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1) Theoretical developments of flux reconstruction method

Unstructured high-order methods

The Flux Reconstruction approach

Energy Stable Flux Reconstruction schemes
Flux Reconstruction as Filtered DG

Extending the formulation to 2D and 3D

2) Applications to practical problems

Parallelization using GPUs

Adaptive h-p mesh refinements

Unsteady flow on deformable meshes

Implicit Large Eddy Simulation for transitional flow

LES Models with SD (with G.Lodato and C.H.Liang from CTR)
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Methods

« Low-order schemes are robust, mature, geometrically
flexible ...

« However, not well suited for applications requiring very low
numerical dissipation

« High-order methods offer a solution

« Unstructured high-order methods can be applied in complex
geometries

[1] Copyright Allen Edwards Photography www.PaloAltoPhoto.com
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Essentially Non-Oscillatory (ENO), Weighted ENO (WENO),
Continuous Galerkin (CG), Discontinuous Galerkin (DG),
Spectral Volume (SV), Spectral Difference (SD)

However, their use amongst a non-specialist community

remains limited ...

Why?

Efficient {ime integration
Shock capturing

Mesh generation

Complexity (at various levels)
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« Flux Reconstruction (FR) approach first
proposed by Huynh in 2007 [2]

= [ntuitive, simple to implement, unifying

« Nodal DG and SD (at least for a linear
flux) within a single framework

« Can produce an infinite range of other
schemes

[2] 18th AIAA Computational Fluid Dynamics Conference, 2007 (AIAA 2007-4079)
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. . ou Of
= Consider 7D scalar conservationlaw — + -2 —
ot Oz

= Represent solution by order k piecewise discontinuous
polynomials within each element

= Represent flux by order k+7 piecewise continuous
polynomials within each element.

AV e Ve W e e VAU U2y

N N\ N ~ -
N - N \ /‘
—— -1
X
= With flux reconstruction approach, continuous flux =

interior discontinuous flux function + boundary flux correction function



Procedures for Flux Reconstruction
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« Map each element to a 'standard element’

» Represent solution (order k) within standard

element using a nodal basis

« Reconstruct discontinuous flux (order k).

For linear problem, this is just a scaling by a constant.




Procedures for Flux Reconstruction
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» Calculate numerical interface fluxes and
evaluate the required flux corrections

« Define an order k+1 left correction function
scaled by the required flux correction

« ... and gddmit to thendiscont/f;vucl)us flux to

obtain the continuous flux

I-III'
=
5Q
>0
30



Procedures for Flux Reconstruction
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= And do the same for the right hand side

« Evaluate gradient of the continuous flux at
solution pomts and advance the solution

In time




Flux Reconstruction
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« Nature of FR scheme depends on
solution points, interface flux, correction

function

= Can recover nodal DG, SD (at least for a
linear flux) and various new schemes

(see Huynh [2])

« Until now, schemes have been identified

on an ad hoc basis

[2] H. T. Huynh. 18th AIAA Computational Fluid Dynamics Conference. 2007 (AIAA 2007-4079)
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Reconstruction in 1D

= We have identified a range of correction
functions that guarantee enerqgy stability
(at least for a linear flux)

« Proof based on Jameson 2010 [3]

= The 'trick’ is to make an energy stability
proof for FR look like the well known
proof for nodal DG

[3] A. Jameson. Journal of Scientific Computing. 2010
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Reconstruction in 1D

« For stability we need

o 0 0<i<k—2
/ r'gr dr = ¢ ck! (d*Tlgp ,
—1 7 df]“k+1 1=k — 1.
2 o (2k)!
C O ar —
(2k + 1) (axk!)? © T ok(K)2

« And remember, FR requires

gr(=1)=1, gr(1)=0
« k+2 conditions for order k+7 polynomial
= Right correction by symmetry

= All conditions independent of solufion basis



Energy Stable Flux
Reconstruction in 1D
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« If satisfied then (for 7D linear advection)

« Where

10|12 =

d
a2 <0

fj [ e g

Ok

n

oxk

= Which is a broken Sobolev type norm
(implying enerqy stability)

- 1/2

2
:) dz
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Reconstruction in 1D

« | he aforementioned are satisfied if

G [ (22t

2 1+ 7%
1 Mk Ly—1 + Lk+1>]
— Z L. +
" 2[ " ( 1+ my
(el2k + 1) (ark!)? =
T G 2 (2k + 1)(ackl)2 =%

