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Objective of Computational Aerodynamics

@ Capability to predict the flow past an airplane in different
flight regimes such as take off, cruise, flutter.

© Interactive design calculations to allow immediate
improvement

© Automatic design optimization
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Early Aerodynamic Design Methods

@ 1945 Lighthill (Conformal Mapping, Incompressible Flow)

1965 Nieuwland (Hodograph, Power Series)

1970 Garabedian - Korn (Hodograph, Complex

Characteristics)

1974 Boerstoel (Hodograph)

1974 Trenen (Potential Flow, Dirichlet Boundary Conditions)

1977 Henne (3D Potential Flow, based on FLO22)

1985 Volpe-Melnik (2D Potential Flow, Bsed on FLO36)

1979 Garabedian-McFadden (Potential Flow, Neumann

Boundary Conditions, Iterated Mapping)

1976 Sobieczi (Fictitious Gas)

@ 1979 Drela-Giles (2D Euler Equations, Streamline
Coordinates, Newton lteration)
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Profile P on z plane

Introduction
Lighthill's Method
Control Theory Approach to Design

il

Profile C on o plane

Antony Jameson

Let the profile P be conformally
mapped to an unit circle C

The surface velocity is g = 7 |V¢|
where ¢ is the potential in the
circle plane, and h is the mapping

modulus h = ‘da = gg
Choose g = g1
Solve for the maping modulus

-1
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Implementation of Lighthill’'s Method

Design Profile C for Specified Surface speed q:. Let a profile C be conformally

mapped to a circle by

log% +i(la—0— %) = Z(ancos(ne) + bnsin(n6)) + iZ(bncos(né') — apsin(nb))

where
dz

=27 h=|=
9 do

and 1 r
& = (r+ —)cosf + —0 is known
r 2

On Cset g =gt

ds ¢9
— — = —— — an, bb
do qr
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Constraints with Lighthill's Method

To preserve goo
Cy = 0

Also, integration around a circuit gives

d
Az = 7§ 2 4o = 2ric
do

Closure — ¢c; =0
Thus,

/Iog(qt)dG =0
/log(qt)cos(é')dé' =0
/ log(q+)sin(6)d0 = 0
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Control Theory Approach to Design

A wing is a device to control the flow. Apply the
theory of control of partial differential equations
(J.L.Lions) in conjunction with CFD.

References

@ Pironneau (1964) Optimum shape design for subsonic
potential flow

@ Jameson (1988) Optimum shape design for transonic and
supersonic flow modeled by the transonic potential flow
equation and the Euler equations
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Control Theory Approach to the Design Method

Define a cost function

1
/=§/<p—pt)2d8
B

1
= 5/(q—qt>2d8
B

The surface shape is now treated as the control, which is to be
varied to minimize |, subject to the constraint that the flow
equations are satisfied in the domain D.

or
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Choice of Domain

ALTERNATIVES

© Variable computational domain - Free boundary problem

@ Transformation to a fixed computational domain - Control via
the transformation function

EXAMPLES
@ 2D via Conformal mapping with potential flow
© 2D via Conformal mapping with Euler equations
© 3D Sheared Parabolic Coordinates with Euler equation
Q ..
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Formulation of the Control Problem

Suppose that the surface of the body is expressed by an equation
flx)=0

Vary f to f + 0f and find §/.
If we can express

él:/g6fd6:(g,6f)g
B

ol

Then we can recognize g as the gradient 5.

Choose a modification

6f = —)g

Then to first order
0l =-Ng.g)s <0

In the presence of constraints project g into the admissible trial space.

Accelerate by the conjugate gradient method.

