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Abstract—Search and exploration using multiple 
autonomous sensing platforms has been extensively studied 
in the fields of controls and artificial intelligence. The task 
of persistent surveillance is different from a coverage or 
exploration problem, in that the target area needs to be 
continuously searched, minimizing the time between 
visitations to the same region. This difference does not 
allow a straightforward application of most exploration 
techniques to the problem, although ideas from these 
methods can still be used. In this research we investigate 
techniques that are scalable, reliable, efficient, and robust to 
problem dynamics. These are tested in a multiple unmanned 
air vehicle (UAV) simulation environment, developed for 
this program. 

A semi-heuristic control policy for a single UAV is 
extended to the case of multiple UAVs using two methods. 
One is an extension of a reactive policy for a single UAV 
and the other involves allocation of sub-regions to 
individual UAVs for parallel exploration. An optimal 
assignment procedure (based on auction algorithms) has 
also been developed for this purpose. A comparison is made 
between the two approaches and a simplified optimal result. 
The reactive policy is found to exhibit an interesting 
emergent behavior as the number of UAVs becomes large. 
The control policy derived for a single UAV is modified to 
account for actual aircraft dynamics (a 3 degree-of-freedom 
nonlinear dynamics simulation is used for this purpose) and 
improvements in performance are observed. Finally, we 
draw conclusions about the utility and efficiency of these 
techniques.1 2 
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1. INTRODUCTION 

Surveillance of a target space using aerial vehicles is a topic 
of current research interest for applications such as weather 
monitoring, geographical surveys, and perhaps extra-
terrestrial exploration. These missions often require long 
endurance and unmanned aerial vehicles are a natural 
choice for the sensing platforms. The use of multiple UAVs 
in this context is motivated by concerns for reliability and 
efficiency of exploration. Extensive research in the controls 
and AI communities has been geared toward cooperative 
multiple robot problems [1] [2], and in particular, 
autonomous search and exploration tasks [3]. The use of 
aerial vehicles brings additional concerns pertaining to 
dynamics of the vehicles [4], but many of the same ideas 
apply. Flint et al. [5] [6] have applied deterministic 
Dynamic Programming (DP) for path planning for each 
vehicle, with improvements suggested by Yang [7]. A K-
shortest path algorithm has been used by Sujit et al. [8] for 
maximizing explored area under endurance constraints, 
while [9] uses mixed integer linear programming for task 
assignment and trajectory planning. Work in [10] focuses 
on a combination of centralized and decentralized 
approaches to address communication and computational 
constraints. Much effort has been associated with 
uncertainties in sensing and motion in presence of obstacles 
for robots exploring an office environment [11]. Traditional 
search strategies such as A* have also been applied for 
search tasks [12], but do not address the problem of 
cooperation between vehicles. Latimer et al. [13] have used 
boustrophedon decomposition to divide target space into 
cells, which are then searched using either a single UAV or 
multiple UAVs in formation. Other work using 
decomposition based methods has addressed the problems 
of static [14] and dynamic coverage [15]. Coordination field 
methods [16], [17] that incorporate particle swarm 
optimization, digital pheromone mechanisms, and potential 
function based approaches, are highly scalable, using 
reactive control policies. Caselli et al. [18] use a 
probabilistic path planning approach and suggest ways to 
escape from local minima associated with potential fields. 
Among other scalable approaches, work by Tumer et al. 
[19] [20] is notable. In that work neural networks are used 
to represent control policies that are learnt online using an 
evolutionary algorithm. Recent work at Boeing [21] uses a 
combination of four basic behaviors to define the overall 
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reactive policy of each UAV to solve an exploration 
problem.  

Most of the methods described above can be classified into 
two categories: One class includes approaches with a formal 
derivation or proof of optimality but not scalable to a very 
large number of vehicles (tens or hundreds) because of 
embedded planners. The other class involves approaches 
that are decentralized and scalable but heuristic. Some of 
the techniques cannot be applied in an online setting and 
may not be useful for sensor-based coverage. Many 
strategies either ignore vehicle dynamics or treat it 
independently of the control scheme. Finally, application of 
many existing methods to a persistent surveillance problem 
is not straightforward.  

In the present problem, the target space (physical area to be 
searched) uses an approximate cellular decomposition3 and 
each cell has an associated age, determined from the time 
elapsed since it was last observed. The system level goal is 
to minimize the maximum age over all cells that are 
observed over a long period of time. That is, no area of the 
target space should be left unexplored for a long period of 
time. This problem differs from an exploration task in that 
the space has to be continually explored, and the age of the 
cell becomes important4. It also differs from problems of 
minimizing map uncertainty5 generally encountered in 
literature [22], wherein the cumulative uncertainty is what 
matters and not the maximum uncertainty of a cell. We also 
require that the control policies followed by UAVs be 
responsive to changes in the environment and able to deal 
with cases in which all areas are not of equal importance 
(though we do not deal specifically with these aspects in 
this paper). 