« Parametrized by the single scalar ¢
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Reconstruction in 1D

= Theoretical 1 - - - ot asnay T
order of | L5
accuracy vs.  zes :

ICI ‘:8) T 0.3 g
< 3

« Theoretical [0 E
CFL limit for — &ss Lo
RK4 scheme | "
vs. 'C’ g
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Flux Reconstruction as a filtered DG

Nodal DG
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MY 4 aSu + f (1) — fyl(—1) = 0

dt

du
dt

The Nodal DG with Filter is

du
at

or

= —M~'[aSu + f /(1) — fyl(—1)]

— = —FM~"[aSu + o /(1) — fyl(—1)]

MF % +aSu + fol(1) — fyl(—1) = 0
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If u and U are the nodal and modal vectors, then
u=Vu

F= VAV

where the entries of A define the damping of each mode, and V is the Vandermonde
matrix. Also we have

h ho -
M= (wT)y=t= ZyT "yl
2 2

Thus setting MF—1 = M,
M(Zl_l; +aSu + fyl(1) — fyl(=1) =0

where
h

2

Hence the scheme is stable in the norm

=y Ayt 2 By
2



Flux Reconstruction as a filtered DG

Flux Reconstruction expressed as a Filtered DG

STANFORD

UNIVERSITY

(M + cddT)% + aSu + ferl(1) — fyl(—=1) =0

Factor out M to get

M(/ + cM~ ddT)% +aSu + fy /(1) — fyl(—1) = 0

The filter now becomes

F=(+cM TddT)"

For polynomial of degree p, we have

U(p) —_ l’,\lpLE)p), Lp —_ CpX'D + ceey L'E)p) —_ pICp —_ ap, dT —_ (0 O ap)
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0
dd’™ = 0
caj
R;
v — Ro
Rp
]
[+ cM 1dd" = 1
1+ cRpa;
1 1
1
F=(+cM Tdd") " = , for SD, =

1-}-CI-'1’pa;}2J 2p+1
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Reconstruction in 2D

Extension of 1D to quadrilaterals

simple via tensor product basis

Extension to friangles

not so simple. However, triangles facilitate the
meshing of complex geometries, so this is
important
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Preliminaries

Represent the solution using interior nodal values, with x = (x, y)

u(x) =Y uili(x)

Represent the correction flux using flux mismatch at the interface and a correction
function that propagates the difference into the interior.

. Where f is the correction flux at
g(x) = Z fek Ik (X) Each flux points at the interfaces

The governing equation can then be written in terms of the divergence of the
uncorrected and correction fluxes, with a = (a, b) being the wave velocities vector,

ou
8—;’+V-(auh)+v.g:0



Discrete Energy Estimate for | 3versers =

Flux Reconstruction in 2D

o0
/uh{ﬂ—i-v (aup) + V- ngA 0
D ot

to get 1

d [ u: / dup, / dup, /
— —dA+a | up—dA+b | u,—dA up,V-gdA=20
dt/D 2 + D " ox i D hay " D hv 9

Further integration by parts to get 1

2
St/ hdA—|—/(n a) ”dS+/n gu,dS — /g Vu,dA =0
B

{

Hence by choosing g suitably, we can ensure energy stability in a certain norm.

2 2
d [ u u;
/ dA — /g VupdA +/(n-a)?d8+/n-guhd8:0
B

dt B

J

-~

for energy stable, this need to be non increasing




Methods to Choose gto  |° vaiexsirs =

Ensure Energy Stability

As an example, consider a third-order method in 2D. Choose g as follows:

2 82 a2

/Dg.VuhdA:C1AUhXX ﬁV'g‘F@Auhxy @V'Q‘FCSAUhyy 8_},2VQ

82 6uh
ﬁ[ﬁ + V- (aup) + V- g:|

The highest derivatives terms lead to this identify.
2

82

{

Substitution yields the following, which is in the kinetic energy form, as desired

0
— Uph xx +0 +

9 g.g=0
ot 9

0 0 0
/Dg - VupdA = ¢y A up,, Euhxx +c A Uhxy EUhxy +c3 A Unyy auhyy

2 dt /(C1 uhxx + Co uhxy + C3 Uhyy)dA
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Reconstruction in 2D

Hence by choosing g suitably, we can ensure energy stability in a certain norm.

