed for another aircraft (i.e., for another
aircraft in the family), the non-recurring cost is significantly lower. Thus, the effects of commonality are
captured by the acquisition cost model.

Many airline labor costs, such as pension plans, are relatively unaffected by an airline’s choice of aircraft
fleet. Other labor costs, however, such as crew scheduling, training, and maintenance, are significantly
impacted by choice of aircraft fleet.25 These costs are difficult to model and have not been included in the
present cost model. Though not specifically addressed in this paper, product families provide a potentially
significant benefit in this area.

Aircraft performance is evaluated using the Program for Aircraft Synthesis Studies (PASS), an aircraft
conceptual design tool based on a collection of McDonnell-Douglas methods, DATCOM correlations, and
new analyses developed specifically for conceptual design and performance. PASS has evolved over more
than 15 years.26 A detailed description of these methods may be found on the website of an aircraft design
course at Stanford University.27

While existing conceptual design tools such as PASS are well-suited for the design of individual aircraft, a
more detailed structural model is required for aircraft family design. For example, wing weight is computed
using the following semi-empirical equation.

Wwing = 4.22Swg + 1.642 ∗ 10−6 Nultb
3
√

WTOWZFW (1 + 2λ)
(t/c)avgcos2(Λea)Swg(1 + λ)

(8)

Note that wing weight is a function of wing geometry (Swg, b, λ, etc.) as well as aircraft weight (WTO).
Thus, sharing a common wing geometry is not sufficient to ensure wing commonality. An additional issue
is the need to compute the weight of individual wing sections such as root and tip extensions. These issues
associated with wing commonality suggest the need for a more detailed wing weight model. While a finite
element model was an option, the goal was a low-fidelity model consistent with existing conceptual design
tools that captured the desired effects and was computationally efficient. The solution was a simple wing-box
model in which the wing skin carried the bending load. An analysis estimated the load distribution on the
wing and computed the material necessary to resist the resulting bending moment. Since high-lift systems,
control surfaces, and minimum gauge material add to the final wing weight, a new equation was developed
based on “bending material” and correlated to existing aircraft. This equation is listed below, where Wstr is
the weight of material needed to resist bending, Wmin is the weight of minimum gauge material, and Swing

is the wing area
Wwing = 1.35(Wstr −Wmin) + 4.9Swing. (9)

Given a wing weight equation appropriate for modeling commonality between family members, the next
step was to identify an appropriate means of parameterizing the wing for use in a decomposed optimization
problem. The goal was to minimize the dimensionality while ensuring commonality. It was noted that an
approximately quadratic relationship exists between skin thickness and spanwise location in the simple wing
model. This enabled a three-term parameterization, where the skin thickness was defined at the following
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spanwise locations: wing root (T1), 33% span (T2), and 67% span (T3) (of the main wing section). The wing
tip was intentionally avoided in this parameterization since it is often sized by minimum gauge requirements
rather than stress constraints. This yielded the following set of eight variables that uniquely define the
main wing section: Swing, ARwing, λ, Λ, (t/c), T1, T2, and T3. (Note that the current investigation focuses
on commonality of the main wing section, with each aircraft allowed to have a unique wing tip extension.
Future work will include the capability for wing root and wing tip extensions.)

A. Problem Statement

This paper considers an aircraft family that includes two aircraft types, A and B, designed to fulfill missions
1 and 2, respectively. Mission 1 requires a range of 3400 nautical miles (nmi) and an aircraft capacity of
300 passengers. Mission 2 requires a range of 8200 nmi and an aircraft capacity of 260 passengers. Forecasts
suggest a market need for 800 type A aircraft, and a need for 400 type B aircraft. In addition to mission
requirements, constraints such as balanced field length and second segment climb are included.

The design problem is decomposed using enhanced collaborative optimization. The system level design
problem coordinates the design of all family members. Each subspace optimization problem is responsible
for the design of one family member. Local design variables specify all portions of the aircraft not shared in
common with other aircraft in the family. Component commonality in the present study is limited to the
main wing. Each family member has the freedom to specify its own wing tip extension area. This decom-
position by family member provides many of the same benefits afforded by the disciplinary decomposition
of multidisciplinary problems. Namely, it simplifies analysis integration, it provides a means to manage
problem complexity, and it enables concurrent design of all family members.

The aircraft family design problem involves 16 design variables for each of the two aircraft types. The
design variables for each aircraft (x1i . . . x16i, i ∈ {A,B}) are described in Table 4.