Antony Jameson Mathematics of Aerodynamic Shape Optimization



Introduction Introduction
Lighthill's Method
Control Theory Approach to Design

Traditional Approach to Design Optimization

Define the geometry through a set of design parameters, for example, to be the
weights «; applied to a set of shape functions b;(x) so that the shape is represented as

f(x) = Za,-b,-(x).
Then a cost function [ is selected , for example, to be the drag coefficient or the lift to
drag ratio, and / is regarded as a function of the parameters ;. The sensitivities %
I

may be estimated by making a small variation d«; in each design parameter in turn
and recalculating the flow to obtain the change in /. Then

ol - l(a,- =+ 50&,’) — l(a,-)

doi oo '
The gradient vector G = % may now be used to determine a direction of
improvement. The simplest procedure is to make a step in the negative gradient

direction by setting
an+1 — an + 50{7

where
da = —\G

so that to first order

1+6l=1-GT6a=1-XG"G <
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Disadvantages

The main disadvantage of this approach is the need for a number
of flow calculations proportional to the number of design variables
to estimate the gradient. The computational costs can thus

become prohibitive as the number of design variables is increased.
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Formulation of the Adjoint Approach to Optimal Design

For flow about an airfoil or wing, the aerodynamic properties which define the cost
function are functions of the flow-field variables (w) and the physical location of the
boundary, which may be represented by the function F, say. Then

I=1(w,F),
and a change in F results in a change
a7 alr
6l = ow OF 1
5o+ 57 @

in the cost function. Suppose that the governing equation R which expresses the
dependence of w and F within the flowfield domain D can be written as

R(w,F)=0. (2)
Then dw is determined from the equation
OR OR
0R = ow 0F =0. 3
[a } " [af} ®)

Since the variation 6R is zero, it can be multiplied by a Lagrange Multiplier 1) and
subtracted from the variation §/ without changing the result,
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Formulation of the Adjoint Approach to Optimal Design

a7 a7 oR OR
51 = w4+ —6F—vyT Sw 5F
3o+ 5z =" ([5] ™+ [57) %)

0 oOF

aIr aIr AR
o < . 4
ool (G [l @

Choosing 1 to satisfy the adjoint equation
OR ol

- = 5
|:8W:| V= ow )

the first term is eliminated, and we find that

5 =GToF, (6)
where
O[]
dF dF

An improvement can be made with a shape change
OF = =AG

where X is positive and small enough that the first variation is an-accurate estimate of §/.
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Advantages

@ The advantage is that (6) is independent of dw, with the result that the
gradient of / with respect to an arbitrary number of design variables can be
determined without the need for additional flow-field evaluations.

@ The cost of solving the adjoint equation is comparable to that of solving the flow
equations. Thus the gradient can be determined with roughly the computational
costs of two flow solutions, independently of the number of design variables,
which may be infinite if the boundary is regarded as a free surface.

@ When the number of design variables becomes large, the computational
efficiency of the control theory approach over traditional approach, which
requires direct evaluation of the gradients by individually varying each design
variable and recomputing the flow fields, becomes compelling.
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DESIGN USING THE TRANSONIC POTENTIAL
FrLow EQUATION
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Airfoil Design For Potential Flow using Conformal Mapping

Consider the case of two-dimensional compressible inviscid flow. In the absence of
shock waves, an initially irrotational flow will remain irrotational, and we can assume
that the velocity vector q is the gradient of a potential ¢. In the presence of weak
shock waves this remains a fairly good approximation. Let p, p, ¢, and M be the
pressure, density, speed-of-sound, and Mach number gq/c. Then the potential flow

equation is
V- (pVe) =0, (M
where the density is given by
1 (=)
7 V=
o= {11 - | (8)
while .
P 2 __ P
p= , €= —. (9)
TMZ, p

Here My is the Mach number in the free stream, and the units have been chosen so

that p and g have a value of unity in the far field.
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Airfoil Design For Potential Flow using Conformal Mapping

Suppose that the domain D exterior to the profile C in the z-plane is conformally
mapped on to the domain exterior to a unit circle in the o-plane. Let R and 6 be
polar coordinates in the o-plane, and let r be the inverted radial coordinate %. Also
let h be the modulus of the derivative of the mapping function

dz

h=|—]. 10
9o (10)
Now the potential flow equation becomes
1o} 1o} .
(pd9) + r— (rpér) =0 in D, (11)

90 or

where the density is given by equation (8), and the circumferential and radial velocity
components are

2

=, IO (12)
h h

while

? = v+ 2 (13)

Antony Jameson Mathematics of Aerodynamic Shape Optimization



Design using the Transonic Potential Flow Equation
Design using the Euler Equations

Viscous Adjoint Terms

Sobolev Inner Product

Numerical Formulation

Airfoil Design For Potential Flow using Conformal Mapping

The condition of flow tangency leads to the Neumann boundary condition

9¢ =0 on C. (14)
or

1
v=—
h

In the far field, the potential is given by an asymptotic estimate, leading to a Dirichlet
boundary condition at r = 0.

