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Support for Arbitrary Meshes

• In Flo3xx a unified mesh-blind formulation supports all of these in
one code

• Designed to meet the following objectives:
– Platform for automatic mesh adaptation
– Migration path to emerging mesh generation technologies
– A robust algorithm that is tolerant to bad meshes

• Examples of mesh types which are being used in computational
aerodynamics

Structured
Nested Cartesian
With Cut Cells

Unstructured
Cell-Centered

Unstructured
Cell-Vertex
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Support for Arbitrary Meshes

• Conservation laws are enforced on discrete control volumes

• Fluxes of conserved variables are exchanged through interfaces between
these cells

• Independent of the mesh topology, each
interface separates exactly two control volumes
(on the right, face N separates cells A and B)

All algorithms are expressed in terms of a
generic interface-based data structure
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Treatment of Structured Meshes

• Associate first and second neighbors with each face

• Allows implementation of standard schemes with five-point stencils
(Jameson-Schmidt-Turkel JST, SLIP) in the same code

• Eliminates the need for gradient reconstruction

• Numerical experiments verify 25% overhead due to indirect addressing in
comparison with standard structured-code implementation (FLO107)

Second Neighbors

First Neighbors

Interface Flux
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Flo3xx in Action…

• From IGES definition to completed result in one week, including CAD fixes, mesh
generation

• We need to be able to compute extreme test cases
• This concerns both complexity of geometry and flow conditions

Geometry Courtesy of Lockheed Skunk Works

Mach Number - Upper

Lockheed SR71 at M= 3.2,  -  Euler calculation with 1.5 Million grid points
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Validation of Unified Solution
Algorithm in Flo3xx:

Inviscid Transonic Flow

• Onera M6 Wing at M=0.84 and       = 3.06 degrees

† 

a
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Convergence Using Automatic Multigrid

Engineering Accuracy
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Initial Validation for Viscous Flow:
Zero-Pressure-Gradient Boundary Layer
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RANS Results Using FLO107-MB
For Drag Prediction Workshop

• Accurate drag prediction for complex geometries in transonic flow is still very hard

• Flo3xx is currently in viscous validation phase. 

• FLO107-MB has been thoroughly validated.

• Results of right figure were obtained with CUSP scheme and k-    turbulence model

Statistical Evaluation DPW1 – All Participants Flo107-MB (DPW2)

† 

w
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Flo3xx Payoffs

• Highly flexible platform for all applied aerodynamics problems and
other problems governed by conservation laws

• Fast turnaround through convergence acceleration techniques

• Framework can be used to support advanced research, such as
the BGK method or the Time-Spectral Method, which will be
addressed in this talk

• This means, take advanced research out of a laboratory setting
and apply it to problems of practical engineering interest, which is
ultimately the only way to make an impact on the state-of-the art



Non Linear
Symmetric Gauss-Seidel

Multigrid Scheme

Jameson + Caughey 2001
Evolved from LUSGS scheme

Yoon + Jameson (1986)
Rieger + Jameson (1986)

Achieved “Text Book” Multigrid Convergence
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Nonlinear Symmetric Gauss-Seidel (SGS)
Scheme

† 

Forward and reverse sweeps :
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Cost per iteration similar to 4 - stage Runge - Kutta scheme
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Solution of Burgers Equation on 131,072 Cells
in Two Steps With 15 Levels of Multigrid
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Solution of 2D Euler Equations:
Convergence for NACA0012

• The convergence history shows the successive computation on meshes of
different sizes

• The convergence rate is independent of the mesh size
• Convergence rate ~ .75 per cycle
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Solution after 3 multigrid cycles

Solution of 2D Euler Equations
NACA0012 Airfoil

Solution after 5 multigrid cycles

Solid lines: fully converged result
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Face-based Gauss Seidel (FBGS) Scheme

• On an arbitrary grid, loop over faces instead of looping over cells
• Update the cells adjacent to a face as you go along
• Updated state will be used on next visit to a cell