In this study, we start by deriving an optimum policy for a 
simple case with a single UAV in 1-D.  We then extend this 
policy to a more realistic scenario for a single UAV and 
analyze its performance. The method is compared to a 
heuristic approach, similar to potential function methods, 
and to a DP based planning approach. The single UAV 
policy is then extended to a multiple-UAV case resulting in 
a multi-agent reactive policy (MRP).  

Another second approach to multiple UAV coordination is 
also studied.   The target space is optimally divided into 
subspaces that are allocated to individual UAVs and are 
then searched independently by each UAV. This space 
decomposition (SD) method involves finding the optimum 
partitioning of the space. A real-encoded genetic algorithm 
is used for this purpose. After the decomposition, UAVs are 
2                                                           
3 Approximate cellular decomposition refers to the fact that the sensor 
footprint equals the cell dimensions and in our case, the cells exhaustively 
cover the target space too. 
4 As opposed to a binary variable indicating whether a cell has been 
explored or not. 
5 The uncertainty reduces when a cell is explored and increases over time, 
analogous to the age parameter in our implementation. 

allocated to partitions using an optimal assignment 
procedure based on auction algorithms [23] [24]. A multi-
UAV simulation environment has been developed to 
compare the MRP and SD methods to a bound on the 
optimal performance. The MRP is found to exhibit an 
emergent behavior as the number of UAVs becomes large. 
The effect of aircraft dynamics (using a 3-DOF model) on 
system performance is also studied. The altitude of the 
aircraft is assumed to have no effect on sensing, so only the 
turn radius and velocity of aircraft affect the performance. 
We further introduce a non-holonomic constraint by 
assuming that the aircraft travels (and turns) at constant 
velocity. This allows us to simplify the dynamics model, 
which is then used for a single UAV to analyze the coupling 
between the control policy and dynamics. A minimum 
length trajectory-tracking controller is also described and 
implemented. We then look at a way to improve UAV 
performance with dynamic constraints. 

2. POLICY FOR A SINGLE UAV 

An optimum policy for a single UAV in 1-D with only two 
cells is analyzed as a starting point.  Extension to a 2-D, 
multiple cell case leads to a search pattern that emerges 
from the simple reactive control policy. This policy is 
compared with some benchmark techniques. 

Optimum Policy Structure 

This exercise attempts to find a structure for a reactive 
control policy that would work well for this problem. We 
consider a case of two cells that need to be visited so as to 
minimize the maximum of the ages of the cells observed. 
The problem is 1-D, and the UAV, stationed at distance x 
from the left cell (see Fig. 1), is assumed to travel at 
constant velocity, Vsurvey. Without loss of generality, we can 
assume that the distance between the cells is 1 unit and x 
and V are scaled accordingly. Let Tj denote the age of the jth 
cell. 

Figure 1 – Simplified two-cell problem 

There are two possible actions for the UAV - go left or go 
right – which is the same as choosing to go to cell 1 first or 
cell 2 first6. After the UAV has chosen which cell to 
observe first, the optimum policy is to keep moving back 
and forth between the cells, so that a single action defines 
the optimum policy in this very simple case.  
2                                                           
6 It is easy to see that any other strategy where the UAV initially starts 
going to a cell and turns back mid-way will necessarily be sub-optimal. 
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Assuming T1 ≤ T2, we can construct a plot of the ages of 
cells for the case where the UAV chooses to go left (Fig. 2) 
or right (Fig. 3) first. Such a plot can be used to identify the 
maximum age (over the two cells) as a function of time. Our 
optimum policy tries to minimize the peak of this maximum 
age curve. 
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Figure 2 – Ages of cells as a function of time when UAV 
goes to cell 1 first 
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Figure 3 – Ages of cells as a function of time when UAV 
goes to cell 2 first 

As pointed out earlier, we already know the optimum policy 
after the first cell has been visited, so we need to consider 
the maximum age plot only until a finite time (2/Vsurvey in 
our case)7. Let Mleft and Mright denote the peaks of the 
maximum age curves when the UAV chooses left and right 
respectively. Hence we have: 

3                                                           
7 In case the initial ages of cells are such that the peak of the curve lies 
outside this time range, it does not matter what action we choose. 
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These equations are dealt with on a case by case basis and 
the same analysis is done for T1 > T2. The results can be 
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More succinctly, we can define a value for each cell to be a 
linear combination of the age of the cell and the distance of 
the UAV from the cell (threshold at zero): 

Vj = max {(Tj + w0δij), 0} 

where, Vj is value of jth cell, Tj is the age of jth cell, w0 is a 
weight (= –1/Vsurvey for the two-cell case), and δij is the 
distance between ith UAV and jth cell. The optimum policy 
is then to go to the cell with maximum value.  

It is easy to see that this is optimal for a 2-D, two cell case 
also, where instead of choosing left and right, the UAV 
chooses to go towards one cell or the other. The analysis for 
that case is completely analogous to the above analysis. 

Extension to 2-D Multiple Cells Case 

In this section we use the policy structure obtained from the 
above analysis and extend it to a 2-D case with multiple 
cells. We have two options – either combine values of 
multiple cells to find the direction to go in8 (Sum of Value 
approach), or go towards the cell with the maximum value 
(Target based approach). To resolve this issue, we consider 
a case with 5 cells in 1-D, as shown in Fig. 4.  