Suppose that it is desired to achieve a specified velocity distribution g4 on C.
Introduce the cost function
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Design Problem

The design problem is now treated as a control problem where the control function is
the mapping modulus h, which is to be chosen to minimize / subject to the
constraints defined by the flow equations (7-14).

A modification dh to the mapping modulus will result in variations §¢, du, dv, and dp
to the potential, velocity components, and density. The resulting variation in the cost

will be
8l = /C (9 —qq) dq do, (15)
where, on C, g = u. Also,
ou = r% — uﬁ, ov = r26¢r — va—h,
h h h h

while according to equation (8)

Op  pu Op  pv
du 2 v 2
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Design Problem

It follows that §¢ satisfies

0 u?\ 0 puv 0O 7] v2 1o} puv 0
L=— l1-—= )= ——Fr— — l1-—=|r————=,. (16
ae{p( c2)ae 2 r@r}+r8r{p( c2)’ar 2 ae} (16)
Then, if ¢ is any periodic differentiable function which vanishes in the far field,

oh
—dS 17
" ds, (a7

/D%Lwds:/Dpr.w;

where dS is the area element r dr df, and the right hand side has been integrated by
parts.
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Design Problem

Now we can augment equation (15) by subtracting the constraint (17). The auxiliary
function 1) then plays the role of a Lagrange multiplier. Thus,

51 = /(q a4 q—d /5¢ (" "d) do— /¢L5¢d5+/p/w2v¢w—d5.

Now suppose that 1 satisfies the adjoint equation

Ly =0 in D (18)
with the boundary condition
1o} 10 —
o _19 (M) on C. (19)
or p 00 h
Then, integrating by parts,
éh oh
—/ (9—qd)g— d9+/ pM?V ¢ - Vip— dS. (20)
c h D h

Here the first term represents the direct effect of the change in the metric, while the
area integral represents a correction for the effect of compressibility. When the second
term is deleted the method reduces to a variation of Lighthill's method.
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Design Problem

Equation (20) can be further simplified to represent §/ purely as a boundary integral
because the mapping function is fully determined by the value of its modulus on the
boundary. Set

d
log &£ = F 4+ iB,

do

where d
F = log —z‘ = log h,
do

and sh

OF = —.

h
Then F satisfies Laplace’s equation
AF =0 in D,

and if there is no stretching in the far field, 7 — 0. Introduce another auxiliary
function P which satisfies

AP = pM?V4) - Vi) in D, (21)

and
P=0 onC.
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Design Problem

Then after integrating by parts we find that
ol :/ GoF. do,
c

where F¢ is the boundary value of F, and

oP

9=, (@-ada (22)

Thus we can attain an improvement by a modification
§Fc = —2G
in the modulus of the mapping function on the boundary, which in turn defines the

computed mapping function since F satisfies Laplace's equation. In this way the

Lighthill method is extended to transonic flow.
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DESIGN USING THE EULER EQUATIONS
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Design using the Euler Equations

In a fixed computational domain with coordinates, &, the Euler equations are
ow

S5+ R(w) =0 (23)
where J is the Jacobian (cell volume),
10} OF;
R(w) = a—&(sijﬁ')— 3 (24)

and S are the metric coefficients (face normals in a finite volume scheme). We
can write the fluxes in terms of the scaled contravariant velocity components
U= S;juj
as
pUi
pUiui + Siip
Fi = Sjf; = | pUiuz+ Sip
pUius + Sisp
pUH
where p = (v — 1)p(E — su;) and pH = pE + p.
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Numerical Formulation

Design using the Euler Equations

A variation in the geometry now appears as a variation 6S;; in the
metric coefficients. The variation in the residual is

B) o (. oOf
IR = 5 (046) + 5 <5 —5W> (25)

and the variation in the cost 4/ is augmented as
5l — / YT OR dE (26)
D
which is integrated by parts to yield
oy’ oy’
T fi

— iO0Fid 0Sf;) d i owd

| wTnordes+ [ S Gsinyder [ sy onds
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Numerical Formulation