(Following a suggestion by John Vassberg)
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The Finite-Volume BGK Scheme

Using Statistical Mechanics to Enhance
Computational Aerodynamics

Balaji Srinivasan
Georg May

Antony Jameson
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A Major Conceptual Difference
Between Continuum Mechanics and

Statistical Mechanics

† 

U = u f (x, y,z,u,v,w,x,t)Ú dudvdwdx

• In continuum mechanics the unknown solution variables
are defined “pointwise” with precise values:

† 

U = U(x, y,z,t)
• In statistical mechanics the solution variables exist only

as moments of a statistical distribution in physical and
phase space, or as “expectation values”:
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The Key Idea of the Finite-Volume
BGK Scheme

• Compute the fluxes for the Navier-Stokes equations at
interface N from the distribution functions in cells A
and B

• A time-dependent distribution function needs to be
constructed at each time step for each cell
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Finding the Distribution Function

• The equilibrium distribution function

is known from Boltzmann statistics:

{ }2222 )()()(),,(),,(),,,,,,( xlx +-+-+--== wWvVuUzyx
eq ezyxAwvuzyxgf

• The nonequilibrium distribution function

is unknown, but its evolution is given by the Boltzmann equation:

• Global numerical solution infeasible, because of high
dimensionality

† 

∂f
∂t

+ u ∂f
∂x

+ v ∂f
∂y

+ w ∂f
∂z

= Q( f , f ) Collision
Integral
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A Crucial Simplification
(Bhatnagar, Gross & Krook - BGK)

• Replace the Collision Integral Q with a linear relaxation term:

† 

Q = -
f - g

t

† 

∂f
∂t

+ u∂f
∂x

+ v ∂f
∂y

+ w ∂f
∂z

= -
f - g

t

† 

fi

• This equation can be solved analytically:

  

† 

f ( r x , r u ,t,x) = g( r x - r u (t - ¢ t ), r u , ¢ t ,x)e
-( t- ¢ t )

t d ¢ t + e
-

t
t f0( r x - r u t, r u ,x)

0

t

Ú

Collision
Time
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A Key Observation

• By Chapman-Enskog expansion the Navier Stokes equations can
be recovered from the BGK equation, with the viscosity coefficient

† 

m = t p
• By setting the collision time     appropriately, Navier-Stokes fluxes

can be computed directly from the distribution function

† 

t
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Payoff

• It is not necessary to compute the rate of strain tensor in order to calculate
viscous fluxes

• This eliminates the need to perform two levels of numerical differentiation,
which is difficult on arbitrary meshes

• Improved accuracy and reduced sensitivity to the quality of the mesh

• Automatic upwinding via the kinetic model, with no need for explicit
artificial diffusion, thus reduced computational complexity
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Viscous Validation of the BGK Scheme:
Zero-Pressure-Gradient Boundary Layer

Velocity Profile (Incompressible) Temperature Profile (Compressible)
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Viscous Validation of the BGK Scheme:
1D Shock Structure (M=10)

Velocity Heat Flux
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Validation of the BGK Scheme:
3D Inviscid Transonic Flow

• Onera M6 Wing at M=0.84,       = 3.06 degrees
• With sufficient resolution CUSP and BGK give similar results
• BGK seems to handle lower-resolution meshes better
• This might allow a reduction in the number of mesh points

Finer Mesh (316k Nodes) Coarser Mesh (94k Nodes)

† 

a
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• Falcon Business Jet
• M = 0.8
• Angle of Attack: 2 degrees

Validation of the BGK Scheme using
Flo3xx:

3D Inviscid Transonic Flow
Density from  0.625 to 1.1



Fast Time Integration Methods
for

Unsteady Problems

Arathi Gopinath
Matt McMullen

Antony Jameson
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Potential Applications