3                                                           
8 In the 2-D case, we can use vector addition (with value of cell divided by 
distance as magnitude of vector and direction along vector from UAV 
position to cell).  
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Figure 4 – Example 1-D scenario with 5 cells  

Suppose that V1 > V2 and V4 > V3, V3 > V5, where Vj is the 
value of the jth cell. Now, if the cells on either side are 
approximately9 at the same locations, then we need to 
consider only the values V1 and V4 to decide on optimum 
policy, (ie. if V1 > V4, we need to go left irrespective of 
other cell values and vice versa). Even for the case when the 
cells are not at the same location, it is intuitive to see that 
we should not combine the values of cells, since given our 
objective where only the maximum age recorded matters, 
the cell with the maximum value is the critical cell10. Hence, 
for the 2-D multiple cell case also, we choose the cell with 
the maximum value as our target cell and take maximum 
step towards that cell. It should be noted that due to the 
nature of the exploration task, it does not help to move 
slow, unless there are sensor issues, which we will ignore 
for now.  

To validate our reasoning, both approaches are compared. 
The target space is assumed to be square-shaped and 
normalized to have a unit length in each dimension. The 
sensor footprint of each UAV is circular with radius, rsensor 
= 0.025, and the velocity of the UAV is Vsurvey = 0.0311. Fig. 
5 shows the maximum ages observed over a long time for 
50 different trials (UAV starts from a random location in the 
target space in each trial), using the two policies. As we can 
see from the results, the target-based approach works much 
better. 

Figure 5 – Comparison of Target based and Sum of 
Value approach 

If more than one cell has the same value, our policy treats 
the cells equally and there is no reason to go to one cell as 
4                                                           
9 This assumption is made to ensure that the optimum policy can still be 
defined completely by choosing either left or right at the first time step. 
10 This is not a formal proof, but an intuitive observation. 
11 These values are non-dimensionalized with respect to target space 
dimension. 

opposed to the other. However, instead of choosing the cell 
randomly, we choose the cell which results in least heading 
change. Though this does not affect the performance of the 
system much, it will be helpful in practical implementation, 
since an actual aircraft wants to minimize the number of 
turns it has to make12. 

The weight parameter is w0 = –1/Vsurvey, as for the two cell 
case. However, this value might not be optimal for the 
multiple cell scenario. So we first find the optimum value of 
w0 using an Iterative Sampling (ISIS) based optimizer 
(developed by one of the authors, see for example [25]). Put 
simply, ISIS maintains a population of sample points, and 
the population is re-sampled randomly from a region around 
the best point, while expanding or reducing the size of 
sample space based on performance. The optimum weight 
thus found is approximately equal to the analytical 
optimum. This also indicates that extending the policy as 
above is reasonable. 

Testing the Policy 

In this section we try to gauge how good our target based 
policy is compared to some benchmark methods. We do not 
show comparison to a random action policy (UAV moves in 
a random direction at each time step), since the performance 
with random actions is much worse (as typically some area 
in the target space is left unexplored for a very long time). 

Comparison with Potential Field Like Approach—We first 
compare our policy to a heuristic policy similar to the 
approach used by Tumer et al. for a rover exploration 
problem [19]. In their work, a rover observes the 
environment through sensors in four quadrants. The sensors 
return the sum of values of points of interest weighted by 
inverse squared distances of the cells in each quadrant. 
These become the inputs for the policy and the output is the 
direction the UAV wants to go (obtained through a neural 
network learned using an evolutionary algorithm).  

In our implementation, the centers of cells become the 
points of interest, and their ages are the values. The form of 
the policy is linear (which is found to work better than 
training the neural network) – ie., the outputs are a linear 
combination of the inputs and no online learning is used. 
This policy (which is quite similar to a potential field 
approach) is then compared with our target based approach. 
The target space is of unit length in each dimension, rsensor = 
0.025 and Vsurvey = 0.03. The results are shown in Fig. 6, 
which plots the maximum age over all cells observed in 
each trial, for a total of 50 trials. We can see that our target 
based approach performs much better. 

4                                                           
12 A more elaborate discussion on how to account for vehicle dynamics 
will follow in a later section. 
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Figure 6 – Comparison of Target based and Potential 
function based approach 

Comparison with Planning Based Approach—The target 
based approach is reactive in nature, so it is useful to think 
whether we can do any better using planning. A 
straightforward implementation of planning would involve 
the UAV choosing a sequence of steps as opposed to a 
single step. However, by virtue of the structure of our 
policy, if a UAV takes a step towards a cell with maximum 
value, then the value of the cell only increases relative to 
other cells as long as the cell is not reached. Hence, it does 
not help to plan for future steps using the policy as is. An 
alternative explanation is that the target based approach tries 
to convert the time-extended problem to a single step 
problem by incorporating the time element through the 
weighted distance. Hence ideally, it should not require any 
sort of planning. 