2

d u? u?
/—dA—/g-VuhdA +/(n-a)—d8+/n-guhd8:0
D ) B 2 B

dt Jp 2

-

for energy stable, this need to be non increasing

02 02 92
7V'g+ogAuhxy %V'g'}‘CQ,AUhyy 8—yZVg

U

Hence the energy estimate of the flux reconstruction scheme becomes

/ g-VupdA=rc A Uhxx
D

1d

U2
EE/D<U/27+C1 Uh)2(x+02uh,2(y+03uhf,y>dA+/B(n.a)EhdS+/Bn.guhdS:0

N~

energy estimate for FR

The Flux Reconstruction scheme is stable in this new norm.
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Reconstruction in 2D

Nodal solution basis S Nodal discontinuous flux
Py (Pg)?
dim[p,] = K DE+2) dim[(Py)?) = (k +1)(k + 2)
2
— —
r r

Correction functions in Raviart-Thomas function space

RT; = (Py)* + (::)?kz C (Pry1)?
dim[RT;] = (k+1)(k+3)=3(k+ 1)+ k(k+1)

/ Edge normal degrees of freedom fixed by flux
corrections at k+1 points on each edge

Internal degrees of freedom used to set
moments (to ensure energy stability)
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Reconstruction in 2D
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then the resulting requirements are, firstly, lower moments should vanish

/ g - V(xPy9)dA = 0,if p+q < k
D

and highest moments should assume the following values

/ g- V(Xpmme)dA b Cm(k -+ 2)(pm!)2(CIm!)2'ym, if Dm+Qm = K
D



Methods to Find g or SN e
the Divergence of g

Applying Integration by parts, we have

v

/uhV-gdA:/n-guhdS—/g-VuhdA
D /B D

The energy stability set the requirement for the last term, as shown previously

v

/uhV-gdA:/n-guhdS— /g-VuhdA
D B JD

J

-

from energy estimate

Hence we can directly solve for the divergence of the correction function V - g.
/ / unV - gdA = Boundary Integral Terms + Function of paramete@
D

This is leads to a one parameter family of energy stable schemes.
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Reconstruction in 2D

Energy stable correction functions are
parametrized by a single scalar

Resulting scheme shows similarities to
Lifting Collocation Penalty' method of
Wang [4]

However, (as in 1D) correction functions
quarantee enerqy stability, rather than
identified on an ad hoc basis

[4] Z. J. Wang, H. Gao. Journal of Computational Physics. 2009
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Reconstruction in 3D
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Reconstruction for Pyramid

As an example, if u, and V - g are polynomials of degree 2, then

Up =ai + axX + agy + asX® + asxy + asy” + arx’y + agxy® + agx’y*+

ai0Z + a1 X2 + a12yZ + 31322 + a14Xyz

and

V -9 =b1 + box + by + buX® + bsxy + bgy® + byx?y + bgxy® + bgx®y*+
b10Z + b11XZ + byayz + b13z* + biaxyz

The energy stability for 3D pyramids requires all moments of g to vanish except

/(gxxy2 + gyx°y)aVv = 8c1bg
D

The

ngheSt /;(gzz)dv - 202b13
Moments

L(gxyz + gyXZ + ngy)dV = C3b14
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Reconstruction for Pyramid

After integration by parts V - g can be determined from 14 moments

DV-ng :/g-ndS—i-O
DV°9XdV :/g-nde—l—O
DV-gde :/g-nde-i-O

V -gzdV :/gonzdS+O
D 14 Moments
DV-gxzdeV :/g.nx2y2d8+16c1bg
DV-gzde :/g-n22d8+402b13

V - gxyzdV = /g - nxyzdS + c3bya
D
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« Euler vortex propagating on highly
unstructured mixed mesh

= [hird-order solution polynomials
« C=1/1050 (SD scheme for quadrilaterals)

| 11 NN |
|| 0.994
N .0.988

0.982

B 0.976
— 0.97

0.964

! 11 l 0.958
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©2.Unsteady Flow on Deformable Meshes
3.Adaptive h-p Mesh Refinement

4.Implicit Large Eddy Simulation with SD

5.LES Models with SD
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70
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5

o

4

o

3

o

Overall Speedup

2

o

1

o O

3 4 5 6 7

Order of Scheme
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2.Unsteady Flow on Deformable Meshes
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Numerical Result Experimental Results