• Flutter Analysis,

• Flow past Helicopter blades,

• Rotor-Stator Combinations in Turbomachinery,

• Zero-Mass Synthetic Jets for Flow Control
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Dual Time Stepping BDF
The kth-order accurate  backward difference formula (BDF) is of the form

where

The non-linear BDF is solved by inner iterations which advance in pseudo-time t*

The second-order BDF solves

Implementation via
• RK “dual time stepping” scheme with variable local        (RK-BDF)
• Nonlinear SGS “dual time stepping” scheme (SGS-BDF)
with Multigrid

† 

dw
dt* +

3w - 4wn + wn-1

2Dt
+ R(w)

È 

Î 
Í 

˘ 

˚ 
˙ = 0

† 

Dt*

† 

Dt =
1
Dt

1
qq=1

k

Â (D-)q

† 

D-wn +1 = wn +1 - wn
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Pressure Contours at Various Time Instances (AGARD 702)

  Results of SGS-BDF Scheme
(36 time steps per pitching cycle,
3 iterations per time step )

12.36 millionReynolds Number

0.202Reduced Freq.

+/- 1.01deg.Pitching amplitude

0.796Mach Number

Test Case: NACA64A010
pitching airfoil (CT6 Case)

Cycling to limit cycle
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Payoff of Dual-time Stepping BDF Schemes

• Accurate simulations with an order of magnitude reduction in time
steps.

• For the pitching airfoil:

from ~ 1000 to 36 time steps per pitching cycle

with three sub-iterations in each step.
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Frequency Domain and Global
Space-Time Multigrid Spectral

Methods

Application : Time-periodic flows

Using a Fourier representation in time, the time period T is divided

into N steps.

Then,

The discretization operator is given by

† 

ˆ w k =
1
N

wn

n= 0

N-1

Â e-iknDt

† 

Dtw
n =

2p
T

ik ˆ w ke
iknDt

k=
-N
2

N
2

-1

Â
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Method 1 (McMullen et.al.) : Transform the equations into frequency
domain and solve them in pseudo-time t*

Method 2 (Gopinath et.al.) :  Solve the equations in the time-domain.
The space-time spectral discretization operator is

This is a central difference operator connecting all time levels,

yielding an integrated space-time formulation which requires

simultaneous solution of the equations at all time levels.

† 

d ˆ w k
dt* +

2p
T

ik ˆ w k + ˆ R k = 0

† 

Dtw
n = dmwn +m

m=-
N
2

+1

N
2

-1

Â ,

† 

dm =
2p
T

1
2

(-1)m +1 cot(pm
N

),m ≠ 0
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Comparison with Experimental Data -
CL vs. a (CT6 Case)

  RANS Time-Spectral Solution with 4, 8 and 12 intervals per pitching cycle

Computed 
Results

Experimental
Data
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3D Test Case
NLR LANN Pitching Wing - RANS

.

6.28 millionReynolds Number

0.133Red. Frequency

62% RChordPitching axis

0.25degPitching Amplitude

0.59degMean Alpha

0.621Mach number

Pressure Contours on the Wing 

CL vs. a plot with 4 and 8 time intervals
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Application : Vertical-Axis Wind
Turbine(VAWT)

.
Objective :  To maximize power output of the VAWT by turbine blade redesign 
                   and various parametric studies.
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VAWT : NACA0015 Airfoil
Single-Blade Inviscid 3D model

.

8Turbine Radius /

Blade Chord

5Blade Tip-Speed / V_inf

 0.1Free-stream

Mach Number

Coefficient of Power generated by
the VAWT as a function of 
Rotation Angle - Time Spectral 
Method with 4,8 and 16 time intervals
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• Engineering accuracy with very small number of time intervals
and same rate of convergence as the BDF.

• Spectral accuracy for sufficiently smooth solutions.

• Periodic solutions directly without the need to evolve through 5-
10 cycles, yielding an order of magnitude reduction in computing
cost beyond the reduction already achieved with the BDF,

 for a total of two orders of magnitude.

