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The use of energy estimates to establish the stability of discrete approximations
to initial value problems has a long history. The energy method is discussed in
the classical book by Morton and Richtmyer, and it has been emphasized by the
Uppsala school under the leadership of Kreiss and Gustafsson. Consider a well
posed intitial value problem of the form

du

dt
= Lu (1)

where u is a state vector, and L is a linear differential operator in space with
approximate boundary conditions. Then forming the inner product with u,

(

u,
du

dt

)

=
1

2

d

dt
(u, u) = (u, Lu) (2)

If L is skew self-adjoint, L∗ = −L, and the right hand side is

1

2
(u, Lu) +

1

2
(u, L∗u) = 0

Then the energy 1
2(u, u) cannot increase.
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If (1) is approximated in semi-discrete form on a mesh as

dv

dt
= Av (3)

where v is the vector of the solution values of the mesh points, the
corresponding energy balance is

1

2

d

dt
(vTv) = vTAv (4)

and stability is established if
vTAv ≤ 0 (5)
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A powerful approach to the formulation of discretizations with this property is to
construct A in a manner that allows summation by parts (SBP) of vTAv,
annihilating all interior contributions, and leaving only boundary terms. Then
one seeks boundary operators such that (5) holds. In particular suppose that A

is split as
A = D + B

where D is an interior operator and B is a boundary operator. Then if D is
skew-symmetric, DT = −D, the contribution vTDv vanishes leaving only the
boundary terms.
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The Burgers equation is the simplest example of a nonlinear equation which
supports wave motion in opposite directions and the formation of shock awaves,
and consequently it provides a very useful example for the analysis of the energy
method. Expressed in conservation form, the inviscid Burgers equation is

∂u

∂t
+

∂

∂x
f(u) = 0, a ≤ x ≤ b, (6)

where

f(u) =
u2

2
(7)

and the wave speed is

a(u) =
∂f

∂u
= u (8)

Boundary conditions specifying the value of u at the left or right boundaries
should be imposed if the direction of u is towards the interior at the boundary.
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Provided that the solution remains smooth, (6) can be multiplied by uk−1 and
rearranged to give an infinite set of invariants of the form

∂

∂t

(

uk

k

)

+
∂

∂x

(

uk+1

k + 1

)

= 0

Here we focus on the first of these

∂

∂t

(

u2

2

)

+
∂

∂x

(

u3

3

)

= 0 (9)

This may be integrated over x from a to b to determine the rate of change of
the energy

E =

∫ b

a

u2

2
dx (10)

in terms of the boundary fluxes as

dE

dt
=

u3
a

3
−

u3
b

3
(11)
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This equation fails in the presence of shock waves, as can easily be seen by
considering the initial data u = −x in the interval [−1, 1]. Then a wave moves
inwards from each boundary at unit speed toward the center until a stationary
shock wave is formed at t = 1, after which the energy remains constant. Thus

E(t) =

{

1
3 + 2t

3 , 0 ≤ t ≤ 1

1, t > 1
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In order to correct (11) in the presence of a shock wave with left and right
states uL and uR, equation (9) should be integrated separately on each side of
the shock. If the shock is moving at a speed s there is an additional contribution
to dE

dt
in the amount

s

(

u2
L

2
−

u2
R

2

)

=
1

4
(uL + uR)

(

u2
L

2
−

u2
R

2

)

Accordingly

dE

dt
=

u3
a

3
−

u3
L

3
+

u3
R

3
−

u3
b

3
−

1

4
(uL + uR)

(

u2
L

2
−

u2
R

2

)

which can be simplified to

dE

dt
=

u3
a

3
−

u3
b

3
−

1

12
(uL − uR)3 (12)

In the presence of multiple shocks, each will remove energy at the rate
1
12(uL − uR)3.
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As was already observed by Morton and Richtmyer, a skew-symmetric difference
operator consistent with (6) for smooth data can be constructed by splitting it
between conservation and quasilinear form as

∂u

∂t
+

2

3

∂

∂x

(

u2

2

)

+
1

3
u
∂u

∂x
= 0

Suppose this is discretized on a uniform mesh xj = j∆x, j = 0, 1, . . . n.
Central differencing of both spatial derivatives at interior points yields the
semi-discrete scheme

duj

dt
=

1

6∆x

(

u2
j+1 − u2

j−1

)