Design using the Euler Equations

For simplicity, it will be assumed that the portion of the boundary that
undergoes shape modifications is restricted to the coordinate surface & = 0.
Then equations for the variation of the cost function and the adjoint boundary
conditions may be simplified by incorporating the conditions

nm =n3 =0, m =1 Be = dé1dé&s,
so that only the variation dF> needs to be considered at the wall boundary. The

condition that there is no flow through the wall boundary at &, =0 is
equivalent to

U, =0, so that oU =0
when the boundary shape is modified. Consequently the variation of the
inviscid flux at the boundary reduces to

0 0
521 6521
0F =6pq S» +pq 0S» . (27)
523 6523
0 0
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Design using the Euler Equations

In order to design a shape which will lead to a desired pressure
distribution, a natural choice is to set
1 2
1=3 [ (o= payds
B
where py is the desired surface pressure, and the integral is
evaluated over the actual surface area. In the computational
domain this is transformed to

1
I = 5//3 (p — pa)?|S2| dérdés,

where the quantity
|52] = 1/ 5252

denotes the face area corresponding to a unit element of face area
in the computational domain.
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Design using the Euler Equations

In the computational domain the adjoint equation assumes the

form o
cT=2 -0 28
5% (28)
where 8f
C = SUa

To cancel the dependence of the boundary integral on §p, the
adjoint boundary condition reduces to

Yinj = p — pd (29)
where n; are the components of the surface normal
Szj
n: —
T 1S]
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Design using the Euler Equations

This amounts to a transpiration boundary condition on the co-state variables
corresponding to the momentum components. Note that it imposes no
restriction on the tangential component of 1) at the boundary.

We find finally that

_ T oo o
51__/738—&65”6dp

- // (6521402 + 052093 + 0S23904) p d&1dEs.  (30)
By

Here the expression for the cost variation depends on the mesh variations
throughout the domain which appear in the field integral. However, the true
gradient for a shape variation should not depend on the way in which the mesh
is deformed, but only on the true flow solution. In the next section we show
how the field integral can be eliminated to produce a reduced gradient formula
which depends only on the boundary movement.
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The Reduced Gradient Formulation

Consider the case of a mesh variation with a fixed boundary. Then §/ = 0 but
there is a variation in the transformed flux,

5F = Cidw + 5S;f,.

Here the true solution is unchanged. Thus, the variation dw is due to the mesh
movement dx at each mesh point. Therefore

ow .
5W—VW'5X—8—)96)Q(—5W )
and since %5/—‘; =0, it follows that
19} 19} .
8_,5;(5506)__8_5,-(&6“/ )- (31)

It has been verified by Jameson and Kim* that this relation holds in the
general case with boundary movement.

% “Reduction of the Adjoint Gradient Formula in the Continuous Limit”, A.Jameson and S. Kim
, 41st AIAA Aerospace Sciences Meeting & Exhibit, AIAA Paper 2003-0040, Reno, NV, January 6-9, 2003.
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The Reduced Gradient Formulation

Now

/ $TSRdD = / ¢Ti Ci (6w — 6w*) dD
D p 0§
- / 67 C (5w — ow*) dB
B
-
_ [ o Ci (6w — éw™) dD. (32)
p 9§
Here on the wall boundary
Codw = SF» — 5Syf;. (33)

Thus, by choosing ¢ to satisfy the adjoint equation and the adjoint boundary
condition, we reduce the cost variation to a boundary integral which depends only on
the surface displacement:

5l = / T (855 + Coow™) dérdés
By

- //B (6S21P2 + 6S2013 + 6S231ha) p dE1dEs. (34)
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Viscous ADJOINT TERMS
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Numerical Formulation

Derivation of the Viscous Adjoint Terms

The viscous terms will be derived under the assumption that the
viscosity and heat conduction coefficients 1 and k are essentially
independent of the flow, and that their variations may be
neglected. This simplification has been successfully used for may
aerodynamic problems of interest. In the case of some turbulent
flows, there is the possibility that the flow variations could result in
significant changes in the turbulent viscosity, and it may then be
necessary to account for its variation in the calculation.
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Transformation to Primitive Variables

The derivation of the viscous adjoint terms is simplified by transforming
to the primitive variables