However, there exist different implementations of planning 
techniques in literature that can be tried. One popular 
method is the Dijkstra's Shortest Path Algorithm (SPA) 
[26]. Though the algorithm is a greedy algorithm, it still 
finds the optimum path for the given problem13. The 
Dijkstra's algorithm described in [27] is modified to get a 
longest path algorithm. In the graph, the nodes correspond 
to cells in the grid, so all the cells that the UAV can go to 
from a given cell/node, are the possible next states of that 
cell (~20 for our problem). The age of the cell becomes the 
weight of the edge connecting the nodes. Some might argue 
that we should use the maximum age over all cells observed 
after taking a path, as the length of the path and try to find 
the shortest path. This is true if we have an infinite planning 
horizon, but for finite time horizon with short look ahead, 
this does not work. The number of nodes in the graph is of 
the order ~O(20h), where h is the time horizon. 

The planning algorithm is implemented for time horizons of 
1, 2 and 3 steps due to computational limitations. The 
results are however much worse than the reactive policy. 
This is understandable, since as pointed out above, the 
reactive policy tries to convert the time-extended problem to 
a single step problem and potentially looks at an infinite 
5                                                           
13 The graph is a directed graph with non-negative weights. 

time horizon. So the finite time horizon based planning does 
not work as well. Hence, at least for the single UAV case, 
the reactive policy seems to be better than a planning based 
approach. 

Emergence of a Search Pattern—In this section we briefly 
look at the search pattern that emerges from following the 
reactive policy in an ideal scenario.  

Suppose that the ages of the cells are all zero to start with, 
and the UAV starts from one corner of the target space. The 
target based approach then results in a spiral search pattern 
as shown in Fig. 7. The UAV starts from a corner, spirals in 
to the center and then returns to the starting position, 
repeating the pattern. Note that it is possible to find an 
optimal pattern for the UAV to travel in, such that it does 
not visit any cell twice in each run through the space. 
Though the optimal policy is certainly a desirable trait, we 
can tolerate slight deviations from it. Especially in case of 
problem dynamics and UAV failures, this distinction would 
not be relevant. Moreover, the target based approach can 
react to changes in the environment and would in general 
perform better than a pre-fixed policy.  

 

Figure 7 – Path followed by a single UAV under ideal 
initial conditions 

Even when the UAV starts from random locations in the 
target space, it does not perform much worse. We consider a 
same problem with rsensor = 0.02, Vsurvey = 0.0414. An optimal 
policy (if it exists) can search the space in 625 time steps. 
Fig. 8 compares the target based approach with this lower 
bound on the optimum. The plot shows the maximum age 
over all cells as a function of number of time steps. The 
results are averaged over 50 trials (different starting 
position for UAV in each case). As we can observe, the 
performance of our approach is close to the lower bound on 
optimal performance for a single UAV. 

5                                                           
14 The UAV travels from one cell center to the next one. 
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Figure 8 – Comparison of Target based policy 
performance to a lower optimal bound 

3. POLICY FOR MULTIPLE UAVS 

A lot of schemes have been proposed for coordination 
among multiple agents. However, we have investigated 
techniques which are robust, scalable, and simple in 
concept. Two techniques have been developed for this 
purpose. The first one, the MRP, is a simple extension of 
the policy used for a single UAV. The second approach, 
SD, involves optimal partitioning of the target space and 
subsequent allocation of sub-spaces to UAVs for 
independent surveillance. 

Multi-agent Reactive Policy 

To understand how the existing policy might be extended to 
a multiple UAV case, we start with a simple case of 2 
UAVs and 2 cells in a 1-D space, as shown in Fig. 9. 
Without loss of generality, the distance between the cells 
can be assumed to be 1 unit.  

Figure 9 – Example 1-D scenario with 2 cells and 2 
UAV’s  

It is clear that the best policy in this case is for the UAV 
nearest to a cell to move to that cell and stay there.  

Figure 10 – Variant of 1-D scenario with 2 cells and 2 
UAV’s 

Now, consider another case as shown in Fig. 10. In this 
case, assuming that UAV-2 moves to the 2nd cell, we need 
to find decision policy for UAV-1. Using an analysis 
analogous to the single UAV case, we get: 
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This is optimum for the case when (x2–1) ≥ x1. However, 
we draw motivation from this result and choose a policy 
where values of cells are defined by:  

Vj = max {(Tj + w0δij + w1 mink≠i(δkj)), 0} 

where, Vj is the value of jth cell, Tj is the age of jth cell, δij is 
the distance between the ith UAV and jth cell, w0 and w1 are 
weight parameters (= –1/Vsurvey for the simple case 
described above). This becomes the policy structure for the 
MRP. To use this policy, the UAVs need to know positions 
of all UAVs at all time steps. The weight parameters 
however need to be optimized.   

Offline Optimization for Weights in MRP—The weights of 
the policy can be found using offline optimization. The 
objective function for the optimizer is the actual system 
objective. The value of the objective for the same 
parameters can vary depending on the starting positions of 
the UAVs, so the objective function is noisy. Therefore, we 
use a population based method, ISIS for tuning the weights, 
which does not rely on function gradients. The weights for 
different policies are allowed to be different, resulting in 
different policies for each UAV. The optimization thus 
needs to be conducted for different number of UAVs too. 