+
1

6∆x
uj (uj+1 − uj−1) = 0, j = 1, n − 1 (13)
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Rewriting the quasilinear term as 1
6∆x

(uj+1uj − ujuj−1) equation (13) and can
be expressed in the conservation form

duj

dt
+

1

∆x

(

fj+1
2
− fj−1

2

)

= 0, j = 1, n − 1 (14)

where

fj+1
2

=
1

6

(

u2
j+1 + uj+1uj + u2

j

)

(15)

and
du0

dt
+

2

∆x

(

f1
2
− f0

)

= 0

dun

dt
+

2

∆x

(

fn − fn−1
2

)

= 0 (16)

where

f0 =
u2

0

2
, fn =

u2
n

2
(17)
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Now let the discrete energy be represented by trapezoidal integration as

E =
∆x

2

(

u2
0

2
+

u2
n

2

)

+ ∆x

n−1
∑

j=1

u2
j

2
(18)

Multiplying equation (14) by uj and summing by parts

∆x

n−1
∑

j=1

uj

duj

dt
= −

n−1
∑

j=1

uj(fj+1
2
− fj−1

2
) = f1

2
u0 − fn+1

2
un

Hence, including the boundary points, we find that

dE

dt
=

u3
0

3
−

u3
n

3
(19)

which is the exact discrete analog of the continuous energy evolution equation
(11).
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Evolution of the Solution of the Burgers Equation

(a) At t = 0.0 (b) At t = 0.5

Figure 1: Evolution of the solution of the Burgers equation
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Evolution of the Solution of the Burgers Equation (Continued)

(a) At t = 1.0 (b) At t = 1.5

Figure 2: Evolution of the solution of the Burgers equation
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Discrete Energy Growth

Figure 3: Discrete energy growth
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It is evident that the scheme must be modified to preserve stability in the
presence of shock waves. It is well known from shock capturing theory, that
oscillations in the neighborhood of shock waves are eleminated by schemes
which are local extremum diminishing (LED) or total variation diminishing
(TVD). A semi-discrete scheme is LED if it can be expressed in the form

dui

dt
=
∑

j

aij(uj − ui) (20)

where the coefficients aij ≥ 0, and the stencil is compact, aij 6= 0 when i and j

are not nearest neighbors.
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This property is satisfied by the upwind scheme in which the numerical flux (15)
is replaced by

fj+1
2

=















u2
j if aj+1

2
> 0

u2
j+1 if aj+1

2
< 0

1
2(u

2
j+1 + u2

j) if aj+1
2

= 0

(21)

where the numerical wave speed is evaluated as

aj+1
2

=
1

2
(uj+1 + uj) (22)

Moreover, the upwind scheme (21) admits a stationary numerical shock
structure with a single interior point.
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The LED condition only needs to be satisfied in the neighborhoods of local
extrema, which may be detected by a change of sign in the first differences
∆uj+1

2
= uj+1 − uj. A shock operator which meets these requirements can be

constructed as follows. The numerical flux (15) can be converted to the upwind
flux (21) by the addition of a diffusive term of the form

dj+1
2

= αj+1
2
∆uj+1

2
.

The required coefficient is

αj+1
2

=
1

4
|uj+1 + uj| −

1

12
(uj+1 − uj) (23)
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In order to detect an extremum introduce the function

R(u, v) =

∣

∣

∣

∣

u − v

|u| + |v|

∣

∣

∣

∣

q

where q is an integer power. R(u, v) = 1 whenever u and v have opposite signs.
When u = v = 0, R(u, v) should be assigned the value zero. Now set

sj+1
2

= R
(

∆uj+3
2
, ∆uj−1

2

)

(24)

so that sj+1
2

= 1 when ∆uj+3
2

and ∆uj−1
2

have opposite signs which will

generally be the case if either uj+1 or uj is an extremum. In a smooth region
where ∆uj+3

2
and ∆uj−1

2
are not both zero, sj+1

2
is of the order ∆xq, since

∆uj+3
2
− ∆uj−1

2
is an undivided difference. In order to avoid activating the

switch at smooth extrema, and also to protect against division by zero, R(u, v)
may be redefined as

