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Integral Conservation Law

Consider the Euler equations for gas dynamics can be expressed in conservation law
form

w =

266664
ρ
ρu1

ρu2

ρu3

ρE

377775 ,
where ρ is the density, ui are the velocity components and E is the total energy. The
flux vectors are

fi = uiw + p

266664
0
δi1
δi2
δi3
ui

377775
where the pressure is

p = (γ − 1)ρ(E − uiui).
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Integral Conservation Law

A semi-discrete finite volume scheme is obtained directly approximating the integral
form on each computational cell

d

dt

Z
cell

w dV +

Z
cell boundary

nifi dS = 0,

where ni are the components of the unit normal to the cell boundary. This leads to a
semi-discrete equation with the general form

V
dw

dt
+R(w) = 0 (1)

where w now denotes the average value of the state in the cell. V is the cell volume,
or in the two dimensional case, the cell area. R(w) is the residual resulting from the
space discretization.
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Paradox of Fast Steady State Solver

Figure 1: Paradox of fast steady state solver.
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Paradox of Fast Steady State Solver

In the early days of CFD, it was commonly assumed that in order to obtain fast
convergence to a steady state, it would be necessary to use an implicit scheme which
allowed large time steps. Any implicit scheme, however, such as the backward Euler
scheme

wn+1 = wn −∆tR(wn+1)

with the superscript n denoting the time level, requires the solution of a large number
of coupled nonlinear equations which have the same complexity as the steady state
problem,

R(w) = 0.

Accordingly, a fast steady state solver is an essential building block for an implicit
scheme. This leads to a circular situation. We need an implicit scheme for fast
convergence to a steady state, but we need a fast steady state solver to build an
implicit scheme. This situation is reminiscent of the scene shown in figure 1 of two
dragons, each consuming the other’s tail.
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Dual Time Stepping (Jameson 1991)

Introducing superscripts n to denote the time level, the second order backward
difference formula (BDF2) for time integration is

3V

2∆t
wn+1 − 2V

∆t
wn +

V

2∆t
wn−1 +R(wn+1) = 0 (2)

In the dual time stepping scheme this equation is solved by marching the equation

dw

dτ
+R∗(w) = 0 (3)

to a steady state, where the modified residual is

R∗(w) = R(w) +
3V

2∆t
w − 2V

∆t
wn − V

2∆t
wn−1 (4)
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Implicit Runge-Kutta Schemes

The dual time stepping approach has been quite widely adopted, particularly in
conjunction with the BDF2 scheme, which is both A and L-stable. Dahlquist has
proved that A-stable linear multi-step schemes are at most second order
accurate[Dah63]. In the works of Butcher and other specialists in the numerical
solution of ordinary differential equations it has been shown that it is possible to
design A and L-stable implicit Runge-Kutta schemes which yield higher order
accuracy [But87, But03, But64].

Recently there has been considerable interest in whether implicit Runge-Kutta
schemes can achieve better accuracy for a given computational cost than the
backwards difference formulas. Most of the studies to date have focused on diagonal
implicit Runge-Kutta (DIRK) schemes, sometimes called semi-implicit schemes, in
which the stages may be solved successively. These schemes, however, need a large
number of stages. For example, the scheme of Kennedy and Carpenter uses one
explicit and five implicit stages to attain fourth order accuracy [BCVK02].
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Two Stage Fourth Order Gauss Scheme

For equation 1, the two stage Gauss scheme takes the form

ξξξ1 = wn − ∆t

V
(a11R(ξξξ1) + a12R(ξξξ2))

ξξξ2 = wn − ∆t

V
t (a21R(ξξξ1) + a22R(ξξξ2))

wn+1 = wn − ∆t

2V
(R(ξξξ1) +R(ξξξ2))

(5)

where the matrix A of coefficients is

A =

"
1
4

1
4
−
√

3
6

1
4

+
√

3
6

1
4

#
(6)

and the stage values correspond to Gauss integration points inside the time step with
the values

“
1
2
−
√

3
6

”
∆t and

“
1
2

+
√

3
6

”
∆t.
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Three Stage Sixth Order Gauss Scheme