This approach performs much better compared to the case 
of no coordination (except for the implicit coordination due 
to sharing of a common map between UAVs). However, to 
make any claims about the approach, it has to be compared 
with other methods. This method is purely reactive in 
nature, so it is useful to look at an approach at the opposite 
end of the spectrum – we describe such an approach next. 

Space Decomposition Approach  

This approach involves decomposing the target space into m 
partitions (m is the number of UAVs) and assigning one 
partition to each UAV. If all the UAVs are homogeneous, 
the environment is static, and the UAVs can start from any 
place, then we just need to equi-partition the space. 
However, we have not placed such constraints on our 
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problem, so there is a need to find an optimum partitioning 
of target space. The optimization would also need to be 
carried on online if re-partitioning is required.  

The problem of optimal partitioning of the space is, in 
general, a hard optimization problem. Kurabayashi et al [28] 
use a decomposition technique to divide work among 
multiple robots, but it suffers from scalability issues. 
Polygon area decomposition techniques used in [29] require 
a priori knowledge of the domain. Voronoi partitions have 
been studied for a special class of coverage problems [14], 
but it is not clear how to extend their work to the present 
problem. We are continuing work on this problem of 
optimal partitioning.  

In this paper we present a conceptually simple way to deal 
with this problem. We decided to restrict the paper to 
rectangular partitions only. It is believed that a completely 
general partitioning of the space would not offer as much of 
an improvement in performance, as would be the penalty for 
increased computational cost. The optimization is done 
using a real-encoded GA, PCGA (developed by one of the 
authors, see for example [25]). The objective function for 
the optimization is the system level mission objective 
(maximum age recorded over all cells over a long period of 
time). It might seem that the use of this approach entails a 
lot of communication between UAVs and a centralized 
architecture. However, given enough computational 
resources on each platform, this procedure can be 
implemented independently by each UAV, and with proper 
synchronization, all UAVs will arrive at the same result. 

Re-parameterization of Space for SD—The optimization 
problem involving only rectangular partitions is still 
computationally expensive – if we choose the coordinates of 
corners of rectangles as design variables. It seems that 
choosing a different sort of parameterization which results 
only in feasible (covering the complete target space) 
partitions might help. There are various ways to do this, but 
we use a parameterization that makes most sense in terms of 
making the optimization more efficient. 

We divide the space using horizontal or vertical lines. In 
general, the number of partitions is not a fixed function of 
the number of lines. So we consider a recursive partitioning 
approach where we recursively divide the space till we get 
the required number of partitions. The complete domain is 
first divided into two parts using a line and half the number 
of UAVs are assigned to each domain15. Next, in each 
respective sub-domain, the same procedure can be repeated. 
Fig. 11 shows a case where three lines are used to obtain 
four partitions.  

7                                                           
15 In case of odd number of UAVs, the left (lower) domain gets the extra 
UAV, without loss of generality. 

Figure 11 – Illustration of recursive partitioning 

We claim that this can cover the space of all feasible 
rectangular partitions of the space16. The task of the 
optimizer is to find out the optimum positions of the lines 
(ordered sequentially) and also decide whether they are 
horizontal or vertical. The fact that the lines can be either 
vertical or horizontal creates a discontinuity in the objective 
function. However, for our problem in particular, it can be 
argued that this is not a huge issue, and in fact the use of a 
real-encoded GA (as opposed to a binary GA) is also fine. 
The number of design variables is now m–1, as opposed to 
4m earlier. When compared with the latter, we observe that 
the re-parameterization indeed saves a lot of computational 
effort in terms of the optimization cost.  

Optimal UAV Assignment—After finding the optimum 
partitioning, the UAVs need to be assigned optimally to the 
partitions. Ideally, this process should be coupled with the 
optimization, but that would make the optimization 
intractable even for a modest number of UAVs. So within 
the optimization, we use a certain heuristic for assignment, 
and then do an optimal allocation after the optimization has 
been completed. 

We use auction algorithms for this purpose, which are 
optimal for assignment and related problems [23] [24]. 
However, they address the problem of maximizing 
(minimizing) the sum of values (costs) associated with the 
assignments. In our problem, we want to find an assignment 
that minimizes the maximum age recorded in any sub-space. 
So this is a minimax (sometimes referred to as Bottleneck) 
assignment problem. Garfinkel suggests a Threshold 
algorithm [30] for this problem, which repeatedly solves an 
assignment problem using the Hungarian method. In his 
implementation, the assignment problem in each iteration, is 
solved using a Ford Fulkerson algorithm [27]. We, 
however, replace the Ford Fulkerson method by an auction 
algorithm. The reader is encouraged to look at the 
references for details regarding these algorithms. 