Payoff of Time Spectral Schemes
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Filtering the Navier-Stokes Equations
with

an Invertible Filter
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Consider the incompressible Navier--Stokes equations

where

In large eddy simulation (LES) the solution is filtered to remove the small scales.
Typically one sets

where the kernel G is concentrated in a band defined by the  filter width. Then the
filtered equations contain the extra virtual stress

because the filtered value of a product is not equal to the product of the filtered
values. This stress has to be modeled.

† 

r
∂ui

∂t
+ ru j

∂ui

∂x j

+ r
∂p
∂xi

= m
∂ 2ui

∂xi∂x j

                       (1)

† 

∂ui

∂xi

= 0

† 

u i (x) = G(x - ¢ x )u( ¢ x )dÚ ¢ x                          (2)

† 

t ij = uiu j - ui u j                                    (3)
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A filter which completely cuts off the small scales or the high frequency
components is not invertible. The use, on the other hand, of an invertible
filter would allow equation (1) to be directly expressed in terms of the
filtered quantities. Thus one can identify desirable properties of a filter as

1.  Attenuation of small scales
2.  Commutativity with the differential operator
3.  Invertibility

† 

Suppose the filter has the form
                                                 ui = Pui                                         (4)
which can be inverted as
                                               Qui = ui                                           (5)
where Q = P-1. Moreover Q should be coercieve, so that
                                              Qu > c u                                        (6)
for some positive constant c.
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† 

Note that if Q commutes with ∂
∂xi

then so does Q-1,  since for any quantity f  which is 

sufficiently differentiable    ∂
∂xi

(Q-1 f ) = Q-1Q ∂
∂xi

(Q-1 f )                                             

                = Q-1 ∂
∂xi

(QQ-1 f )

        = Q-1 ∂
∂xi

( f )

Also since Q commutes with ∂
∂xi

,                                                                                   

                                                         ∂u
∂xi

= 0                                                   (7)  

As an example P can be the inverse Helmholtz operator, so that one can write            

                                        Qui = 1-a 2 ∂ 2

∂xk∂xk

Ê 

Ë 
Á 

ˆ 

¯ 
˜ ui = ui                                   (8)

where a is a length scale proportional to the largest scales to be retained. One may     
also introduce a filtered pressure p,  satisfying the equation                                           

                                          Qp = 1-a 2 ∂ 2

∂xk∂xk

Ê 

Ë 
Á 

ˆ 

¯ 
˜ p = p                                   (9)
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† 

Now one can substitute equation (8) and(9) for ui and p in equation (1) to get                    

r
∂
∂t

1-a 2 ∂ 2

∂xk∂xk

Ê 

Ë 
Á 

ˆ 

¯ 
˜ ui + r 1-a 2 ∂ 2

∂xk∂xk

Ê 

Ë 
Á 

ˆ 

¯ 
˜ u j

∂
∂x j

1-a 2 ∂ 2

∂xl∂xl

Ê 

Ë 
Á 

ˆ 

¯ 
˜ ui +

∂
∂xi

1-a 2 ∂ 2

∂xk∂xk

Ê 

Ë 
Á 

ˆ 

¯ 
˜ p

= m
∂ 2

∂x j∂x j

 1-a 2 ∂ 2

∂xk∂xk

Ê 

Ë 
Á 

ˆ 

¯ 
˜ ui

Because the order of the differentiations can be interchanged and the Helmholtz operator 
satisfies condition(6), it can be removed. The product term can be written as                     

   r ∂
∂x j

1-a 2 ∂ 2

∂xk∂xk

Ê 

Ë 
Á 

ˆ 

¯ 
˜ ui 1-a 2 ∂ 2

∂xl∂xl

Ê 

Ë 
Á 

ˆ 

¯ 
˜ u j

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

                                     

= r
∂

∂x j

ui u j -a 2 ui
∂ 2 u j

∂xk∂xk

-a 2 u j
∂ 2 ui

∂xk∂xk

+ a 4 ∂ 2 ui

∂xk∂xk

∂ 2 u j

∂xl∂xl

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

       

