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Introduction

Helicopter simulation is very complex and computationally
expensive:

The flow is highly nonlinear.

Interactions between the vortices with the blades and fuselage.

There is a wide range of scales.

Blades are highly elastic.

Variety of blade motion:

Lead
Lag
Flapping
Collective pitch, cyclic pitch, yaw
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Articulated Rotor

⋆ Johnson, W., “Helicopter Theory”, 1980.
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⋆ Johnson, W., “Helicopter Theory”, 1980.
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Background

A lot has been done over the past 3 decades.

Potential flow calculations:

Caradonna & Isom (1972, 1976)
Caradonna & Philippe (1976)
Arieli, Taubert & Caughey (1986): the first three-dimensional,
full potential flow based on Jameson & Caughey’s FLO22

Euler and Reynolds averaged Navier–Stokes (RANS)
calculations:

Agarwal & Deese (1987, 1988)
Srinivasan et al. (1991, 1992)
Pomin & Wagner (2002, 2004)
Allen (2003, 2004, 2005, 2006, 2007): 32 million mesh points
and 25,000 CPU hours for Euler calculation of a four-bladed
rotor!
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Time Spectral Method

Time integration method based on Fourier representation.

Efficient and accurate method for periodic problems.

No need to Fourier transform variables back and forth
between time and frequency domains, everything is solved in
the time domain.

Algorithm is easily adapted to the current solvers.

Existing convergence acceleration techniques are applicable.

The method is able to achieve spectral accuracy in theory.
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What Has Been Done?

Fully nonlinear methods:
1 Harmonic Balance method of Hall, Thomas & Clark (2002):

originally for turbomachinery.

Ekici & Hall (2008): Rotorcraft simultion.

2 Nonlinear frequency domain (NLFD) of McMullen, Jameson
& Alonso (2001, 2002).

3 Time Spectral method of Gopinath & Jameson (2005).
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Time Spectral Method

The discrete Fourier transform of the flow variables w for a time
period T is

ŵk =
1

N

N−1∑

n=0

wne−ik 2π

T
n∆t ,

and its inverse transform:

wn =

N
2
−1∑

k=−N
2

ŵkeik 2π

T
n∆t . (1)
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The spectral derivative of equation (1) with respect to time at the
n-th time instance is given by

Dwn =
2π

T

N
2
−1∑

k=−N
2
+1

ikŵke
ik 2π

T
n∆t .

The right hand side can be written in terms of the flow variables
wn as follows:

Dwn =

N−1∑

j=0

d j
nw

j

where

d j
n =

{
2π
T

1
2(−1)n−j cot

{
π(n−j)

N

}
: n 6= j

0 : n = j
.
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Let n − j = −m, one can rewrite the time derivative as

Dwn =

N
2
−1∑

m=−N
2
+1

dmw(n+m)

where dm is given by

dm =

{
2π
T

1
2 (−1)m+1 cot

{
πm
N

}
: m 6= 0

0 : m = 0
.
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The original flow equations in semi-discrete form:

V
dwn

dt
+ R(wn) = 0,

becomes
VDwn + R(wn) = 0. (2)

These comprise a four dimensional coupled space–time set of
nonlinear equations, which need to be solved simultaneously. For
this purpose we introduce a pseudo time derivative term to
equation (2), the equations can now be marched towards a periodic
steady state using well known convergence acceleration techniques.

V
dwn

dτ
+ VDwn + R(wn) = 0.
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Flow Solver Methodology

1 Convergence Acceleration via

Modified 5-stage Runge–Kutta⋆

Local time stepping⋆

Multigrid⋆

2 Space Discretization:⋆

Jameson–Schmidt–Turkel (JST)
Symmetric LImited Positive (SLIP)
Convective Upwind and Split Pressure (CUSP)

3 Internal mesh generator via conformal mapping

4 Baldwin–Lomax turbulence model (Baldwin–Lomax, 1978)

⋆ A. Jameson, A perspective on computational algorithms for aerodynamics analysis and design,
Progress in Aerospace Sciences, 37, pp. 197–243, 2001.

⋆ A. Jameson, Aerodynamics, Encyclopedia of Computational Mechanics, Ch. 11, 2004.
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Rotorcraft Simulation Results
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Hover Calculations were Presented at

46th AIAA Aerospace Sciences Meeting

and Exhibit, Reno, NV

AIAA Paper 2008–403
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Forward Flight Calculations
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Caradonna et al. Experiment (1984)

Experimental setup:

Untapered, untwisted two-bladed rotor

NACA 0012 section

Aspect ratio of 7

Diameter of the rotor is 7 ft

Chord is 6 in
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Nonlifting Rotor in Forward Flight

Flow Condition:

θc = 0◦

Mtip = 0.8
µ = 0.2
Re = 2.89 × 106

Twelve time instances were used, N = 12
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Mesh

Euler: 128 × 48 × 32 cells per blade, 16 cells on the blade.