R(u, v) =

∣

∣

∣

∣

u − v

max {(|u| + |v|), ǫ}

∣

∣

∣

∣

(25)

where ǫ is a tolerance.
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Evolution of the Solution of the Burgers Equation with a Switch

(a) At t = 0.0 (b) At t = 0.5

Figure 4: Evolution of the Solution of the Burgers Equation with a Switch
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Evolution of the Solution of the Burgers Equation with a Switch

(a) At t = 1.0 (b) At t = 1.5

Figure 5: Evolution of the Solution of the Burgers Equation with a Switch
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Discrete Energy Growth with a Limiter

Figure 6: Discrete energy growth with a limiter
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In the case of the viscous Burgers equation with the viscosity coefficient ν

∂u

∂t
+

∂

∂x

(

u2

2

)

= ν
∂2u

∂x
(26)

the energy balance is modified by the viscous dissipation. Multiplying by u, and
integrating the right hand side by parts with ∂u

∂x
= 0 at each boundary, the

energy balance equation assumes the form

dE

dt
=

u3
a

3
−

u3
b

3
− ν

∫ b

a

(

∂u

∂x

)2

dx (27)

instead of (11).
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Suppose that ∂2u
∂x2 is discretized by a central difference operator at interior points

with one sided formulas at the boundaries corresponding to ∂u
∂x

= 0,

1

∆x2
(uj+1 − 2uj + uj−1), j = 2, n − 1

1

∆x2
(u1 − u0) at the left boundary, (28)

1

∆x2
(un − un−1) at the right boundary

as proposed by Mattsson. Then summing by parts with the convective flux
evaluated by (15) as before, the discrete energy balance is found to be

dE

dt
=

u3
0

3
−

u3
n

3
− ν

n−1
∑

j=0

(uj+1 − uj)
2 (29)
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This enables the possibility of fully resolving shock waves without the need to
add any additional numerical diffusion via shock operators. The convective flux
difference fj+1

2
− fj−1

2
can be factored as

1

3∆x
(uj+1 + uj + uj−1)(uj+1 − uj−1)

Accordingly the semi-discrete approximation to equation (26) can written as

duj

dt
= aj+1

2
(uj+1 − uj) + aj−1

2
(uj−1 − uj) (30)

where

aj+1
2

=
ν

∆x2
−

uj+1 + uj + uj−1

3∆x
and

aj−1
2

=
ν

∆x2
+

uj+1 + uj + uj−1

3∆x
The semi-discrete approximation satisfies condition (20) for a local extremum
diminishing scheme if aj+1

2
≥ 0 and aj−1

2
≥ 0.
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This establishes the Theorem:

The semi-discrete approximation (14) using the numerical flux (15) and the

central difference operator (28) for ∂2u
∂x2 is local extremum diminishing if the cell

Reynolds number satisfies the condition

ū∆x

ν
≤ 2 (31)

where the local speed is evaluated as

ū =
1

3
|uj+1 + uj + uj−1| (32)
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Evolution of the Solution of the Viscous Burgers Equation

(a) At t = 0.0 (b) At t = 0.5

Figure 7: Evolution of the Solution of the Viscous Burgers Equation
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Evolution of the Solution of the Viscous Burgers Equation

(a) At t = 1.0 (b) At t = 1.5

Figure 8: Evolution of the Solution of the Viscous Burgers Equation
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Discrete Energy Growth for the Viscous Burgers Equation

Figure 9: Discrete energy growth for the viscous Burgers equation
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Consider the scalar conservation law
∂u

∂t
+

∂

∂x
f(u) = 0 (33)

u(x, 0) = u0(x),

u specified at inflow boundaries.