Flow Conditions: M=0.2, Re=1800,
Str=1.5, h=0.12c

Flow Solver: 5" order SD on
deforming mesh

Jones, Dohring, and Platzer, “Experimental and computational investigation of the
Knoller-Betz effect”, AIAA Journal, 1998
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Rigid Mesh Displacement Deforming Mesh

Mach

HH HH B

10 0 10 20
-10 0 10 20 X

X

Flow Conditions: M=0.2, Re=400 Plunging Motion: w=0.21T, h=4/3
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True Space Reference Space
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Flow Solver Settings: Re=200, Mach=0.2, p=1, 4™ order SD method

Structure Solver Settings: p=1000, E=1.4€%, v=0.4

Mach: 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 32 0.34 P: 69.0 69.4 69.8 70.1 70.5 70.9 71.2 71.6 72.0 72.4 72.8 73.1 73.5 73.9 74.2 74.6 75.0

Mach Contour Pressure Contour
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0.06 15

0.04

g
o
M)

Tip Vertical Deflection
(=)
CLt, CLp, CLv

| L L L L | L L L L | L L L L | L L L L :
-0.06 -15 L L L L | L L L L | L L L L | L L L L

8 8.5 9 9.5 10
Time (Secs) 8 8.5 Time ?Secs) 9.5 10

Tip Deflection (Left) and CL Time Histories (Right) for the Fluid Structure
Interaction Problem. Re=200. Mach=0.2. Pressure component of CL curve is in
dashed blue color. The viscous component is in green dash-dot curve. Total CL is
the red solid curve
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3 3
2.5 n 25 |
sk
> | >
s | 3
o i g
8 1.5 i 8
I 3
1
05F 05f
1 1 [ |
Og 8.5 9.5 10 Og 85

Time (Secs)

Time (Secs)

Comparison of drag time histories for rigid (left) and elastic (right) beam.
Pressure component of CD curve is in dashed blue color line. The viscous
component is in green dash-dot curve. Total CD is the red solid curve.
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3.Adaptive h-p Mesh Refinement




IAdaptive hp Refinement Using Entropy
Error Indicator (Fidkowski and Roe)
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Cylinder, M = 0.3 Mortar Elements at

Mismatched Interfaces

2

x
Initial error map Mesh after 3 h-refinements
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Cylinder, M = 0.3

With both refinement and
coarsening, the order
distribution becomes
fragmented.

Too many interfaces with order
mismatch result in reduced
speed and accuracy.

Order distribution after 3 p-adaptations, i.e. both refinements and coarsening
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NACA 0012, M = 0.4, 5 deg

Bottom left:
Initial error with N = 2
Bottom right:

Initial error with N = 3

%

iy
%,

Wiz

Y
l‘ﬁ
\\\\\\\!\.

5 e

“um‘
i

S
N

(a more accurate initial
solution)

Initial error map with N =2 Initial error map with N = 3
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NACA 0012, M = 0.4, 5 deg
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Order distribution after 3 p-refinements, N = 2 initially Order distribution after 3 p-refinements, N = 3 initially



: : STANFORD
Adaptlve h Refinement UNIVERSITY

NACA 0012, M = 0.4, 5 deg

T 17
A ]
\ ’nuux! / L

Comparison with Fidkowski

a HTI; \lfﬂ\ 1\\\ \\\ \\ \\_ and Roe’s result
IR top: Fidkowski and Roe’s
\L\\ \ \ T bottom: SD

b—

\

» Initial N =2

» 3 h-refinements
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Bump, M = 1.4

1
2.5
0
0 0.5 1 15 2 25 3
Initial mesh Density contour on the initial mesh
‘ S > el 1
15 HH )5
0 0 -
0 0.5 1 15 2 2.5 3 0 0.5 1 15 2 25 3
Mesh after 3 h-refinements Density contour after 3 h-refinements

Initial error map Error map after 2 h-refinements



Adaptive h Refinement

NACA 0012, M = 0.8, 1.25 deg

7

@%}3@{,?!
Y

N\

N\

=

i
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x
Mesh after 3 h-refinements Mach contour after 3 h-refinements
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4.Implicit Large Eddy Simulation with SD
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~——8D3D, N=4, 3D ~——8SD3D, N=4, 3D
= = = Uranga, N=4, 3D - - = Uranga, N=4, 3D
= = Galbraith & Visbal, 3D|

