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Objective of Computational Aerodynamics

1 Capability to predict the flow past an airplane in different
flight regimes such as take off, cruise, flutter.

2 Interactive design calculations to allow immediate
improvement

3 Automatic design optimization

Antony Jameson Mathematics of Aerodynamic Shape Optimization



Introduction
Numerical Formulation

Design Process

Introduction
Lighthill’s Method
Control Theory Approach to Design

Early Aerodynamic Design Methods

1945 Lighthill (Conformal Mapping, Incompressible Flow)

1965 Nieuwland (Hodograph, Power Series)

1970 Garabedian - Korn (Hodograph, Complex
Characteristics)

1974 Boerstoel (Hodograph)

1974 Trenen (Potential Flow, Dirichlet Boundary Conditions)

1977 Henne (3D Potential Flow, based on FLO22)

1985 Volpe-Melnik (2D Potential Flow, Bsed on FLO36)

1979 Garabedian-McFadden (Potential Flow, Neumann
Boundary Conditions, Iterated Mapping)

1976 Sobieczi (Fictitious Gas)

1979 Drela-Giles (2D Euler Equations, Streamline
Coordinates, Newton Iteration)
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Lighthill’s Method

Profile P on z plane

⇓
Profile C on σ plane

Let the profile P be conformally
mapped to an unit circle C

The surface velocity is q = 1
h
|∇φ|

where φ is the potential in the
circle plane, and h is the mapping
modulus h =

∣

∣

dz
dσ

∣

∣ = ds
dθ

Choose q = qT

Solve for the maping modulus
h = 1

qT
|∇φ|
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Implementation of Lighthill’s Method

Design Profile C for Specified Surface speed qt . Let a profile C be conformally

mapped to a circle by

log
dz

dσ
=

X Cn

σn

log
ds

dθ
+ i(α− θ −

pi

2
) =

X

(ancos(nθ) + bnsin(nθ)) + i
X

(bncos(nθ) − ansin(nθ))

where

q =
∇Φ

h
, h =

˛

˛

˛

˛

dz

dσ

˛

˛

˛

˛

and

Φ = (r +
1

r
)cosθ +

Γ

2π
θ is known

On C set q = qt

→
ds

dθ
=

Φθ

qt

→ an, bb
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Constraints with Lighthill’s Method

To preserve q∞
c0 = 0

Also, integration around a circuit gives

∆z =

I

dz

dσ
dσ = 2πic1

Closure → c1 = 0
Thus,

Z

log(qt )dθ = 0

Z

log(qt )cos(θ)dθ = 0

Z

log(qt )sin(θ)dθ = 0
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Control Theory Approach to Design

A wing is a device to control the flow. Apply the
theory of control of partial differential equations
(J.L.Lions) in conjunction with CFD.

References

Pironneau (1964) Optimum shape design for subsonic
potential flow

Jameson (1988) Optimum shape design for transonic and
supersonic flow modeled by the transonic potential flow
equation and the Euler equations
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Control Theory Approach to the Design Method

Define a cost function

I =
1

2

∫

B

(p − pt)
2dB

or

I =
1

2

∫

B

(q − qt)
2dB

The surface shape is now treated as the control, which is to be
varied to minimize I, subject to the constraint that the flow
equations are satisfied in the domain D.
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Choice of Domain

ALTERNATIVES

1 Variable computational domain - Free boundary problem

2 Transformation to a fixed computational domain - Control via
the transformation function

EXAMPLES

1 2D via Conformal mapping with potential flow

2 2D via Conformal mapping with Euler equations

3 3D Sheared Parabolic Coordinates with Euler equation

4 ...
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Formulation of the Control Problem

Suppose that the surface of the body is expressed by an equation

f (x) = 0

Vary f to f + δf and find δI .
If we can express

δI =

Z

B

gδfdB = (g , δf )B

Then we can recognize g as the gradient ∂I
∂f

.
Choose a modification

δf = −λg

Then to first order
δI = −λ(g , g)B ≤ 0

In the presence of constraints project g into the admissible trial space.

Accelerate by the conjugate gradient method.
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Traditional Approach to Design Optimization
Define the geometry through a set of design parameters, for example, to be the
weights αi applied to a set of shape functions bi (x) so that the shape is represented as

f (x) =
X

αibi (x).