Correspondingly, smooth solutions of (33) also satisfsy

∂

∂t

(

u2

2

)

+
∂

∂x
F (u) = 0 (34)

where
Fu = ufu

Defining the energy as

E =

∫ b

a

u2

2
dx

it follows from (34) that smooth solutions of (33) satisfy the energy equation

dE

dt
= F (ua) − F (ub) (35)
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Introducing the function G(u) such that

Gu = f

and multiplying (33) by u we obtain

u
∂u

∂t
+ u

∂f

∂x
=

∂

∂t

(

u2

2

)

+
∂

∂x
(uf) − f

∂u

∂x

=
∂

∂t

(

u2

2

)

+
∂

∂x
(uf) − Gu

∂u

∂x

=
∂

∂t

(

u2

2

)

+
∂

∂x
(uf − G)

= 0

Thus F and G can be identified as

F = uf − G, G = uf − F (36)
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If shock waves appear in the solution the estimate (35) no longer holds.
Consider a solution containing a shock wave with left and right states uL and
uR, with corresponding flux vectors

fL = f(uL), fR = f(uR)

Equation (34) should then be integrated separately on each side of the shock
wave. Moreover there is an additional contribution to dE

dt
due to the shock

motion at the speed

s =
fR − fL

uR − uL

This is

s

(

u2
L

2
−

u2
R

2

)

= −
1

2
(fR − fL) (uR + uL)

Thus
dE

dt
= F (ua) − F (uL) + F (uR) − F (ub) −

1

2
(fR − fL) (uR + uL)
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Substituting formula (36) for F , we find that the contribution due to the shock
wave is

dE

dt

∣

∣

∣

∣

s

= G (uR) − G (uL) −
1

2
(fR + fL) (uR − uL)

Suppose now that f = ∂G
∂u

is evaluated as an average in the sense of Roe
between the states uL and uR such that

f̄ (uR, uL) (uR − uL) = G (uR) − G (uL) (37)

Then
dE

dt

∣

∣

∣

∣

s

= −

{

1

2
(fR + fL) − f̄ (uR, uL)

}

(uL − uR) (38)
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The Roe average can be evaluated as

f̄ (uR, uL) =

∫ 1

0

f (û(θ)) dθ (39)

where
û(θ) = uL + θ (uR − uL) (40)

since then

G (uR) − G (uL) =

∫ 1

0

Gu (û(θ)) ûθdθ

=

∫ 1

0

Gu (û(θ)) dθ (uR − uL)
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Under the assumption that f(u) is a convex function of u,

f̄ (uR, uL) <
1

2
(fR + fL) (41)

because
1

2
(fR + fL) =

∫ 1

0

(fL + θ (fR, fL)) dθ

and for 0 < θ < 1
f (û(θ)) < fL + θ (fR − fL)

It then follows from equation (38) that a shock wave always removes energy.
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Suppose now that (33) is discretized on a grid with cell intervals ∆xj, j = 1, n.
Consider a semi-discrete conservative scheme of the form

∆xj

duj

dt
+ (fj+1

2
− fj−1

2
) = 0 (42)

where the numerical flux fj+1
2

is a function of ui over a range bracketing uj such

that fj+1
2

= f(u) whenever u is substituted for the ui, thus satisfying Lax’s

consistency condition. Multiplying (42) by uj and summing by parts over the
interior points we obtain

n
∑

j=1

∆xjuj

duj

dt
= −

n
∑

j=1

uj(fj+1
2
− fj−1

2
)

= u1f1
2
− unfn+1

2
+

n−1
∑

j=1

fj+1
2
(uj+1 − uj)
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Now define the numerical flux as

fj+1
2

= Gu
j+1

2

(43)

where Gu
j+1

2

is the mean value of Gu in the range from uj to uj+1 such that

Gu
j+1

2

(uj+1 − uj) = G(uj+1) − G(uj) (44)

This is realized by formula (39) with uL = uj, uR = uj+1. Then, denoting
G(uj) by Gj,

n
∑

j=1

∆xjuj

duj

dt
= u1f1

2
− unfn+1

2
+

n−1
∑

j=1

(Gj+1 − Gj)

= u1f1
2
− unfn+1

2
− G1 + Gn
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Now let the boundary fluxes be evaluated as

f1
2

= f (u1) , fn+1
2

= f (un)

and define the discrete approximation to the energy as

E =
n
∑

j=1

∆xj

u2
j

2
(45)

Then finally
dE

dt
= u1f1 − unfn − G1 + Gn = F1 − Fn (46)

Thus the energy balance (35) is exactly recovered by the discrete scheme.
Equations (43) and (44) are satisfied by evaluating the numerical flux by the
Roe average (39) between the states uj and uj+1.
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This establishes the theorem:

If the scalar conservation law (33) is approximated by the semi-discrete
conservative scheme (42), it also satisfies the semi-discrete energy conservation
law (46) if the numerical flux fj+1

2
is evaluated by equations (39) and (40).
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Consider the gas dynamics equations in the conservation form

∂u

∂t
+

∂

∂x
f(u) = 0 (47)

Here the state and flux vectors are

u =





ρ

ρv

ρE



 , f =





ρv

ρv2 + p

ρvH



 (48)

where ρ is the density, v is the velocity and p, E and H are the pressure, energy
and enthalpy. Also

p = (γ − 1)ρ

(

E −
v2

2

)

, H = E +
p

ρ
(49)

where γ is the ratio of specific heats.
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In the absence of shock waves the entropy

s = log

(

p

ργ

)

(50)

is constant, satisfying the advection equation

∂s

∂t
+ v

∂s

∂x
= 0 (51)

Consider the generalized entropy function

h(s) = ρg(s) (52)

where it has been shown by Harten that h is a convex function of u provided that

d2g

ds2

/

dg

ds
<

1

γ
(53)

Then h satisfies the entropy conservation law

∂

∂t
h(u) +

∂

∂x
F (u) = 0 (54)

where the entropy flux is
F = ρvg(s) (55)
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Moreover, introducing the entropy variables

wT =
∂h

∂u
(56)

it can be verified that
hufu = Fu

and hence on multiplying (47) by wT we recover the entropy conservation law
(54) where now the Jacobian matrix

∂f

∂w
= fuuw

is symmetric. Accordingly f can be expressed as the gradient of a scalar
function G,

f =
∂G

∂w
(57)

and the entropy flux can be expressed as

F = fTw − G (58)
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Suppose now that (47) is approximated in semi-discrete form on a grid with cell
intervals ∆xj, j = 1, n as

∆xj

duj

dt
+ fj+1

2
− fj−1

2
= 0 (59)

where the numerical flux fj+1
2

is a function of ui over a range of i bracketing j.

In order to construct an entropy preserving (EP) scheme multiply (59) by wT

and sum by parts to obtain
n
∑

j=1

∆xjw
T
j

duj

dt
= −

n
∑

j=1

∆xjw
T
j

(

fj+1
2
− fj−1

2

)

= wT
1 f1

2
− wT

nfn+1
2
+

n−1
∑

j=1

fT

j+1
2
(wj+1 − wj)
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At interior points evaluate fT

j+1
2

as the mean value of Gw
j+1

2

in the sense of Roe

such that
Gw

j+1
2

(wj+1 − wj) = G (wj+1) − G (wj) (60)

Also evaluate the boundary fluxes as

f1
2

= f (w1) , fn+1
2

= f (wn) (61)

Then the interior fluxes cancel, and using (56) amd (58), we obtain the entropy
conservation law in the discrete form

n
∑

j=1

∆xj

dhj

dt
= F (w1) − F (wn) (62)
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G+ Gw
j+1

2

can be constructed to satisfy (60) exactly by evaluating it as the

integral

Gw
j+1

2

=

∫ 1

0

Gw (ŵ(θ)) dθ (63)

where
ŵ(θ) = wj + θ (wj+1 − wj) (64)

since then

G (wj+1) − G (wj) =

∫ 1

0

Gw (ŵ(θ)) wθdθ

=

∫ 1

0

Gw (ŵ(θ)) dθ (wj+1 − wj)
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Thus we obtain the Theorem:

The semi-discrete conservation law (59) satisfies the semi-discrete entropy
conservation law (62) is the numerical flux is calculated as

fj+1
2

=

∫ 1

0

fŵ(θ)dθ, j = 1, n − 1

where ŵ(θ) is defined by (64), and the boundary fluxes are defined by (61)
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The construction of a kinetic energy preserving (KEP) scheme requires a
different approach in which the fluxes of the continuity and momentum
equations are separately constructed in a compatible manner. Denoting the
specific kinetic energy by k,

k = ρ
v2

2
,

∂k

∂u
=

[

−
v2

2
, v, 0

]

Thus

∂k

∂t
= v

∂

∂t
(ρv) −

v2

2

∂ρ

∂t

= −
∂

∂x

{

v

(

p + ρ
v2

2

)}

+ p
∂v

∂x
(65)
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Suppose that the semi-discrete conservation scheme (59) is written separately
for the continuity and momentum equations as