= r
∂

∂x j

ui u j -a 2 ∂ 2

∂xk∂xk

ui u j( ) + 2a 2 ∂ui

∂xk

∂u j

∂xk

+ a 4 ∂ 2 ui

∂xk∂xk

∂ 2 u j

∂xl∂xl

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

= rQ ∂
∂x j

ui u j + a 2Q-1 2∂ui

∂xk

∂u j

∂xk

+ a 2 ∂ 2 ui

∂xk∂xk

∂ 2 u j

∂xl∂xl

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

                   

According to condition (6), if Qf = 0 for any sufficiently differentiable quantity f ,  then 
f = 0.                                                                                                                                     
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† 

Thus the filtered equation finally reduces to                                                                        

                                r ∂ui

∂t
+ r

∂
∂x j

ui u j( ) +
∂ p
∂xi

= m
∂ 2 ui

∂xk∂xk

- r
∂

∂x j

t ij                           (10)

with the virtual stress                                                                                                            

                                     t ij = a 2Q-1 2∂ui

∂xk

∂u j

∂xk

+ a 2 ∂ 2 ui

∂xk∂xk

∂ 2 u j

∂xl∂xl

Ê 

Ë 
Á 

ˆ 

¯ 
˜                                (11)

The virtual stress may be calculated by solving                                                                   

                             1-a 2 ∂ 2

∂xk∂xk

Ê 

Ë 
Á 

ˆ 

¯ 
˜ t ij = a 2 2∂ui

∂xk

∂u j

∂xk

+ a 2 ∂ 2 ui

∂xk∂xk

∂ 2 u j

∂xl∂xl

Ê 

Ë 
Á 

ˆ 

¯ 
˜                       (12)

Taking the divergence of equation (10), it also follows that  p satisfies the Poisson equation

                                     ∂ 2 p
∂xi∂xi

+ r
∂

∂xi

∂
∂x j

ui u j( ) + r
∂ 2

∂xi∂x j

t ij = 0                               (13)
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† 

In a discrete solution scales smaller than the mesh width would not be resolved, amounting
to an implicit cut off. There is the possibility of introducing an explicit cut off  off in t ij .    
Also  one  could use equation (8) to restore an estimate of the unfiltered velocity.               

In order to avoid solving the Helmholtz equation (12), the inverse Helmholtz operator       
could be expanded formally as                                                                                                

1-a 2D( )-1
=1+ a 2D + a 4D2 + ...

where D denotes the Laplacian ∂ 2

∂xk∂xk

.Now retaining terms up to the fourth power of a,      

the approximate virtual stress tensor assumes the form                                                          

                                     t ij = 2a 2 ∂ui

∂xk

∂u j

∂xk

+ a 4 2D
∂ui

∂xk

∂u j

∂xk

Ê 

Ë 
Á 

ˆ 

¯ 
˜ + DuiDu j

È 

Î 
Í 

˘ 

˚ 
˙                            (14)

One may regard the forms (11) or (14) as prototypes for subgrid scale (SGS) models.            
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† 

The inverse Helmholtz operator cuts off the smaller scales quite gradually. One could        
design filters with a sharper cut off by shaping their frequency response. Denote the           
Fourier transform of f as                                                                                                          

ˆ f = Ff
where (in one space dimension)                                                                                              

ˆ f (k) =
1
2p

f (x)e- ikxdx
-•

•

Ú

f (k) =
1
2p

ˆ f (k)e- ikxdk
-•

•

Ú

Then the general form of an invertible filter is                                                                       

F Pf
Ÿ

= S(k) ˆ f (k)

F Qf
Ÿ

=
1

S(k)
ˆ f (k)

where S(k) should decrease rapidly beyond a cut off wave number inversely proportional to
a length scale a .                                                                                                                        
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† 

In the case of a general filter with inverse Q,  the virtual stress follows from the relation       
Quiu j = uiu j = Qu iQu j

Then                                                                                                                                          
t ij = uiu j - u iu j = Q-1(Qu iQu j - Q(u iu j ))

This formula provides the form for a family of subgrid-scale models.