Then a cost function I is selected , for example, to be the drag coefficient or the lift to
drag ratio, and I is regarded as a function of the parameters αi . The sensitivities ∂I

∂αi

may be estimated by making a small variation δαi in each design parameter in turn
and recalculating the flow to obtain the change in I . Then

∂I

∂αi

≈
I (αi + δαi ) − I (αi )

δαi

.

The gradient vector G = ∂I
∂α

may now be used to determine a direction of
improvement. The simplest procedure is to make a step in the negative gradient
direction by setting

αn+1 = αn + δα,

where
δα = −λG

so that to first order

I + δI = I − GT δα = I − λGTG < I
Antony Jameson Mathematics of Aerodynamic Shape Optimization
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Disadvantages

The main disadvantage of this approach is the need for a number
of flow calculations proportional to the number of design variables
to estimate the gradient. The computational costs can thus
become prohibitive as the number of design variables is increased.
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Formulation of the Adjoint Approach to Optimal Design

For flow about an airfoil or wing, the aerodynamic properties which define the cost
function are functions of the flow-field variables (w) and the physical location of the
boundary, which may be represented by the function F , say. Then

I = I (w ,F) ,

and a change in F results in a change

δI =

»

∂IT

∂w

–

δw +

»

∂IT

∂F

–

δF (1)

in the cost function. Suppose that the governing equation R which expresses the
dependence of w and F within the flowfield domain D can be written as

R (w ,F) = 0. (2)

Then δw is determined from the equation

δR =

»

∂R

∂w

–

δw +

»

∂R

∂F

–

δF = 0. (3)

Since the variation δR is zero, it can be multiplied by a Lagrange Multiplier ψ and
subtracted from the variation δI without changing the result.
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Formulation of the Adjoint Approach to Optimal Design

δI =
∂IT

∂w
δw +

∂IT

∂F
δF − ψT

„»

∂R

∂w

–

δw +

»

∂R

∂F

–

δF

«

=



∂IT

∂w
− ψT

»

∂R

∂w

–ff

δw +



∂IT

∂F
− ψT

»

∂R

∂F

–ff

δF . (4)

Choosing ψ to satisfy the adjoint equation
»

∂R

∂w

–T

ψ =
∂I

∂w
(5)

the first term is eliminated, and we find that

δI = GT δF , (6)

where

G =
∂IT

∂F
− ψT

»

∂R

∂F

–

.

An improvement can be made with a shape change

δF = −λG

where λ is positive and small enough that the first variation is an accurate estimate of δI .
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Advantages

The advantage is that (6) is independent of δw , with the result that the
gradient of I with respect to an arbitrary number of design variables can be
determined without the need for additional flow-field evaluations.

The cost of solving the adjoint equation is comparable to that of solving the flow
equations. Thus the gradient can be determined with roughly the computational
costs of two flow solutions, independently of the number of design variables,
which may be infinite if the boundary is regarded as a free surface.

When the number of design variables becomes large, the computational
efficiency of the control theory approach over traditional approach, which
requires direct evaluation of the gradients by individually varying each design
variable and recomputing the flow fields, becomes compelling.
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Design using the Transonic Potential
Flow Equation
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Airfoil Design For Potential Flow using Conformal Mapping

Consider the case of two-dimensional compressible inviscid flow. In the absence of
shock waves, an initially irrotational flow will remain irrotational, and we can assume
that the velocity vector q is the gradient of a potential φ. In the presence of weak
shock waves this remains a fairly good approximation. Let p, ρ, c, and M be the
pressure, density, speed-of-sound, and Mach number q/c. Then the potential flow
equation is

∇ · (ρ∇φ) = 0, (7)

where the density is given by

ρ =



1 +
γ − 1

2
M2

∞

`

1 − q2
´

ff 1
(γ−1)

, (8)

while

p =
ργ

γM2
∞

, c2 =
γp

ρ
. (9)

Here M∞ is the Mach number in the free stream, and the units have been chosen so

that p and q have a value of unity in the far field.
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Airfoil Design For Potential Flow using Conformal Mapping

Suppose that the domain D exterior to the profile C in the z-plane is conformally
mapped on to the domain exterior to a unit circle in the σ-plane. Let R and θ be
polar coordinates in the σ-plane, and let r be the inverted radial coordinate 1

R
. Also

let h be the modulus of the derivative of the mapping function

h =

˛

˛

˛

˛

dz

dσ

˛

˛

˛

˛

. (10)