The three stage Gauss scheme takes the form

ξξξ1 = wn − ∆t

V
(a11R(ξξξ1) + a12R(ξξξ2) + a13R(ξξξ3))

ξξξ2 = wn − ∆t

V
(a21R(ξξξ1) + a22R(ξξξ2) + a23R(ξξξ3)

ξξξ3 = wn − ∆t

V
(a31R(ξξξ1) + a32R(ξξξ2) + a33R(ξξξ3)

wn+1 = wn − ∆t

18V
(5R(ξξξ1) + 8R(ξξξ2) + 5R(ξξξ3)

(7)

where the matrix A of coefficients is

A =

264 5
36

2
9
−
√

15
15

5
36
−
√

15
30

5
36

+
√

15
30

2
9

5
36
−
√

15
24

5
36

+
√

15
30

2
9

+
√

15
15

5
36

375 (8)

and the stage values correspond to the intermediate times
“

1
2
−
√

15
10

”
∆t, 1

2
∆t and“

1
2

+
√

15
10

”
∆t within the time step.
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Two Stage Third Order Radau 2A Scheme

For the solution of equation 1, the two stage Radau 2A scheme takes the form

ξ1 = wn − ∆t

V
(a11R(ξ1) + a12R(ξ2))

ξ2 = wn − ∆t

V
(a21R(ξ1) + a22R(ξ2))

wn+1 = ξ2

(9)

where the matrix A of coefficients is

A =

»
5
12

− 1
12

3
4

1
4

–
and the stage values correspond to Radau integration points at 1

3
∆t and ∆t.
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Three Stage Fifth Order Radau 2A Scheme

The three stage Radau 2A scheme takes the form

ξ1 = wn − ∆t

V
(a11R(ξ1) + a12R(ξ2) + a13R(ξ3))

ξ2 = wn − ∆t

V
(a21R(ξ1) + a22R(ξ2) + a23R(ξ3))

ξ3 = wn − ∆t

V
(a31R(ξ1) + a32R(ξ2) + a33R(ξ3))

wn+1 = ξ3

(10)

where the matrix A of coefficients is

A =

264 88−7
√

6
360

296−169
√

6
1800

−2+3
√

6
225

296+169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

16−
√

6
36

16+
√

6
36

1
9

375
and the stage values correspond to the Radau integration points 4−

√
6

10
∆t, 4+

√
6

10
∆t

and ∆t.
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Formulation
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Naive Application of Dual Time Stepping Schemes

In order to clarify the issues it is useful to consider first the application of the two stage
Gauss scheme to the scalar equation

du

dt
= au (11)

where a is a complex coefficient lying in the left half plane. A naive application of dual
time stepping would simply add derivatives in pseudo time to produce the scheme

dξ1
dτ

= a(a11ξ1 + a12ξ2) +
un − ξ1

∆t
dξ2
dτ

= a(a21ξ1 + a22ξ2) +
un − ξ2

∆t

(12)

which may be written in vector form as

dξ

dτ
= Bξ + c (13)

where

B =

»
a11a− 1

∆t
a12a

a21a a22a− 1
∆t

–
, c =

1

∆t

»
un

un

–
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Naive Application of Dual Time Stepping Schemes

For equation (13) to converge to a steady state the eigenvalues of B should lie in the
left half plane. These are the roots of

det(λI −B) = 0

or

λ2 − λ
„

(a11 + a22)a− 2

∆t

«
+ a11a22a

2 − (a11 + a22)
a

∆t
+

1

∆t2
− a12a21a

2 = 0

Substituting the coefficient values for the Gauss scheme given in equation (6), we find
that

λ =
1

4
a− 1

∆t
± ia

r
1

48

Then if a = p+ iq

λ =
1

4
p± q

r
1

48
− 1

∆t
+ i

 
1

4
q ± p

r
1

48

!

and for small ∆t one root could have a positive real port even when a lies in the left
plane.
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Preconditioned Dual Time-Stepping Scheme for Two Stage Schemes

In order to prevent this we can modify equation (12) by multiplying the right hand side by a
preconditioning matrix. It is proposed here to take the inverse of the Runge-Kutta coefficient
array A as the preconditioning matrix. Here