∆xj

dρj

dt
+ (ρv)j+1

2
− (ρv)j−1

2
= 0 (66)

∆xj

d

dt
(ρv)j + (ρv2)j+1

2
− (ρv2)j−1

2
+ pj+1

2
− pj−1

2
= 0 (67)
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Now multiplying (66) by
v2
j

2
and (67) by vj, adding them and summing by parts,

n
∑

j=1

∆xj

(

vj

d

dt
(ρv)j −

v2
j

2

dρj

dt

)

=
n
∑

j=1

∆xj

d

dt

(

ρj

v2
j

2

)

=
n
∑

j=1

v2
j

2

(

(ρvj)j+1
2
− (ρvj)j−1

2

)

−
n
∑

j=1

vj

(

(ρv2)j+1
2
− (ρv2)j−1

2

)

−
n
∑

j=1

vj

(

pj+1
2
− pj−1

2

)

= −
v2

1

2
(ρv)1

2
+ v1(ρv2)1

2
+ v1p1

2
+

v2
n

2
(ρv)n+1

2
− vn(ρv2)n+1

2

− vnpn+1
2
+

n−1
∑

j=1

pj+1
2
(vj+1 − vj)

+
n−1
∑

j=1

{

1

2
(ρv)j+1

2

(

v2
j+1 − v2

j

) 1

2
(ρv2)j+1

2
(vj+1 − vj)

}

(68)
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Each term in the first sum containing the convective terms can be expanded as
{

(ρv)j+1
2

vj+1 + vj

2
− (ρv2)j+1

2

}

(vj+1 − vj)

and will vanish if

(ρv2)j+1
2

= (ρv)j+1
2

vj+1 + vj

2
(69)

Now evaluating the boundary fluxes as

(ρv)1
2

= ρ1v1 , (ρv2)1
2

= ρ1v
2
1 , p1

2
= p1

(ρv)n+1
2

= ρnvn , (ρv2)n+1
2

= ρnv
2
n , pn+1

2
= pn

(70)

(68) reduces to the semi-discrete kinetic energy conservation law
n
∑

j=1

∆xj

(

ρj

v2
j

2

)

= v1

(

p1 + ρ1
v2

1

2

)

− vn

(

pn + ρn

v2
n

2

)

+

n
∑

j=1

pj+1
2
(vj+1 + vj) (71)
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Denoting the arithmetic average of any quantity q between j + 1 and j as

q̄ =
1

2
(qj+1 + qj)

the interface pressure may be evaluated as

pj+1
2

= p̄ (72)

Also if one sets

(ρv)j+1
2

= ρ̄v̄ (73)
(

ρv2
)

j+1
2

= ρ̄v̄2 (74)

condition (69) is satisfied. Consistently one may set

(ρvH)j+1
2

= ρ̄v̄H̄ (75)
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The foregoing argument establishes the Theorem:

The semi-discrete conservation law (59) satisfies the semi-discrete kinetic energy
global conservation law (71) if the fluxes for the continuity and momentum
equations satisfy condition (69) and the boundary fluxes are calculated by
equations (70).
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This section presents the results of numerical experiments in which both the
entropy preserving (EP) and the kinetic energy preserving (KEP) schemes have
been applied to the direct numerical simulation (DNS) of one dimensional
viscous flow in a shock tube. It has been shown that shock waves in solutions of
the Burgers equation will be fully resolved if local cell Reynolds number Rec ≤ 2.

The compressible Navier Stokes equations are not amenable to such a simple
analysis, but it can still be expected that the number of mesh cells needed to
fully resolve shock waves and contact discontinuities will be proportional to the
Reynolds number, given that the shock thickness is proportional to the
coefficient of viscosity, as has been shown by G.I. Taylor and W.D. Hayes.
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Numerical experiments have been performed using three different flux formulas

1. Simple averaging:

fj+1
2

=
1

2
(f (uj+1) + f (uj))

2. The entropy preserving (EP) scheme:

fj+1
2

=

∫ 1

0

f (ŵ(θ)) dθ

where w denote the entropy variables and

ŵ(θ) = wj + θ (wj+1 − wj)