Now the potential flow equation becomes

∂

∂θ
(ρφθ) + r

∂

∂r
(rρφr ) = 0 in D, (11)

where the density is given by equation (8), and the circumferential and radial velocity
components are

u =
rφθ

h
, v =

r2φr

h
, (12)

while
q2 = u2 + v2. (13)
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Airfoil Design For Potential Flow using Conformal Mapping

The condition of flow tangency leads to the Neumann boundary condition

v =
1

h

∂φ

∂r
= 0 on C . (14)

In the far field, the potential is given by an asymptotic estimate, leading to a Dirichlet
boundary condition at r = 0.
Suppose that it is desired to achieve a specified velocity distribution qd on C .
Introduce the cost function

I =
1

2

Z

C

(q − qd )2 dθ,
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Design Problem

The design problem is now treated as a control problem where the control function is
the mapping modulus h, which is to be chosen to minimize I subject to the
constraints defined by the flow equations (7–14).

A modification δh to the mapping modulus will result in variations δφ, δu, δv , and δρ
to the potential, velocity components, and density. The resulting variation in the cost
will be

δI =

Z

C

(q − qd ) δq dθ, (15)

where, on C , q = u. Also,

δu = r
δφθ

h
− u

δh

h
, δv = r2 δφr

h
− v

δh

h
,

while according to equation (8)

∂ρ

∂u
= −

ρu

c2
,
∂ρ

∂v
= −

ρv

c2
.
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Design Problem

It follows that δφ satisfies

Lδφ = −
∂

∂θ

„

ρM2φθ
δh

h

«

− r
∂

∂r

„

ρM2rφr
δh

h

«

where

L ≡
∂

∂θ



ρ

„

1 −
u2

c2

«

∂

∂θ
−
ρuv

c2
r
∂

∂r

ff

+ r
∂

∂r



ρ

„

1 −
v2

c2

«

r
∂

∂r
−
ρuv

c2

∂

∂θ

ff

. (16)

Then, if ψ is any periodic differentiable function which vanishes in the far field,

Z

D

ψ

r2
L δφ dS =

Z

D

ρM2∇φ · ∇ψ
δh

h
dS, (17)

where dS is the area element r dr dθ, and the right hand side has been integrated by
parts.
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Design Problem

Now we can augment equation (15) by subtracting the constraint (17). The auxiliary
function ψ then plays the role of a Lagrange multiplier. Thus,

δI =

Z

C

(q − qd ) q
δh

h
dθ−

Z

C

δφ
∂

∂θ

„

q − qd

h

«

dθ−

Z

D

ψ

r2
Lδφ dS+

Z

D

ρM2∇φ·∇ψ
δh

h
dS.

Now suppose that ψ satisfies the adjoint equation

Lψ = 0 in D (18)

with the boundary condition

∂ψ

∂r
=

1

ρ

∂

∂θ

„

q − qd

h

«

on C . (19)

Then, integrating by parts,

δI = −

Z

C

(q − qd ) q
δh

h
dθ +

Z

D

ρM2∇φ · ∇ψ
δh

h
dS. (20)

Here the first term represents the direct effect of the change in the metric, while the

area integral represents a correction for the effect of compressibility. When the second

term is deleted the method reduces to a variation of Lighthill’s method.
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Design Problem

Equation (20) can be further simplified to represent δI purely as a boundary integral
because the mapping function is fully determined by the value of its modulus on the
boundary. Set

log
dz

dσ
= F + iβ,

where

F = log

˛

˛

˛

˛

dz

dσ

˛

˛

˛

˛

= log h,

and

δF =
δh

h
.

Then F satisfies Laplace’s equation

∆F = 0 in D,

and if there is no stretching in the far field, F → 0. Introduce another auxiliary
function P which satisfies

∆P = ρM2∇ψ · ∇ψ in D, (21)

and
P = 0 on C .
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Then after integrating by parts we find that

δI =

Z

C

G δFc dθ,

where Fc is the boundary value of F , and

G =
∂P

∂r
− (q − qd ) q. (22)

Thus we can attain an improvement by a modification

δFc = −λḠ

in the modulus of the mapping function on the boundary, which in turn defines the

computed mapping function since F satisfies Laplace’s equation. In this way the

Lighthill method is extended to transonic flow.
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Design using the Euler Equations