7                                                           
16 There are a few pathological partitions which might not be achieved by 
virtue of the fact that we assign larger number of UAVs to the left/lower 
partition, but we choose to ignore those here. 
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When this procedure is implemented, we do not always end 
up with the optimal allocation. The problem is identified to 
be in the way the threshold value, Vthresh, is initialized and 
updated. In our implementation, the initial value of Vthresh is 
chosen to be the minimum value in the entire cost matrix. 
And its value is updated in each iteration by choosing the 
smallest value greater than current value in the cost matrix. 
While this makes the procedure slower, it does result in 
optimal allocation and that is our major concern since the 
cost of running this algorithm is insignificant compared to 
the overall problem. 

Comparison of MRP and SD Approach  

We now compare the MRP (weights optimized using ISIS) 
and SD (optimization done using PCGA) approaches. The 
problem studied for this purpose uses a target space of unit 
length in each dimension with rsensor = 0.02 and Vsurvey = 
0.04. The comparisons are made for cases of 3, 5 and 10 
UAVs. Figs. 12-14 show the comparisons by plotting the 
maximum age observed over all cells as a function of 
number of time steps (averaged over 50 trials). The 
variations in the results for different trials are not 
significant. Also plotted is a lower bound on the maximum 
ages observed by following an optimum policy. The exact 
optimum policy for each case is not known, and is difficult 
to compute. But at best a UAV can sense one cell at each 
time step without going over cells twice17. 

Table 1 summarizes the results. It shows the average 
maximum ages observed using the two policies and 
compares it to the lower bound on the optimum. The MRP* 
and SD* values are normalized with respect to the lower 
bound.  

Figure 12 – Maximum age vs. time for 3 UAV cases for 
MRP, SD and optimal policies averaged over 50 trials  

8                                                           
17 This might not be achievable in all scenarios, but a lower bound on the 
optimum can be defined to be the total number of cells in the domain 
divided by the number of UAVs 

Figure 13 – Maximum age vs. time for 5 UAV cases for 
MRP, SD and optimal policies averaged over 50 trials 

Figure 14 – Maximum age vs. time for 10 UAV cases for 
MRP, SD and optimal policies averaged over 50 trials 

 

Table 1.  Summary of results comparing MRP, SD and 
lower bound on optimum 

No. of 
UAVs MRP SD Lower 

Bound MRP* SD* 

3 423.8 233.3 208.3 2.03 1.12 

5 208.0 148.5 125.0 1.66 1.12 

10 110.3 92.0 62.5 1.76 1.47 

 

We observe that the performance of the MRP improves and 
gets closer to the SD approach as the target space becomes 
more congested. In the former case, an emergent behavior is 
observed, where the UAVs automatically spread to different 
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regions in space and carve out their individual niches, 
which they survey almost independently of others.  

The performances of the both methods with respect to the 
lower bound on optimum, however, become worse. There 
can be several reasons for this behavior. In the more 
congested space, the lower bound on the optimum is more 
difficult to achieve for arbitrary starting locations of UAVs. 
Also, as we pointed out earlier, the policy for a single UAV 
was only near-optimal. The percentage deviation from 
optimality is however expected to increase as the value of 
the optimum reduces. At some point, even the restriction to 
rectangular partitions starts affecting the performance. 

A few particular cases (initial conditions) where the 
optimum is known to be achievable are, however, tried. If 
the weights of the reactive policy are tuned for those 
particular cases, and if the optimization in space 
decomposition is given enough function evaluations, we are 
able to achieve the optimum in both cases. What we can 
manage in a practical setting would depend on the actual 
problem specification. 

4. AIRCRAFT DYNAMICS 

Kovacina et al [4] have pointed out the significance of 
including aircraft dynamics in the control policy design, and 
some work in literature has considered constraints imposed 
by vehicle dynamics [31] [32]. However, it is not clear how 
much the dynamics actually affect the performance. Also, 
the issue of considering aircraft dynamics while designing 
control policies has not been sufficiently addressed. In this 
section we first study the effect of aircraft dynamics on the 
performance of the UAV. We have put together a 3-DOF 
aircraft dynamics simulation for this purpose, which is 
briefly described. Next, we impose a non-holonomic 
constraint that the UAV travels at constant velocity18. This 
results in a simplified dynamics model, which is used to 
analyze the dynamics–control policy coupling, and the 
performance benefits obtained by changing the control 
policy to account for the dynamic constraints. A minimum 
length trajectory (also minimum time under assumption of 
constant velocity) tracking controller has also been 
implemented and is briefly described. 

3-DOF Dynamics Simulation 

A 3-DOF simulation ignoring the turn rates and moments is 
found to be suitable for our application. In inertial 
coordinates the equations of motion are: 

9                                                           
18 This assumption has been made for simplicity and will be relaxed in 
future work. 
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In the above, u, v, w are translational velocities in inertial 
frame, L, D, T are the lift, drag and thrust forces 
respectively, m is the mass of aircraft, g is the acceleration 
due to gravity, and φ, ψ, γ are the roll, heading, and flight 
path angles respectively. These are the same equations as 
derived by Sachs [33], except for the thrust term. 