A−1 =
1

D

»
a22 −a12

a21 a11

–
where the determinant of A is

D = a11a22 − a12a21

Setting

r1 = a(a11ξ1 + a12ξ2) +
un − ξ1

∆t

r2 = a(a21ξ1 + a22ξ2) +
un − ξ2

∆t

the preconditioned dual time stepping scheme now takes the form
dξ1

dτ
= (a22r1 − a12r2)D

= aξ1 +
a22

D∆t
(un − ξ1)−

a12

D∆t
(un − ξ2)

dξ2

dτ
= (a11r2 − a21r1)/D

= aξ2 +
a11

D∆t
(un − ξ2)−

a21

D∆t
(un − ξ1)
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Preconditioned Dual Time-Stepping Scheme for Two Stage Schemes

The preconditioned dual time stepping scheme may be written in the vector form (13)
where now

B =

»
a− a22

D∆t
a12
D∆t

a21
D∆t

a− a11
D∆t

–
, c =

1

D∆t

»
(a22 − a12)un

(a11 − a− 21)un

–
Now the dual time stepping scheme will reach a steady state if the roots of

det(λI −B) = 0

lie in the left half plane. Substituting the coefficients of B the roots satisfy

λ2 − λ
“

2a− a11 + a22

D∆t

”
+ a2 − aa11 + a22

D∆t
+

1

D
∆t2 = 0

and using the coefficient values of the Gauss scheme, we now find that

λ2 − λ
„

2a− 6

∆t

«
+ a2 − 6a

∆t
+

12

∆t2
= 0

yielding

λ = a− 3

∆t
± i
√

3

∆t
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Dual Time-Stepping Scheme for Two Stage IRK Schemes

Following this approach, the proposed dual time stepping scheme for the nonlinear
equations (5) is

r1 =
V

∆t
(wn − ξξξ1)− a11R(ξξξ1)− a12R(ξξξ2)

r2 =
V

∆t
(wn − ξξξ2)− a21R(ξξξ1)− a22R(ξξξ2)

(14)

and

dξξξ1

dτ
= (a22r1 − a12r2)/D

dξξξ2

dτ
= (a11r2 − a21r1)/D

(15)

where D is the determinant of A.
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General Approach to Dual Time-Stepping Scheme for IRK Schemes

Using vector notation a naive application of dual time stepping yields the equations

dξ

dτ
= aAξ +

1

∆t
(wn − ξ) (16)

and the eigenvalues of the matrix

B = aA−
1

∆t
I (17)

do not necessarily lie in the left half plane. Introducing A−1 as a preconditioning matrix the dual
time stepping equations become

dξ

dτ
= aξ +

1

∆t
A−1 (wn − ξ) (18)

so we need the eigenvalues of

B = aI −
1

∆t
A−1 (19)

to lie in the left half plane for all values of a in the left half plane.
The eigenvalues of B are

a−
1

∆t

1

λk
, k = 1, 2, 3

where λk are the eigenvalues of A. Thus they will lie in the left half plane for all values of a in the
left half plane if the eigenvalues of A lie in the right half plane.
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Characteristic Polynomials of the Two Stage Schemes

The characteristic polynomials of A for the two-stage Gauss and Radau 2A schemes
are

λ2 − 1

2
λ+

1

12
= 0

and
λ2 − 2

3
λ+

1

6
= 0

with roots

λ =
1

4
± i
r

1

48

and

λ =
1

3
± i
r

1

18

respectively, which in both cases lie in the right half plane.
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Characteristic Polynomials of the Three Stage Schemes

The characteristic polynomials for the three stage Gauss and Radau 2A schemes are

λ3 −
1

2
λ2 +

1

10
λ−

1

120
= 0 (20)

and
λ3 −

6

10
λ2 +

3

20
λ−

1

60
= 0. (21)

Rather than calculating the roots directly, it is simpler to use the Routh-Hurwitz criterion which
states that the roots of

a3λ
3 + a2λ

2 + a1λ+ a0

lie in the left half plane if all the coefficients are positive and

a2a1 > a3a0.