In a fixed computational domain with coordinates, ξ, the Euler equations are

J
∂w

∂t
+ R(w) = 0 (23)

where J is the Jacobian (cell volume),

R(w) =
∂

∂ξi
(Sij fj ) =

∂Fi

∂ξi
. (24)

and Sij are the metric coefficients (face normals in a finite volume scheme). We
can write the fluxes in terms of the scaled contravariant velocity components

Ui = Sijuj

as

Fi = Sij fj =

2

6

6

6

6

4

ρUi

ρUiu1 + Si1p

ρUiu2 + Si2p

ρUiu3 + Si3p

ρUiH

3

7

7

7

7

5

.

where p = (γ − 1)ρ(E − 1
2
u2

i ) and ρH = ρE + p.
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Design using the Euler Equations

A variation in the geometry now appears as a variation δSij in the
metric coefficients. The variation in the residual is

δR =
∂

∂ξi
(δSij fj) +

∂

∂ξi

(

Sij

∂fj

∂w
δw

)

(25)

and the variation in the cost δI is augmented as

δI −
∫

D

ψT δR dξ (26)

which is integrated by parts to yield

δI −
∫

B

ψTniδFidξB +

∫

D

∂ψT

∂ξ
(δSij fj) dξ +

∫

D

∂ψT

∂ξi
Sij

∂fj

∂w
δwdξ
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For simplicity, it will be assumed that the portion of the boundary that
undergoes shape modifications is restricted to the coordinate surface ξ2 = 0.
Then equations for the variation of the cost function and the adjoint boundary
conditions may be simplified by incorporating the conditions

n1 = n3 = 0, n2 = 1, Bξ = dξ1dξ3,

so that only the variation δF2 needs to be considered at the wall boundary. The
condition that there is no flow through the wall boundary at ξ2 = 0 is
equivalent to

U2 = 0, so that δU2 = 0

when the boundary shape is modified. Consequently the variation of the
inviscid flux at the boundary reduces to

δF2 = δp

8

>

>

>

>

<

>

>

>

>

:

0
S21

S22

S23

0

9

>

>

>

>

=

>

>

>

>

;

+ p

8

>

>

>

>

<

>

>

>

>

:

0
δS21

δS22

δS23

0

9

>

>

>

>

=

>

>

>

>

;

. (27)
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Design using the Euler Equations

In order to design a shape which will lead to a desired pressure
distribution, a natural choice is to set

I =
1

2

∫

B

(p − pd)2 dS

where pd is the desired surface pressure, and the integral is
evaluated over the actual surface area. In the computational
domain this is transformed to

I =
1

2

∫∫

Bw

(p − pd)2 |S2| dξ1dξ3,

where the quantity
|S2| =

√

S2jS2j

denotes the face area corresponding to a unit element of face area
in the computational domain.
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Design using the Euler Equations

In the computational domain the adjoint equation assumes the
form

CT
i

∂ψ

∂ξi
= 0 (28)

where

Ci = Sij
∂fj

∂w
.

To cancel the dependence of the boundary integral on δp, the
adjoint boundary condition reduces to

ψjnj = p − pd (29)

where nj are the components of the surface normal

nj =
S2j

|S2|
.
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Design using the Euler Equations

This amounts to a transpiration boundary condition on the co-state variables
corresponding to the momentum components. Note that it imposes no
restriction on the tangential component of ψ at the boundary.
We find finally that

δI = −

Z

D

∂ψT

∂ξi
δSij fjdD

−

ZZ

BW

(δS21ψ2 + δS22ψ3 + δS23ψ4) p dξ1dξ3. (30)

Here the expression for the cost variation depends on the mesh variations

throughout the domain which appear in the field integral. However, the true

gradient for a shape variation should not depend on the way in which the mesh

is deformed, but only on the true flow solution. In the next section we show

how the field integral can be eliminated to produce a reduced gradient formula

which depends only on the boundary movement.
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The Reduced Gradient Formulation

Consider the case of a mesh variation with a fixed boundary. Then δI = 0 but
there is a variation in the transformed flux,

δFi = Ciδw + δSij fj .