Table 4. Design variables for the aircraft family design problem

Aircraft A Aircraft B
Variable Name Description Var Bounds Var Bounds

x1i WTO takeoff weight 300k - 450k lbs 450k - 600k lbs
x2i Thrust sea level static thrust 45k - 65k lbs 75k - 105k lbs
x3i Xwing location of wing root LE 0.20 - 0.40 0.20 - 0.40
x4i Sh/Sref nondimen. horiz. tail area 0.20 - 0.35 0.20 - 0.35
x5i AltI initial cruise altitude 32k - 45k ft 32k - 45k ft
x6i AltF final cruise altitude 32k - 45k ft 32k - 45k ft
x7i Mach cruise Mach number 0.75 - 0.92 0.75 - 0.92
x8i flapTO takeoff flap deflection 0.0 - 30.0 0.0 - 30.0
x9i Swt wing tip extension area 0 - 140 ft2 0 - 140 ft2

x10i Swing main wing area 2000 - 4000 ft2 2000 - 4000 ft2

x11i ARwing main wing aspect ratio 6.0 - 12.0 6.0 - 12.0
x12i (t/c) thickness to chord ratio 0.08 - 0.13 0.08 - 0.13
x13i Λ wing sweep 20.0 - 35.0 20.0 - 35.0
x14i T1 skin thickness at wing root 0.06 - 2.5 0.06 - 2.5
x15i T2 skin thickness at 33% span 0.06 - 2.0 0.06 - 2.0
x16i T3 skin thickness at 67% span 0.06 - 1.5 0.06 - 1.5

The product family design problem imposes the constraint that the variables x10i . . . x16i are equal for
each aircraft, since these pertain to the common component—the main wing. The vector of shared variables
is

xs = [x10A . . . x16A]T = [x10B . . . x16B ]T.

The local variables for aircraft A and B are

x`A = [x1A . . . x9A]T and x`B = [x1B . . . x9B ]T.
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The complete set of design variables for the product family design problem is

x = [xT
`A xT

`B xT
s ]T.

Each aircraft must comply with a set of five performance constraints, whose numeric values are specific
to the mission each aircraft is designed to fly (see Table 5).

Table 5. Design constraints for the aircraft family design problem

Constraint Name Description Aircraft A Aircraft B

g1 Range min range 3,400 nmi 8,200 nmi
g2 TOFL max takeoff field length 7,000 ft 10,000 ft
g3 LFL max landing field length 5,200 ft 6,000 ft
g4 γ2 min 2nd seg. climb grad 0.024 0.024
g5 stab stability requirement ≥ 0.10 ≥ 0.10
g6 σ̂1 normalized stress at wing root ≤ 0 ≤ 0
g7 σ̂2 normalized stress at 33% span ≤ 0 ≤ 0
g8 σ̂3 normalized stress at 67% span ≤ 0 ≤ 0

The objective of the aircraft family design problem is to minimize a composite cost metric for the family,
where the cost metric for each mission is normalized by the number of aircraft that fly each mission. The
cost metric model is based on an estimate of direct and indirect operating costs27 with specific attention
given to acquisition cost.24 The system objective function is given in Equation (10), where nA and nB are
the number of aircraft A and B in the family, respectively, and pA and pB are the cost metrics for each
aircraft.

f(x) =
nA

nA + nB
pA(x`A,xs) +

nB

nA + nB
pB(x`B ,xs). (10)

B. Family Results

Table 6 describes the solution of the aircraft family design problem. As required, both aircraft meet all
performance requirements. In addition, ECO successfully guides the two aircraft design subspaces to com-
patibility of the shared wing section. One result deserves further discussion. Note that Aircraft A prefers a
larger wing tip extension than Aircraft B, even though it is the smaller of the two aircraft. At first glance,
this is counterintuitive — one might expect the larger family member to have the larger wing area. The
explanation is as follows. Because both aircraft share the same main wing section, Aircraft A carries excess
wing structure. In specific, the wing root bending stress is 67% of the yield stress, as illustrated by σ̂1. This
implies that Aircraft A can add additional span without paying a structural weight penalty. The additional
span (i.e., wing tip extension) yields a higher aspect ratio, reducing induced drag during takeoff. This reduces
the thrust required for takeoff, enabling smaller engines and a lower direct operating cost.

V. Closing Remarks

This paper has provided an introduction to enhanced collaborative optimization (ECO). ECO builds on
existing decomposition-based methods such as collaborative optimization and analytical target cascading.
The key idea in this new approach is to share models of the constraints with all disciplinary design teams while
maintaining the low dimensionality of the system level (coordination) problem. Results from the analytic
test case suggest that ECO yields significant computational savings, relative to collaborative optimization.
The price for this computational savings is a small increase in the complexity of the method. In specific,
a potentially significant amount of subspace constraint information must be shared among the disciplines.
This is in contrast to CO in which the subspaces deal only with local constraints and shared variables. This
paper also illustrates ECO’s successfully application to an aircraft family design problem.
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