~ T T

w :(pa U17U2aU3aP) )
because the viscous stresses depend on the velocity derivatives ‘g while
the heat flux can be expressed as

KR = % The relationship between the conservative and

primitive variations is defined by the expressions

where Kk =

Sw= Msw, S =M "tw

which make use of the transformation matrices M = a~ W and M~1 = gz.
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Transformation to Primitive Variables

These matrices are provided in transposed form for future
convenience

1 up Uy U3 %
0 p 0 0 pun
MT = |0 0 p 0 puw
0 0 0 p pus
(00 0 0 i
(1 —w _wm o (-Duw
p p p 2
. 0 2 0 0 —(v—lu
Mt =10 0 1 0 —(v-Duw
0 0 0 2 —(y-1us
0 0 0 0 y—1
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Numerical Formulation

The Viscous Adjoint Field Operator

Collecting together the contributions from the momentum and energy equations, the
viscous adjoint operator in primitive variables can be expressed as

i PO (s 90
(Lw>1 02 08 (S’J”axj)
= 0 0o; 3¢j) 8¢k:|}
I -z . - 27
( w)m o€, {S’J {“ (axj o) TN
L9 o0 06 90
s 22 e
"o { ’J[ (“ ax,-+“’ax,-)+ ’“kaxk”
o0
I (S’Ja )
J

, 19 a0
(sz)5 e (s,jna—xj) .

The conservative viscous adjoint operator may now be obtained by the transformation

L=m11]
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Viscous Adjoint Boundary Conditions

The boundary conditions satisfied by the flow equations restrict the
form of the performance measure that may be chosen for the cost
function. There must be a direct correspondence between the flow
variables for which variations appear in the variation of the cost
function, and those variables for which variations appear in the
boundary terms arising during the derivation of the adjoint field
equations. Otherwise it would be impossible to eliminate the
dependence of §/ on dw through proper specification of the adjoint
boundary condition. In fact it proves that it is possible to treat any
performance measure based on surface pressure and stresses such
as the force coefficients, or an inverse problem for a specified
target pressure.
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SOBOLEV INNER PRODUCT
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Numerical Formulation

The Need for a Sobolev Inner Product in the Definition of
the Gradient

Another key issue for successful implementation of the continuous adjoint method is
the choice of an appropriate inner product for the definition of the gradient. It turns
out that there is an enormous benefit from the use of a modified Sobolev gradient,
which enables the generation of a sequence of smooth shapes. This can be illustrated
by considering the simplest case of a problem in the calculus of variations.

Suppose that we wish to find the path y(x) which minimizes

b
’=/ F(y,y")dx
a

with fixed end points y(a) and y(b).
Under a variation dy(x),

5= [ (Zarr L) o
1 \9y ay’

broF d OF
= = ) sy
/1(8y dxay’) yox
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Numerical Formulation

The Need for a Sobolev Inner Product in the Definition of
the Gradient

Thus defining the gradient as

__OF d OF
&€= dy  dx oy’
and the inner product as
b
(u, v) :/ uvdx
a
we find that
61 = (g,0y)-

If we now set
oy = =g, A>0,

we obtain a improvement
8l =—-Xg,g) <0

unless g = 0, the necessary condition for a minimum.
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Numerical Formulation

The Need for a Sobolev Inner Product in the Definition of
the Gradient

Note that g is a function of y,y’, y",
g=g(y,y,y")

In the well known case of the Brachistrone problem, for example, which calls for the
determination of the path of quickest descent between two laterally separated points
when a particle falls under gravity,

2

1+y
y

Fly,y") =
and »
14y F2py”

12413/2
2 [y(1+y2)]Y
It can be seen that each step

yn+1 — yn _ >\ngn

reduces the smoothness of y by two classes. Thus the computed trajectory becomes

less and less smooth, leading to instability.
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Numerical Formulation

The Need for a Sobolev Inner Product in the Definition of
the Gradient

In order to prevent this we can introduce a weighted Sobolev inner product

(u,v) = /(uv +eu'v)dx

where € is a parameter that controls the weight of the derivatives. We now
define a gradient g such that §/ = (g,dy). Then we have