RANS: 192 × 64 × 48 cells per blade, 32 cells on the blade.

(a) Isometric view (b) Top view
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Comparison with the Experimental Data

Dissipation schemes are JST and CUSP

Results are compared at six azimuthal angles on the
advancing side:

(a) ψ = 30◦

(b) ψ = 60◦

(c) ψ = 90◦

(d) ψ = 120◦

(e) ψ = 150◦

(f) ψ = 180◦
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Euler Calculations
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RANS Calculations
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Computational Cost

300 multigrid cycles for Euler calculations.

Residual reduced by four orders of magnitude.

500 multigrid cycles for RANS calculations.

5 hours on four dual-core processors (clock speed is 3.0 GHz).
Residual reduced by three orders of magnitude.
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Comparison with Backward Difference Formula (BDF)⋆

V

{
3

2∆t
wn+1 −

4

2∆t
wn +

1

2∆t
wn−1

}
+ R

(
wn+1

)
= 0.

Periodicity is established, not enforced.

Usually requires at least 4 cycles (for pitching airfoil/wing).

⋆ A. Jameson, “Time Dependent Calculations Using Multigrid, with Applications to

Unsteady Flows Past Airfoils and Wings”, AIAA Paper 1991–1596.
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Comparison with Backward Difference Formula (BDF)

For the same RANS calculations, the BDF would need:

180 time steps per revolution

40 multigrid cycles per time step

6 cycles to convergence

⇒ 43200 steps

Time Spectral method used 500 multigrid cycles with 12 time
instances

In terms of the number of multigrid cycles required ...

Time Spectral method is 87 times faster

In terms of CPU hours ...

Time Spectral method is still 7.2 times faster
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Time-Lagged Periodic Boundary Condition

First proposed by Ekici & Hall⋆ (2008)

One blade is required for forward flight simultions

Further saving of Nb times

where Nb is the number of blades per rotor

w(r , ψ, z , t) = w

(
r , ψ −

2π

N
, z , t −

T

N

)

⋆ Ekici, Hall & Dowell, “Computationally Fast Harmonic Balance Methods for

Unsteady Aerodynamic Predictions of Helicopter Rotors”, AIAA Paper 2008–1439.
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Time-Lagged Periodic Boundary Condition
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Euler Calculations

Collective pitch, θc = 0◦

Tip Mach number, Mtip = 0.7634

Advance ratio, µ = 0.25

128 × 48 × 32 mesh cells
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Euler Calculations
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Lifting Rotor in Forward Flight
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Caradonna & Tung Experiment (1981)
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Test Case

Caradonna & Tung rotor

Collective pitch, θc = 8◦

Tip Mach number, Mtip = 0.7

Advance ratio, µ = 0.2857
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Numerical Data Provided by C. B. Allen

Over 2 million mesh points around the two blades and hub
(not including the other blocks that cover the far-fields)

BDF time stepping scheme

180 steps per revolution

6 revolutions

Periodicity is established after the second revolution

JST dissipation scheme

70 3-level V-cycle multigrid cycles per time step

⋆ C.B. Allen, “An Unsteady Multiblock Multigrid Scheme for Lifting Forward Flight

Rotor Simulation”, International Journal for Numerical Methods in Fluids, 2004.
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Lift Comparison

Load variation on each blade around the azimuth

CL =
Fy

1
2ρ (ΩR)2 c R

where
Fy = force in the y direction

Ω = angular velocity

c = chord

R = rotor radius

ρ = density
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CL comparison – JST Scheme
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⋆ with 18 time instances

— Allen, • computed result
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CL comparison – CUSP Scheme
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Cp Comparison

Comparison is made at blade section r/R = 0.90

Strong transonic flow on the advancing side
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160 × 48 × 48: JST scheme (Advancing Side)
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160 × 48 × 48: JST scheme (Retreating Side)
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160 × 48 × 48: CUSP scheme (Advancing Side)
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160 × 48 × 48: CUSP scheme (Retreating Side)
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What is Vorticity Confinement?

John Steinhoff first suggested the idea in 1994.

A forcing term added to the momentum equations (inviscid,
incompressible), “so that as the vorticity diffuses away from
the centroids of vortical regions, it is transported back”.

Vorticity is added in the direction normal to both ~ω and the
gradient |~ω|.