3. The kinetic energy preserving (KEP) scheme:

(ρv)j+1
2

= ρ̄v̄
(

ρv2
)

j+1
2

= ρ̄v̄2

(ρvH)j+1
2

= ρ̄v̄H̄
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In the EP scheme the entropy variables were taken to be

wT =
∂h

∂u

where

h = ρe
s

γ+1 = ρ

(

p

ργ

)
1

γ+1

Accordingly the entropy variables assume the comparatively simple form

w =
p∗

p





u3

−u2

u1



 , u =
p

p∗





w3

−w2

w1





where

p∗ =
γ − 1

γ + 1
e

s
γ+1 =

γ − 1

γ + 1

(

p

pγ

)
1

γ+1
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The energy or entropy preserving property could be impaired by the time
discretization scheme. One solution to this difficulty is to use an implicit
time-stepping scheme of Crank-Nicolson type in which the spatial derivatives are
evaluated using the average value of the state vectors between the beginning
and the end of each time step,

ūj =
1

2

(

un+1
j + un

j

)

This requires the use of inner iterations in each time step.

c© A. Jameson 2007
Stanford University, Stanford, CA

62/73



In order to avoid this cost, Shu’s total variation diminishing (TVD) scheme was
used for the time integration in all the numerical experiments. Writing the
semi-discrete scheme in the form

du

dt
+ R(u) = 0 (76)

where R(u) represents the discretized spatial derivative, this advances the
solution during one time step by the three stage scheme

u(1) = u(0) − ∆t R(u(0))

u(2) =
3

4
u(0) +

1

4
u(1) −

1

4
∆tR(u(1))

u(3) =
1

3
u(0) +

2

3
u(2) −

2

3
∆tR(u(2))
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(a) Pressure (b) Density

Figure 10: Simple averaging of the flux: 4096 mesh cells, Reynolds number 25000, Computed solution values +, Exact inviscid solution −
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(a) Velocity (b) Energy

Figure 11: Simple averaging of the flux: 4096 mesh cells, Reynolds number 25000, Computed solution values +, Exact inviscid solution −
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(a) Pressure (b) Density

Figure 12: Entropy preserving scheme: 4096 mesh cells, Reynolds number 25000, Computed solution values +, Exact inviscid solution −
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(a) Velocity (b) Energy

Figure 13: Entropy preserving scheme: 4096 mesh cells, Reynolds number 25000, Computed solution values +, Exact inviscid solution −
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(a) Pressure (b) Density

Figure 14: Kinetic energy preserving scheme: 4096 mesh cells, Reynolds number 25000, Computed solution values +, Exact inviscid solution −
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(a) Velocity (b) Energy

Figure 15: Kinetic energy preserving scheme: 4096 mesh cells, Reynolds number 25000, Computed solution values +, Exact inviscid solution −
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Conclusion (1)

The derivations in this paper establish that it is possible to construct
semi-discrete approximations to the compressible Navier Stokes equations in
conservation form which also discretely preserve the conservation of either
entropy (the EP scheme) or kinetic energy (the KEP scheme). Both these
schemes enable the direct numerical simulation of one dimensional viscous flow
in a shock tube, provided that the number of cells in the computational mesh is
of the order of the Reynolds number.

The performance of both the EP and the KEP schemes improves as the
Reynolds number and the number of mesh cells are simultaneously increased.
For the model problem examined in this paper, one-dimensional viscous flow in a
shock tube, the KEP scheme performs better than the EP scheme.
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Conclusion (2)

The Kolmogoroff scale for the small eddies that can persist in a viscous
turbulent flow is of the order of 1

Re
3
4
. Accordingly it appears that by using a

mesh with the order of Re3 cells, direct numerical simulation (DNS) of viscous
turbulent flow with shock waves will be feasible in the future for high Reynolds
number flows. Current high-end computers attain computing speeds of the order
of 100 teraflops (1014 floating point operations/second). This is about 1 million
times faster than high-end computers 25 years ago. A further increase by a
factor of million to 1020 flops could enable DNS of viscous compressible flow at a
Reynolds number of 1 million. This is still short of the flight Reynolds numbers
of long range transport aircraft in the range of 50−100 million, but the eventual
use of DNS for compressible turbulent flows can clearly be anticipated.
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