Here the true solution is unchanged. Thus, the variation δw is due to the mesh
movement δx at each mesh point. Therefore

δw = ∇w · δx =
∂w

∂xj

δxj (= δw∗)

and since ∂
∂ξi
δFi = 0, it follows that

∂

∂ξi
(δSij fj) = −

∂

∂ξi
(Ciδw

∗) . (31)

It has been verified by Jameson and Kim⋆ that this relation holds in the
general case with boundary movement.

⋆ “Reduction of the Adjoint Gradient Formula in the Continuous Limit”, A.Jameson and S. Kim
, 41st AIAA Aerospace Sciences Meeting & Exhibit, AIAA Paper 2003–0040, Reno, NV, January 6–9, 2003.
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The Reduced Gradient Formulation

Now
Z

D

φT δR dD =

Z

D

φT ∂

∂ξi
Ci (δw − δw∗) dD

=

Z

B

φT Ci (δw − δw∗) dB

−

Z

D

∂φT

∂ξi
Ci (δw − δw∗) dD. (32)

Here on the wall boundary
C2δw = δF2 − δS2j fj . (33)

Thus, by choosing φ to satisfy the adjoint equation and the adjoint boundary
condition, we reduce the cost variation to a boundary integral which depends only on
the surface displacement:

δI =

Z

BW

ψT
`

δS2j fj + C2δw
∗

´

dξ1dξ3

−

ZZ

BW

(δS21ψ2 + δS22ψ3 + δS23ψ4) p dξ1dξ3. (34)
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Viscous Adjoint Terms
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Derivation of the Viscous Adjoint Terms

The viscous terms will be derived under the assumption that the
viscosity and heat conduction coefficients µ and k are essentially
independent of the flow, and that their variations may be
neglected. This simplification has been successfully used for may
aerodynamic problems of interest. In the case of some turbulent
flows, there is the possibility that the flow variations could result in
significant changes in the turbulent viscosity, and it may then be
necessary to account for its variation in the calculation.
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Transformation to Primitive Variables

The derivation of the viscous adjoint terms is simplified by transforming
to the primitive variables

w̃T = (ρ, u1, u2, u3, p)T ,

because the viscous stresses depend on the velocity derivatives ∂Ui

∂xj
, while

the heat flux can be expressed as

κ
∂

∂xi

(

p

ρ

)

.

where κ = k
R

= γµ
Pr(γ−1) . The relationship between the conservative and

primitive variations is defined by the expressions

δw = Mδw̃ , δw̃ = M−1δw

which make use of the transformation matrices M = ∂w
∂w̃

and M−1 = ∂w̃
∂w

.
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Transformation to Primitive Variables

These matrices are provided in transposed form for future
convenience

MT =













1 u1 u2 u3
uiui

2
0 ρ 0 0 ρu1

0 0 ρ 0 ρu2

0 0 0 ρ ρu3

0 0 0 0 1
γ−1













M−1T

=















1 −u1
ρ −u2

ρ −u3
ρ

(γ−1)ui ui

2

0 1
ρ 0 0 −(γ − 1)u1

0 0 1
ρ 0 −(γ − 1)u2

0 0 0 1
ρ −(γ − 1)u3

0 0 0 0 γ − 1















.
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The Viscous Adjoint Field Operator

Collecting together the contributions from the momentum and energy equations, the
viscous adjoint operator in primitive variables can be expressed as

“

L̃ψ
”

1
= −

p

ρ2

∂

∂ξl

„

Sljκ
∂θ

∂xj

«

“

L̃ψ
”

i+1
=

∂

∂ξl



Slj

»

µ

„

∂φi

∂xj

+
∂φj

∂xi

«

+ λδij
∂φk

∂xk

–ff

+
∂

∂ξl



Slj

»

µ

„

ui
∂θ

∂xj

+ uj
∂θ

∂xi

«

+ λδijuk

∂θ

∂xk

–ff

−σij

„

Slj

∂θ

∂xj

«

“

L̃ψ
”

5
=

1

ρ

∂

∂ξl

„

Sljκ
∂θ

∂xj

«

.