Implementation—To implement the dynamics, we define a 
6-D state vector, s = [u v w x y h]T. There are 3 control 
commands - lift coefficient, CL, thrust coefficient, CT, and 
bank angle, φ.  The integration of the non-linear state 
equations is done using a 4th order Runge Kutta scheme. For 
controlling the UAV, we use a Linear Quadratic Regulator 
(LQR) based system [34]. The LQR problem formulation is 
similar to that in [35] and the resulting optimization 
problem is solved using DP [36].  The control policy returns 
a target cell location at each time step. However, this target 
cell can be arbitrarily far away (hence not reachable in unit 
time), so we choose the target point for the LQR controller 
to be distance Vsurvey away from present location, in the 
direction of original target cell.  

Effect on Performance 

We assume that we fly at constant velocity at constant 
altitude. In this case, the constraining factor for the 
performance, becomes the turn radius of the aircraft. We 
further assume that we have sufficient thrust to maintain a 
coordinated turn19, for simplicity. So the turn radius is then 
constrained by the maximum value of lift coefficient, CLmax. 
The following equations are applicable to the scenario 
described: 

9                                                           
19 Actually this ties in to the UAV design, which is another interesting 
direction of research currently under investigation.  
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where, Rturn is the minimum turn radius, maxψ is maximum 
turn rate, nmax is the maximum load factor, ρ is the density, 
Sref is the reference wing area, m is the mass of the aircraft. 

We choose a small 2 meter span UAV for our study. The 
parameters for the UAV are – m = 0.475kg, Sref = 0.33m2, 
CTmax = 0.1, Vsurvey = 5.37m/s. The UAV flies at an altitude 
of 200m. This results in Rturn = 2.96m, 

82.1max =ψ rad/s. The target space is 134.25m in each 
dimension, and rsensor = 2.69m. Using these parameters, the 
dynamics do not seem to affect the performance of the 
UAV. However, if we reduce the CLmax value, then we start 
observing an effect on performance. Fig. 15 shows the 
performance for a single UAV mission, with CLmax = 1.2, 
1.0, 0.9, compared to the case with no dynamic constraints. 

Figure 15 – Effect of CLmax on mission performance 

We observe that reasonable changes to the CLmax value have 
a considerable effect on performance. Note that, we could 
similarly increase Vsurvey, or some aircraft design parameter 
and observe similar effects. Hence, we conclude that aircraft 
dynamics have a significant effect on the mission 
performance. Whether we can change the control policy to 
better accommodate the aircraft dynamics or not, is the 
subject matter of a later section. 

Simplified Dynamics Model 

Assuming sufficient thrust, the constraining value for 
turning flight, is that of CLmax, which governs the maximum 
side force. For the case of sustained turns, the CL value 
would determine the bank angle and turn rate. The relation 

of turn rate to CL was shown in the previous section, and the 
bank angle can be found as: 
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CT is fixed by drag coefficient. Hence the system is 
essentially a single input system now. We can thus simplify 
the equations of motion: 
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where, Fy is the side force – this becomes our input20. In this 
case, the minimum turn radius is defined by: 

max

2

y

survey
turn F

mV
R =  

Note that this system is equivalent to the 3-DOF simulation 
described above under the given assumptions. Hence any 
results that we obtain using this are directly applicable to 
the former. 

Minimum Length Trajectory Control 

Given the simplified dynamics system, it is fairly easy to 
construct minimum length paths to target points 
geometrically. Thus, we design a controller (minimum 
distance controller) to travel those paths instead of the LQR 
control used previously. 

Dubins [37] proved that the minimum length trajectory from 
present position and heading to a target position and 
heading, comprises only of straight line and maximum 
curvature paths (arcs corresponding to minimum turn 
radius). Erzberger and Lee [38] gave the specific 
trajectories describing these paths. Fig. 16 shows an 
example where the UAV has to travel from point A to point 
B with the initial and desired headings shown. The circles 
shown correspond to minimum turn radius and are tangent 
to the heading direction. The optimum trajectory in this case 
(where distance between points > 4Rturn) would be 
comprised of two arcs along two of the circles and a straight 
path in between, along one of the tangents. The candidate 
paths for the optimum are numbered 1-4 in the figure. To 
find the minimum length trajectory, the lengths of the 4 

10                                                           
20 This is the same as choosing CL as input, since the side force is 

determined by it - ( )( ) ( )2222/1 mgCSVF Lrefsurveyy −= ρ  
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paths are computed and the shortest one is selected. A 
similar analysis can be done for other cases also. 

Figure 16 – Illustration showing candidate optimal paths 
from point A to B 

Erzberger and Lee also mention the case where the final 
heading is not important and we just need to find the 
shortest path to a target point, but do not give the exact 
trajectories for this case. However, we can modify the 
trajectories for the former case by assuming a zero radius of 
turn at the target point21, and obtain minimum length 
trajectories for the latter. Modgalya and Bhat [39] also give 
a feedback control law for traversing the optimum 
trajectory. We, however, find the optimum path and then 
devise our own control algorithm (minimum distance 
controller) to traverse it. We refrain from giving the tedious 
details of the implementation here. 