51 = / (&0y + &'y )x

_ _ 9 0g
= /(g—a—xea—x)éydx

(g,9y)

where

and g = 0 at the end points.
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Design using the Transonic Potential Flow Equation
Design using the Euler Equations

Viscous Adjoint Terms

Sobolev Inner Product

Numerical Formulation

The Need for a Sobolev Inner Product in the Definition of
the Gradient

Therefore g can be obtained from g by a smoothing equation.
Now the step
yn+1 — yn o )\ngn

gives an improvement
ol = —\"(@".E")

but y™*! has the same smoothness as y”, resulting in a stable
process.
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Design Process

OUTLINE OF THE DESIGN PROCESS
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Design Process Outline

Inverse Design

Super B747

Design Process PE?I Racer
Flight at Mach 1

Reduced Sweep

Outline of the Design Process

The design procedure can finally be summarized as follows:
Solve the flow equations for p, uy, up, u3 and p.

Solve the adjoint equations for 1 subject to appropriate
boundary conditions.

Evaluate G and calculate the corresponding Sobolev gradient
g.

Project G into an allowable subspace that satisfies any
geometric constraints.

Update the shape based on the direction of steepest descent.

©0 6 o6 o690

Return to 1 until convergence is reached.
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Design Process Outline
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Flight at Mach 1
Reduced Sweep

Design Process

Design Cycle

Flow Solution

Gradient Calculation

Repeat the Design Cycle
until Conver gence

Sobolev Gradient
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Design Process Outline
Inverse Design

Super B747

P51 Racer

Flight at Mach 1
Reduced Sweep

Design Process

Constraints

o Fixed (.
@ Fixed span load distribution to present too large C; on the
outboard wing which can lower the buffet margin.

@ Fixed wing thickness to prevent an increase in structure
weight.

o Design changes can be can be limited to a specific spanwise
range of the wing.
@ Section changes can be limited to a specific chordwise range.

1 T

@ Smooth curvature variations via the use of Sobolev gradient.
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Flight at Mach 1
Reduced Sweep

Design Process

Application of Thickness Constraints

@ Prevent shape change penetrating a specified skeleton
(colored in red).

@ Separate thickness and camber allow free camber variations.

@ Minimal user input needed.
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Design Process Outline
Inverse Design

Super B747

P51 Racer

Flight at Mach 1
Reduced Sweep

Design Process

Computational Cost*

Cost of Search Algorithm

Steepest Descent O(N?)  Steps
Quasi-Newton O(N)  Steps
Smoothed Gradient O(K)  Steps

Note: K is independent of N.

*: “Studies of Alternative Numerical Optimization Methods Applied to the Brachistrone Problem”,
A.Jameson and J. Vassberg, Computational Fluid Dynamics, Journal, Vol. 9, No.3, Oct. 2000, pp. 281-296
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Reduced Sweep

Design Process

Computational Cost*

Total Computational Cost of Design

Finite difference gradients

3

* Steepest descent O(N7)

Finite difference gradients 2

* Quasi-Newton O(N7)
Adjoint gradients

i Quasi-Newton O(N)

n Adjoint gradients oK)

Smoothed gradient
Note: K is independent of N.

*: “Studies of Alternative Numerical Optimization Methods Applied to the Brachistrone Problem”,
A.Jameson and J. Vassberg, Computational Fluid Dynamics, Journal, Vol. 9, No.3,-Oct. 2000, pp. 281-296
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Design Process

INVERSE DESIGN

Recovering of ONERA M6 Wing
from its pressure distribution

A. Jameson 2003-2004
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NACA 0012 WING TO ONERA M6 TARGET

Design Process

NACA 0012 WING TO ONERA M6 TARGET

(a) Staring wing: NACA 0012 (b) Target wing: ONERA M6
This is a difficult problem because of the presence of the shock wave in the
target pressure and because the profile to be recovered:-is symmetric while the
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Design Process

Pressure Profile at 48% Span
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(c) Staring wing: NACA 0012 (d) Target wing: ONERA M6
The pressure distribution of the final design match the specified target, even
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Design Process

PLANFORM AND AERO-STRUCTURAL
OPTIMIZATION

SUPER B747
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Design Process Outline
Inverse Design

Super B747

P51 Racer

Design Process Flight at Mach 1

Reduced Sweep

Planform and Aero-Structural Optimization

The shape changes in the section needed to improve the transonic wing
design are quite small. However, in order to obtain a true optimum
design larger scale changes such as changes in the wing planform
(sweepback, span, chord, and taper) should be considered. Because these
directly affect the structure weight, a meaningful result can only be
obtained by considering a cost function that takes account of both the
aerodynamic characteristics and the weight.