The conservative viscous adjoint operator may now be obtained by the transformation

L = M−1T

L̃
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Viscous Adjoint Boundary Conditions

The boundary conditions satisfied by the flow equations restrict the
form of the performance measure that may be chosen for the cost
function. There must be a direct correspondence between the flow
variables for which variations appear in the variation of the cost
function, and those variables for which variations appear in the
boundary terms arising during the derivation of the adjoint field
equations. Otherwise it would be impossible to eliminate the
dependence of δI on δw through proper specification of the adjoint
boundary condition. In fact it proves that it is possible to treat any
performance measure based on surface pressure and stresses such
as the force coefficients, or an inverse problem for a specified
target pressure.
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Sobolev Inner Product
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The Need for a Sobolev Inner Product in the Definition of

the Gradient

Another key issue for successful implementation of the continuous adjoint method is
the choice of an appropriate inner product for the definition of the gradient. It turns
out that there is an enormous benefit from the use of a modified Sobolev gradient,
which enables the generation of a sequence of smooth shapes. This can be illustrated
by considering the simplest case of a problem in the calculus of variations.
Suppose that we wish to find the path y(x) which minimizes

I =

Z b

a

F (y , y ′)dx

with fixed end points y(a) and y(b).
Under a variation δy(x),

δI =

Z b

1

„

∂F

∂y
δy +

∂F

∂y ′
δy ′

«

dx

=

Z b

1

„

∂F

∂y
−

d

dx

∂F

∂y ′

«

δydx
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The Need for a Sobolev Inner Product in the Definition of

the Gradient

Thus defining the gradient as

g =
∂F

∂y
−

d

dx

∂F

∂y ′

and the inner product as

(u, v) =

Z b

a

uvdx

we find that
δI = (g , δy).

If we now set
δy = −λg , λ > 0,

we obtain a improvement
δI = −λ(g , g) ≤ 0

unless g = 0, the necessary condition for a minimum.
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The Need for a Sobolev Inner Product in the Definition of

the Gradient

Note that g is a function of y , y ′, y ′′,

g = g(y , y ′, y ′′)

In the well known case of the Brachistrone problem, for example, which calls for the
determination of the path of quickest descent between two laterally separated points
when a particle falls under gravity,

F (y , y ′) =

s

1 + y
′2

y

and

g = −
1 + y

′2
+ 2yy ′′

2
ˆ

y(1 + y
′2 )

˜3/2

It can be seen that each step
yn+1 = yn − λngn

reduces the smoothness of y by two classes. Thus the computed trajectory becomes

less and less smooth, leading to instability.
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The Need for a Sobolev Inner Product in the Definition of

the Gradient

In order to prevent this we can introduce a weighted Sobolev inner product

〈u, v〉 =

Z

(uv + ǫu′
v
′)dx

where ǫ is a parameter that controls the weight of the derivatives. We now
define a gradient g such that δI = 〈g , δy〉. Then we have

δI =

Z

(gδy + ǫg ′δy ′)dx

=

Z „

g −
∂

∂x
ǫ
∂g

∂x

«

δydx

= (g , δy)

where

g −
∂

∂x
ǫ
∂g

∂x
= g

and g = 0 at the end points.
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The Need for a Sobolev Inner Product in the Definition of

the Gradient

Therefore g can be obtained from g by a smoothing equation.
Now the step

yn+1 = yn − λngn

gives an improvement

δI = −λn〈gn, gn〉

but yn+1 has the same smoothness as yn, resulting in a stable
process.
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Outline of the Design Process

The design procedure can finally be summarized as follows:

1 Solve the flow equations for ρ, u1, u2, u3 and p.

2 Solve the adjoint equations for ψ subject to appropriate
boundary conditions.

3 Evaluate G and calculate the corresponding Sobolev gradient
G.

4 Project G into an allowable subspace that satisfies any
geometric constraints.

5 Update the shape based on the direction of steepest descent.

6 Return to 1 until convergence is reached.
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Design Cycle

Sobolev Gradient

Gradient Calculation

Flow Solution

Adjoint Solution

Shape & Grid

Repeat the Design Cycle
until Convergence

Modification
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Constraints

Fixed CL.

Fixed span load distribution to present too large CL on the
outboard wing which can lower the buffet margin.

Fixed wing thickness to prevent an increase in structure
weight.

Design changes can be can be limited to a specific spanwise
range of the wing.
Section changes can be limited to a specific chordwise range.

Smooth curvature variations via the use of Sobolev gradient.
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Application of Thickness Constraints

Prevent shape change penetrating a specified skeleton
(colored in red).

Separate thickness and camber allow free camber variations.