——SD3D, N=3, 3D _0.7- l ——SD3D, N=3, 3D

11 ‘= = Galbraith & Visbal, 3D

-~ -
-
-

-0.5
-0.5
-0.4
& o &
-0.3
0-5 _0.2
QA TR S
1 |
of
1 '5I 1 1 1 1 1 1 1 1 1 J 1 1 1 1 1
0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.45 0.5 0.55 0.6 0.65 0.7 0.75
x/c x/c
(a) (b) Zoomed In

Comparison of average pressure coefficient distribution at Re=60000, AOA=4
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| ——503D,N=3,30 002 [ ——sDap, N«a, 3D
0.08 —— 503D, N=4, 30 —— S03D, N=4, 3D
= = = Uranga, N«4, 3D = = = Uranga, N=4, 3D
= = Gabraith & Visbal, 30 0.015 - Galoraith & Visbal, 30,
0.04-
001"
0.02-
_ _ 0005
(& a (&
0 S ol
-0.02' -0.005-
-0.04 oo
6 01 02 03 04 05 06 07 08 08 1 035 04 045 05 055 06 065 07 075 08 085
e x'c

(a) (b) Zoomed In

Comparison of average skin friction coefficient distribution at Re=60000, AOA=4
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Figure 11: Reynolds stress contours from

HFWT and TU-BS experiments and Figure 12: Reynolds stress contours using
computations by Galbraith and Visbal at SD solver at Re = 60000, a = 4°
Re = 60000, o = 4°

Good agreement of mean velocity profiles
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Data Set Freestream | Separation | Transition | Reattachment
Turbulence Xsep Xtr/ € xr/c
TU-BS 0.08% 0.30 0.53 0.64
HFWT 0.1% 0.18 0.47 0.58
Yuan® SGS-LES 0 0.21 0.49 0.60
Yuan! RANS-e" 0.1%,N=8 0.21 0.49 0.58
Lian? RANS-e" 0.1%,N=8 0.21 0.48 -
Galbraith and Visbal, ILES 0 0.23 0.55 0.65
Uranga, ILES 0 0.23 0.51 0.60
Present ILES, N=3 0 0.23 0.52 0.65
Present ILES, N=4 0 0.23 0.52 0.65

Table 2: Measured and Computed properties of flow over SD7003 at Re=60000, a = 4°

1W. Yuan, M. Khalid, J. W. U. S. and Radespiel, R., An Investigation of Low-Reynolds-number Flows past Airfoils, Aiaa

paper 2005-4607, 2005.

2
Lian, Y. and Shyy, W., Laminar-Turbulent Transition of a Low Reynolds Number Rigid or Flexible Airfoil, AIAA paper

2006-3051, 2006.
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Instantaneous iso-surfaces of Q-criterion (Q=500) at Re = 60000, a = 4°
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4.Implicit Large Eddy Simulation with SD
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Figure 1: Computational domain: 24120 cells for a total of 651240 degrees of
freedom. The grid extends from —12D to 36D in the streamwise direction,
from —16D to 16D in the vertical direction and from —1.6D to 1.6D in the
spanwise direction, with the cylinder, of diameter D, centered at the origin.
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Figure 6: Instantaneous view of coherent vortical structures detaching from
the cylinder colored by the local velocity magnitude.
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Figure 3: Profiles of streamwise velocity fluctuations, (u'u’)/U2,, measured
at different locations downstream of the cylinder: red, WSM model; blue,
WALE model; green, No model; o , experimental PIV measurements.

Figure 2: Average profiles of streamwise velocity, (u)/Us, measured at dif-
ferent locations downstream of the cylinder: red, WSM model; blue, WALE
model; green, No model; o , experimental PIV measurements.

Comparison of Experiment and SD Numerical Simulations
without Model and with WSM and WALE Models
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Figure 4: Profiles of velocity cross correlations, (u'v’)/U%,, measured at dif- Figure 5: Average streamwise and vertical velocities measured along the
ferent locations downstream of the cylinder: red, WSM model; blue, WALE .10 of the cylinder at y/D = 0: red, WSM model; blue, WALE model;

model; green, No model; o , experimental PIV measurements. green, No model: o , & , experimental PIV measurements.

Comparison of Experiment and SD Numerical Simulations
without Model and with WSM and WALE Models
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e On the theoretical side we have formulated a new
approach to the construction of energy-stable high
order schemes for arbitrary elements.

® On the practical side we have demonstrated significant
improvements in the simulation of vortex dominated
and transitional flows, including applications with
deforming boundaries.

® Qur goal is to develop a suite of software that will
enable a new level of CFD in industrial practice.
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