The roots of A will lie in the right half plane if the roots of −A be in the left half plane. Here, the
characteristic polynomials of −A for the two-three stage schemes are

λ3 +
1

2
λ2 +

1

10
λ+

1

120

and
λ3 +

6

10
λ2 +

3

20
λ+

1

60
and it is easily verified that the Routh-Hurwitz condition is satisfied in both cases.
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Dual Time Stepping Scheme for the Three Stage IRK Schemes

The proposed dual time stepping scheme for the three stage schemes is now

r1 =
V

∆t
(wn − ξξξ1)− a11R(ξξξ1)− a12R(ξξξ2)− a13R(ξξξ3)

r2 =
V

∆t
(wn − ξξξ2)− a21R(ξξξ1)− a22R(ξξξ2)− a23R(ξξξ3)

r3 =
V

∆t
(wn − ξξξ3)− a31R(ξξξ1)− a32R(ξξξ2)− a33R(ξξξ3)

and

dξξξ1

dτ
= d11r1 + d12r2 + d13r3

dξξξ2

dτ
= d21r1 + d22r2 + d23r3

dξξξ3

dτ
= d31r1 + d32r2 + d33r3

where the coefficients djk are the entries of A−1.

Antony Jameson Stanford University 22 / 33



Part 1 Part 2 Part 3 Part 4

Applications to the Unsteady Euler Equations

These schemes have been applied to solve the Euler equations for unsteady flow past
a pitching airfoil with these implicit Runge-Kutta schemes. The spatial discretization
uses the Jameson-Schmidt-Turkel (JST) scheme[JST81]. The dual time stepping
equations (15) are solved by a three stage preconditioned Runge-Kutta scheme
similar to that proposed by Rossow[Ros07] and Swanson et al [STR07]. Writing the
dual time stepping equations as

dξ

dτ
+R∗(ξ) = 0

the scheme takes the general form

ξ(1) = ξ(0) − α1∆τP−1R∗
“
ξ(0)
”

ξ(2) = ξ(0) − α2∆τP−1R∗
“
ξ(1)
”

ξ(3) = ξ(0) − α3∆τP−1R∗
“
ξ(4)
”

where
α1 = 0.15 , α2 = 0.40 , α3 = 1

and P−1 denotes a single sweep of an LUSGS scheme in each direction.
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Results
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Flow Past a Pitching Airfoil

The flow past a pitching airfoil has been used as a test case for the new dual time
stepping implicit Runge-Kutta schemes. The selected case is the A GARD case CT-6.
This is a pitching NACA 64A010 airfoil at a Mach number of 0.796. The airfoil is
symmetric and the mean angle of attack is zero, leading to a flow in which shock
waves appear alternately on the upper and lower surface. The pitching amplitude is
±1.01 degrees, and the reduced frequency, defined as

k =
ωchord

2q∞

where ω is the pitching rate, has a value of 2.02. Calculations were performed on an
O-mesh with 160× 32 cells (displayed in Figure 2), which has a very tight spacing at
thte trailing edge. An initial steady state was established using 50 multigrid cycles.
These were sufficient to reduce the density residual to a value less than 10−12. Then
6 pitching cycles were calculated with the dual time stepping scheme. This is
sufficient to reach an almost steady periodic state. The implicit time step was selected
such that each pitching cycle was calculated with 18 steps, corresponding to a shift of
20 degrees in the phase angle per step.
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O-Mesh Used in Pitching Airfoil Calculations

NACA                                                                            
GRID  160 X   32

Figure 2: O-mesh used in pitching airfoil calculations
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Convergence History of the Inner Iterations of the Last Step

NACA                                                                            
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Figure 3: Convergence history of the inner iterations of the last step
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Snapshot of the Solution at Several Phase Angles During the Sixth
Pitching Cycle

Figure 4: Snapshot of the solution at several phase angles during the sixth pitching cycle
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Lift coefficient CL versus angle of attack α

NACA                                                                            
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Figure 5: Lift coefficient CL versus angle of attack α
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Conclusion
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Conclusion

Dual time stepping is a feasible approach for solving the coupled residual equations of
a fully implicit Runge-Kutta schemes for unsteady flow simulations. The fourth and
sixth order Gauss schemes appear to be competitive with alternative implicit schemes
because they require only two and three stages respectively and they are A-stable
although not L-stable. It seems, therefore, that they merit further study.
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