Minimal user input needed.
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Computational Cost⋆

Cost of Search Algorithm

Steepest Descent O(N2) Steps
Quasi-Newton O(N) Steps
Smoothed Gradient O(K ) Steps

Note: K is independent of N.

⋆: “Studies of Alternative Numerical Optimization Methods Applied to the Brachistrone Problem”,

A.Jameson and J. Vassberg, Computational Fluid Dynamics, Journal, Vol. 9, No.3, Oct. 2000, pp. 281-296
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Computational Cost⋆

Total Computational Cost of Design

+
Finite difference gradients O(N3)
Steepest descent

+
Finite difference gradients O(N2)
Quasi-Newton

+
Adjoint gradients O(N)
Quasi-Newton

+
Adjoint gradients O(K )
Smoothed gradient

Note: K is independent of N.

⋆: “Studies of Alternative Numerical Optimization Methods Applied to the Brachistrone Problem”,

A.Jameson and J. Vassberg, Computational Fluid Dynamics, Journal, Vol. 9, No.3, Oct. 2000, pp. 281-296
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Inverse Design

Recovering of ONERA M6 Wing
from its pressure distribution

A. Jameson 2003–2004
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NACA 0012 WING TO ONERA M6 TARGET

(a) Staring wing: NACA 0012 (b) Target wing: ONERA M6
This is a difficult problem because of the presence of the shock wave in the
target pressure and because the profile to be recovered is symmetric while the
target pressure is not. Antony Jameson Mathematics of Aerodynamic Shape Optimization
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Pressure Profile at 48% Span

(c) Staring wing: NACA 0012 (d) Target wing: ONERA M6
The pressure distribution of the final design match the specified target, even
inside the shock.
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Planform and Aero–Structural

Optimization

Super B747
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Planform and Aero-Structural Optimization

The shape changes in the section needed to improve the transonic wing
design are quite small. However, in order to obtain a true optimum
design larger scale changes such as changes in the wing planform
(sweepback, span, chord, and taper) should be considered. Because these
directly affect the structure weight, a meaningful result can only be
obtained by considering a cost function that takes account of both the
aerodynamic characteristics and the weight.
Consider a cost function is defined as

I = α1CD + α2
1

2

∫

B

(p − pd)2dS + α3CW

Maximizing the range of an aircraft provides a guide to the values for α1

and α3.
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Choice of Weighting Constants

The simplified Breguet range equation can be expressed as

R =
V

C

L

D
log

W1

W2

where W2 is the empty weight of the aircraft.
With fixed V /C ,W1, and L, the variation of R can be stated as

δR

R
= −

 

δCD

CD

+
1

log W1
W2

δW2

W2

!

= −

0

@

δCD

CD

+
1

log
CW1
CW2

δCW2

CW2

1

A .

Therefore minimizing
I = CD + αCW ,

by choosing

α =
CD

CW2 log
CW1
CW2

,

corresponds to maximizing the range of the aircraft.

Antony Jameson Mathematics of Aerodynamic Shape Optimization



Introduction
Numerical Formulation

Design Process

Design Process Outline
Inverse Design
Super B747
P51 Racer
Flight at Mach 1
Reduced Sweep

Boeing 747 Euler Planform Results: Pareto Front

Test case: Boeing 747 wing–fuselage and modified geometries at
the following flow conditions.

M∞ = 0.87, CL = 0.42 (fixed), multiple
α3

α1

80 85 90 95 100 105 110
0.038

0.040

0.042

0.044

0.046

0.048

0.050

0.052

CD (counts)

C
w

Pareto front

baseline 

optimized section   
with fixed planform 

X = optimized section
      and planform   

maximized range 
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Boeing 747 Euler Planform Results: Sweepback, Span,

Chord, and Section Variations to Maximize Range

Geometry Baseline Optimized Variation (%)

Sweep (◦) 42.1 38.8 –7.8
Span (ft ) 212.4 226.7 +6.7

Croot 48.1 48.6 +1.0
Cmid 30.6 30.8 +0.7
Ctip 10.78 10.75 +0.3
troot 58.2 62.4 +7.2
tmid 23.7 23.8 +0.4
ttip 12.98 12.8 –0.8
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Boeing 747 Euler Planform Results: Sweepback, Span,

Chord, and Section Variations to Maximize Range

CD is reduced from 107.7 drag counts to 87.2 drag counts (19%).