Consider a cost function is defined as

1
l:alCD+a2§/(p—pd)2d5+oz3CW
B

Maximizing the range of an aircraft provides a guide to the values for oy
and as.
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Super B747

P51 Racer

Design Process

Flight at Mach 1
Reduced Sweep

Choice of Weighting Constants

The simplified Breguet range equation can be expressed as

where W, is the empty weight of the aircraft.
With fixed V/C, W4, and L, the variation of R can be stated as

SR <5CD 1 6W2> [ 1 §Cw,
R -\ wi w, | T T\ oy C
R o log yp W2 Cp IOgc_x; Cw,
Therefore minimizing
I = CD + aCW:
by choosing
Cop
o=

=
CW2 IOg C_W2
corresponds to maximizing the range of the aircraft.
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Boeing 747 Euler Planform Results: Pareto Front

Design Process

Test case: Boeing 747 wing—fuselage and modified geometries at
the following flow conditions.

My, = 0.87, CL = 0.42 (fixed), multiple &

a1
Pareto front
0.05:
0.050| > maximized range baseline
optimized section
0.048| with fixed planform
0.046| % IZ/
=
o
0.044] X
0.042]
0.0401 5 = Gptimized section
and planform X
0.0 . . . 1 .
80 85 90 95 100 105 110
Cp (counts)
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Design Process

Boeing 747 Euler Planform Results: Sweepback, Span,
Chord, and Section Variations to Maximize Range

| Geometry | Baseline | Optimized | Variation (%) |

Sweep (°) | 42.1 388 7.8
Span (ft ) | 212.4 226.7 +6.7
Croot 48.1 48.6 +1.0
Cinid 30.6 30.8 +0.7
Cip 1078 | 1075 +0.3
troot 58.2 62.4 +7.2
tmid 23.7 23.8 +0.4
tiip 12.98 12.8 -0.8
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Design Process Outline
Inverse Design

Super B747

P51 Racer

Flight at Mach 1
Reduced Sweep

Boeing 747 Euler Planform Results: Sweepback, Span,
Chord, and Section Variations to Maximize Range

Design Process

COMPARISON OF CHORDWISE PRESSURE DISTRIBUTIONS
B G 747 WING-BODY
REN= 000 , MACII=0870 , CL =020

SYMBOL

SOURCE ALFHA  CD
SYNSSDESIGN 19 1930 0.00872
SYNSSDESIGN 0 2.189 001077

0

0204 060.
K¢
337 Span

0204060810
X7C
12.1% Span

@ Cp is reduced from 107.7 drag counts to 87.2 drag counts (19%).
@ Cy is reduced from 0.0455 (69,970 Ibs) to 0.0450 (69,201 Ibs) (1.1%).
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Design Process

P51 RACER
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Design Process Outline
Inverse Design

Super B747

P51 Racer

Flight at Mach 1
Reduced Sweep

Design Process

P51 Racer

———

@ Aircraft competing in the Reno Air Races reach speeds above 500 MPH,
encounting compressibility drag due to the appearance of shock waves.

@ Objective is to delay drag rise without altering the wing structure. Hence try
adding a bump on the wing surface.
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Design Process

Partial Redesign

@ Allow only outward movement.
@ Limited changes to front part of the chordwise range.
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Reduced Sweep

Design Process

FLIGHT AT MAcH 1
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Design Process Outline

Inverse Design

Super B747

Design Process PE?l IRevazy
Flight at Mach 1

Reduced Sweep

Flight at mach 1

A viable alternative for long range business jets?
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Design Process Outline

Inverse Design

Super B747

Design Process PE?l IRevazy
Flight at Mach 1

Reduced Sweep

Flight at mach 1

It appears possible to design a wing with very low drag at Mach 1,
as indicated in the table below:

CL CDpres Dfriction Dwing
(counts) | (counts) | (counts)
0.300 47.6 41.3 88.9
0.330 65.6 40.8 106.5

@ The data is for a wing-fuselage combination, with engines
mounted on the rear fuselage simulated by bumps.