Unfortunately momentum is not conserved.
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Original Formulation

Steinhoff & Underhill (1994); Steinhoff (1994):

∂u

∂t
+ (u · ∇) u =

1

ρ
∇p + µ∇2u − ǫs

where the simplest form of s is

s =
∇|~ω|

|∇|~ω||
× ~ω
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Compressible Formulation

Hu & Grossman (2001); Hu et al. (2001) and Dadone et al.

(2001) introduced a body force per unit mass term to the total
energy equation:

∫

Ω

∂w

∂t
dV +

∮

∂Ω
fj · ndS = −

∫

Ω
ǫsdV

where ~s is now:

~s =





0
ρ(n̂ × ~ω) · i
ρ(n̂ × ~ω) · j
ρ(n̂ × ~ω) · k
ρ(n̂ × ~ω) · u




and n̂ =

∇|~ω|

|∇|~ω||
.
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Making ǫ Dimensionless and Dynamic

Fedkiw et al. (2001) for incompressible Euler equations on
structured meshes

ǫh ∝ ǫh

Löhner & Yang (2002); Löhner et al. (2002) for
incompressible RANS calculations on unstructured meshes

ǫv ∝






ǫ|u|
ǫh|~ω|
ǫh2|∇|~ω||
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Robinson (2004)

Chose to scale ǫ is with |u|

Factor out |~ω| from s
(
= ∇|~ω|

|∇|~ω|| × ~ω
)

⇒ |u| · |~ω|

|u · ~ω| ≡ helicity

s = ρ |u · ~ω|

{
∇ |~ω|

|∇ |~ω||
×

~ω

|~ω|

}
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New Formulation

Combine
1 Helicity form
2 Body force per unit mass term in energy equation
3 Scaling based on cell size

s = |u · ~ω|

[

1 + log10

(
1 +

V

Vaveraged

)1/3
]





0

ρ
[
n̂ × ~ω

|~ω|

]
· i

ρ
[
n̂ × ~ω

|~ω|

]
· j

ρ
[
n̂ × ~ω

|~ω|

]
· k

ρ
[
n̂ × ~ω

|~ω|

]
· u





where

n̂ =
∇|~ω|

|∇|~ω||
.
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NACA 0012 Wing

Test Case:

Euler calculation

Untwisted, untapered wing with NACA 0012 cross section

Aspect ratio of 3
α = 5◦

M∞ = 0.8
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Vorticity Magnitude

Figure: ǫ = 0
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Vorticity Magnitude

Figure: ǫ = 0.075
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cd and cl at Three Different Spans

z = 0.891 z = 1.828 z = 2.766
ǫ cl cd cl cd cl cd

0 0.7098 0.0792 0.6123 0.0651 0.3869 0.0394
0.025 0.7091 0.0791 0.6114 0.0650 0.3851 0.0393
0.050 0.7083 0.0790 0.6103 0.0649 0.3833 0.0391
0.075 0.7074 0.0788 0.6093 0.0647 0.3817 0.0389

0.3% difference in cl and 0.5% difference in cd at z = 0.891

1.3% difference in both cl and cd at z = 2.766
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Cp Plots
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(c) z = 2.766

— ◦ — ǫ = 0, · · · ǫ = 0.025, – · – ǫ = 0.05, – – ǫ = 0.075
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Application to Lifting Rotor
in Forward Flight
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CL Comparison: JST Scheme
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(f) ǫ = 0.25

— Allen, • computed result
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160 × 48 × 48: JST scheme (Advancing Side), ǫ = 0.2
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× Allen, — computed result
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160 × 48 × 48: JST scheme (Advancing Side)
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× Allen, — computed result
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Vorticity Magnitude

x = 2 and x = 5

1st time instance, i.e. ψ = 90◦

(a) ǫ = 0 (b) ǫ = 0.2
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Future Work & Summary

Time Spectral method has proved to be an efficient method
for periodic problems, providing that the number of time
instances are enough to capture the smallest frequency.

Vorticity confinement works well for fixed-wing calculations.

The vortical structure in lifting rotor in forward flight could be
controlled such that the effect of blade–vortex interaction
became more apparent as ǫ increased.

... but further studies are needed for rotorcraft application, at
least with the current mesh geometry.

Perhaps H-mesh would be better suited, or one can resort to
overset or unstructured meshes.
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Conclusion

Hover calculation takes much longer than forward flight calculation
(surprisingly).

Time Spectral method is approximately 10 times faster than the
traditional backward difference formula (depending on the number of
time instances required).

RANS calculations for nonlifting rotor in forward flight took only 5 hours
on four dual-core processors with 500 multigrid cycles.

Using the time-lagged boundary condition, computational expense can be
reduced by Nb times.

New formulation for vorticity confinement has no effect on the
distribution of Cp for fixed-wing transonic flow calculations.

The maximum error for cl and cd for was only 1.3%.
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