CW is reduced from 0.0455 (69,970 lbs) to 0.0450 (69,201 lbs) (1.1%).
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P51 Racer
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P51 Racer

Aircraft competing in the Reno Air Races reach speeds above 500 MPH,
encounting compressibility drag due to the appearance of shock waves.

Objective is to delay drag rise without altering the wing structure. Hence try
adding a bump on the wing surface.
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Partial Redesign

Allow only outward movement.
Limited changes to front part of the chordwise range.
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Flight at Mach 1
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Flight at mach 1

A viable alternative for long range business jets?
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Flight at mach 1

It appears possible to design a wing with very low drag at Mach 1,
as indicated in the table below:

CL
CDpres

CDfriction
CDwing

(counts) (counts) (counts)

0.300 47.6 41.3 88.9
0.330 65.6 40.8 106.5

The data is for a wing-fuselage combination, with engines
mounted on the rear fuselage simulated by bumps.

The wing has 50 degrees of sweep at the leading edge, and
the thickness to chord ratio varies from 10 percent at the root
to 7 percent at the tip.

To delay drag rise to Mach one requires fuselage shaping in
conjunction with wing optimization.
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X Jet: Model E

Pressure Distribution on the Wing at Mach 1.1

Antony Jameson Mathematics of Aerodynamic Shape Optimization



Introduction
Numerical Formulation

Design Process

Design Process Outline
Inverse Design
Super B747
P51 Racer
Flight at Mach 1
Reduced Sweep

X Jet: Model E

Drag Rise
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Do We Need Swept Wings on
Commercial Jets?

Antony Jameson Mathematics of Aerodynamic Shape Optimization



Introduction
Numerical Formulation

Design Process

Design Process Outline
Inverse Design
Super B747
P51 Racer
Flight at Mach 1
Reduced Sweep

Background for Studies of Reduced Sweep

Current Transonic Transports

Cruise Mach: 0.76 ≤ M ≤ 0.86
C/4 Sweep: 25◦ ≤ Λ ≤ 35◦

Wing Planform Layout Knowledge Base

Heavily Influenced By Design Charts

Data Developed From Cut-n-Try Designs
Data Aumented With Parametric Variations
Data Collected Over The Years
Includes Shifts Due To Technologies
e.g., Supercritical Airfoils, Composites, etc.
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Pure Aerodynamic Optimizations

Evolution of Pressures for Λ = 10◦ Wing during Optimization
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Pure Aerodynamic Optimizations

Mach Sweep CL CD CD.tot ML/D
√

ML/D

0.85 35◦ 0.500 153.7 293.7 14.47 15.70

0.84 30◦ 0.510 151.2 291.2 14.71 16.05

0.83 25◦ 0.515 151.2 291.2 14.68 16.11

0.82 20◦ 0.520 151.7 291.7 14.62 16.14

0.81 15◦ 0.525 152.4 292.4 14.54 16.16

0.80 10◦ 0.530 152.2 292.2 14.51 16.22

0.79 5◦ 0.535 152.5 292.5 14.45 16.26

CD in counts

CD.tot = CD + 140 counts

Lowest Sweep Favors
√

ML/D ≃ 4.0%

Antony Jameson Mathematics of Aerodynamic Shape Optimization



Introduction
Numerical Formulation

Design Process

Design Process Outline
Inverse Design
Super B747
P51 Racer
Flight at Mach 1
Reduced Sweep

Conclusion of Swept Wing Study

An unswept wing at Mach 0.80 offers slightly better range
efficiency than a swept wing at Mach 0.85.

It would also improve TO, climb, descent and landing.

Perhaps B737/A320 replacements should have unswept wings.
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Concept of Numerical Wind Tunnel

Flow
Solution

Aeroelastic
Solution

Loads

Numerically IntensiveHuman Intensive

Initial
Design

CAD
Definition

CFD
Geometry
Modeling

Mesh
Generation

Requirements Redesign

Quantitative
Assessment

L, D, W
MDO*

Visualization

*MDO: Multi-Disciplinary Optimization

1
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Advanced Numerical Wind Tunnel

Numerically IntensiveHuman Intensive

Initial
Design

Master
Definition
Central

Database

Requirements
High-Level
Redesign

Geometry
Modification

Optimization

Quantitative
Assessment

Automatic Mesh
Generation

Flow
Solution

Loads

Aeroelastic
Solution

Monitor
Results

1
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