@ The wing has 50 degrees of sweep at the leading edge, and
the thickness to chord ratio varies from 10 percent at the root
to 7 percent at the tip.

@ To delay drag rise to Mach one requires fuselage shaping in
conjunction with wing optimization.
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Design Process

X Jet: Model E

Pressure Distribution on the Wing at Mach 1.1

COMPARISOR OF CHORDWISE PRESSURE DISTEIBUTIONS
X-JET : MODELE
00, MACH = 1108

BHA Ol
a0
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Flight at Mach 1
Reduced Sweep

Design Process

X Jet: Model E

Drag Rise

CD(counts)
o o
L \
T 1
o omm o e

§ ) ) T T T §
L i » lao ls I s 2
Mach
82 et
o A
[
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Reduced Sweep

Design Process

Do WE NEeD SWEPT WINGS ON
COMMERCIAL JETS?
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Design Process Outline
Inverse Design

Super B747

P51 Racer

Design Process Flight at Mach 1

Reduced Sweep

Background for Studies of Reduced Sweep

@ Current Transonic Transports

o Cruise Mach: 0.76 < M < 0.86
@ C/4 Sweep: 25° < A < 35°
¢ Wing Planform Layout Knowledge Base
@ Heavily Influenced By Design Charts
Data Developed From Cut-n-Try Designs
Data Aumented With Parametric Variations
Data Collected Over The Years
Includes Shifts Due To Technologies
e.g., Supercritical Airfoils, Composites, etc.

¢ ¢ ¢ ¢
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Super B747

P51 Racer

Flight at Mach 1
Reduced Sweep

Pure Aerodynamic Optimizations

Design Process

COMPARISON OF CHORDWISE PRESSURE DISTRIBUTIONS
OPTIMIZATION HISTORY OF SWEEP 10 WING/BODY
s ;

Evolution of Pressures for A = 10° Wing during Optimization
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Design Process Outline
Inverse Design

Super B747

P51 Racer

Design Process Flight at Mach 1

Reduced Sweep

Pure Aerodynamic Optimizations

‘ Mach ‘ Sweep ‘ o ‘ Cp ‘ Cp.tot ‘ ML/D H VML/D ‘
0.85 35° | 0.500 | 153.7 | 293.7 | 14.47 15.70
0.84 30° 0.510 | 151.2 | 291.2 | 14.71 16.05
0.83 25° 0.515 | 151.2 | 291.2 | 14.68 16.11
0.82 20° 0.520 | 151.7 | 291.7 | 14.62 16.14
0.81 15° 0.525 | 152.4 | 292.4 | 14.54 16.16
0.80 10° | 0.530 | 152.2 | 292.2 | 14.51 16.22
0.79 5° 0.535 | 1525 | 2925 | 14.45 16.26

o Cp in counts
@ Cp.tot = Cp + 140 counts
o Lowest Sweep Favors vML/D ~ 4.0%
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P51 Racer

Design Process Flight at Mach 1

Reduced Sweep

Conclusion of Swept Wing Study

@ An unswept wing at Mach 0.80 offers slightly better range
efficiency than a swept wing at Mach 0.85.

@ It would also improve TO, climb, descent and landing.

@ Perhaps B737/A320 replacements should have unswept wings.
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Concept of Numerical Wind Tunnel

N

CFD
Initial caD Geometry Mesh
Design Definiti — deli = G 4
Quantitative
Redesign [«h—] ASesment g v; -
MDO*

Human Intensive

o

Flow
Solution

Aeroelastic
Solution

Loads

Numerically Intensive

*MDO: Multi-Disciplinary Optimization
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Initial
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Advanced Numerical Wind Tunnel

-

~

N\

A

High-Level
Redesign

Monitor
Results

Human Intensive

N

Anton:

Jameson

Automatic Mesh
Generation

Flow
Solution

Aeroelastic
Solution

Loads

Geometry
Modification

Optimization
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Numerically Intensive

J
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Design Process

Traditional Engineering Offices
Grumman Aerodynamics Section in 1968

Assistant

)
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