Modifying Control Policy 

In this section we look at how to modify the control policy 
so that we get performance improvements when the UAV is 
constrained by dynamics.  

Euclidean vs. Actual Distance—Recall that our reactive 
policy for a single UAV uses a weighted combination of the 
age of a cell and the distance of the UAV from the cell. So 
far, we have used the euclidean distance in this policy. 
However, what the policy suggests is using the actual 
distance to the cell (under dynamic constraints).  In our 
implementation, we follow the shortest path to the cell, so 
this distance becomes the minimum distance to the cell 
(which can be calculated as mentioned above, by 
calculating the optimal trajectories). We call the former, the 
Euclidean Distance Policy (EDP), and the latter is called the 
Actual Distance Policy (ADP). 

Table 2 shows the comparison of EDP and ADP in terms of 
average maximum ages observed. The comparison is done 
for 1, 3, 5, and 10 UAVs and averaged over 50 trials. In 
11                                                           
21 This is the same as saying that the UAV can instantly change heading at 
the target point, or in other words, the heading does not matter. 

case of multiple UAVs, we use the MRP here. The UAV 
parameters are – m = 1kg, Sref = 0.7m2, CTmax = 0.2, Vsurvey = 
5m/s. Three values of maximum side force are used, Fy max 
= 5, 8, 15N. These correspond to maximum lift coefficients 
of CLmax = 1.03, 1.18, 1.67 and turn radii of Rturn = 5, 3.125, 
1.67m respectively. The cell length is 5m, and the target 
space size is 50*50m2 for the single UAV case, and 
75*75m2 for more UAVs. The sensor footprint equals the 
cell size in all cases.  

Table 2.  Summary of results (average maximum ages 
recorded) comparing EDP and ADP  

 CLmax = 1.03 CLmax = 1.18 CLmax = 1.67 
#UAV

s EDP ADP EDP ADP EDP ADP 

1 261.7 255.8 198.5 196.1 108.4 107.1 
3 235.9 209.2 194.7 179.0 145.9 144.4 
5 226.3 196.9 188.2 174.7 145.7 141.8 

10 124.6 106.6 101.3 94.5 80.3 79.0 
 
 

EDP and ADP Performance vs. #UAVs (CLmax=1.03)
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Figure 17 – Average maximum ages using EDP and 
ADP as function of number of UAVs for CLmax=1.03 

 

EDP and ADP Performance vs. #UAVs (CLmax=1.18)
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Figure 18 – Average maximum ages using EDP and 
ADP as function of number of UAVs for CLmax=1.18 
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EDP and ADP Performance vs. #UAVs (CLmax=1.67)
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Figure 19 – Average maximum ages using EDP and 
ADP as function of number of UAVs for CLmax=1.67 

The results shown in Figs. 17-19 plot the average maximum 
ages observed using EDP and ADP as a function of the 
number of UAVs for each of value of CLmax. We can see 
that ADP performs better than EDP when the dynamics are 
a constraining factor. The performance benefits are greater 
for more number of UAVs, but tend to saturate. Also, if 
dynamic constraints are not stringent, the benefits might 
actually reduce for greater number of UAVs.  

This can be explained as follows. Due to limits on the side 
force, the turning radius is constrained, and thus a UAV 
tends to leave “gaps” while searching the environment. In 
case of multiple UAVs, the other UAVs tend to fill the gaps 
and hence improve the performance. This is another form of 
emergence that we observe in the MRP. 

Heading Considerations—So far we have disregarded the 
target heading (heading at the target location) of the UAV 
altogether. This leads us to the question – is there a heading 
that is more desirable than others when the aircraft reaches 
the target? The precise answer to this question entails an 
intractable planning problem, so we used a simplified 
analysis to account for the heading. Some performance 
benefits were obtained using this method, but the basic 
results did not change, so we will not present the details 
here. 

5. CONCLUSIONS 

In this study we have defined an approach to multiple UAV 
persistent surveillance based on an optimum policy for a 
single-UAV case. The policy is compared with selected 
benchmark methods and is found to work well. The 
extension to the multiple UAV case has been done using 
two approaches. The emphasis has been on techniques that 
would work with environment dynamics and UAV failures 
and are simple in concept. The approaches include a purely 
reactive technique (MRP) and one that explicitly divides the 
work between UAVs (SD). The latter method seems to be 

close to the optimal case, but may suffer from 
computational complexity when the number of UAVs 
becomes very large. The optimal assignment algorithm 
developed for the allocation problem has also shown good 
results. The MRP is more heuristic in nature, but highly 
scalable, robust, and simple to implement. It shows an 
emergent behavior as the search space becomes more 
congested – replacing the SD method for a large number of 
UAVs with modest resources. We have also developed a 
multiple UAV simulation environment to study these 
policies. 

A 3-DOF simulation was used to evaluate the effect of 
UAV dynamics. The effect of dynamic constraints on 
performance was evaluated and the control policy was 
modified to better accommodate UAV dynamics. 

Future research will include evaluation of environment 
dynamics and UAV failures, comparing the two policies 
(MRP and SD) in this more challenging scenario.  
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