
Aerodynamic Shape Optimization for Aircraft Design

Antony Jameson

Department of Aeronautics and Astronautics

Stanford University, Stanford, CA

6th World Congress of Computational Mechanics
Beijing, China

September 6-10, 2004

c© A. Jameson 2004
Stanford University, Stanford, CA

1/55 Aerodynamic Shape Optimization for Aircraft Design



+ Aerodynamic Design Tradeoffs

A good first estimate of performance is provided by the Breguet range equation:

Range =
V L

D

1

SFC
log

W0 +Wf

W0

. (1)

Here V is the speed, L/D is the lift to drag ratio, SFC is the specific fuel
consumption of the engines, W0 is the loading weight(empty weight + payload+
fuel resourced), and Wf is the weight of fuel burnt.

Equation (1) displays the multidisciplinary nature of design.

A light structure is needed to reduce W0. SFC is the province of the engine
manufacturers. The aerodynamic designer should try to maximize V L

D . This
means the cruising speed V should be increased until the onset of drag rise at a
Mach Number M = V

C ∼ .85. But the designer must also consider the impact of
shape modifications in structure weight.
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+ Aerodynamic Design Tradeoffs

The drag coefficient can be split into an approximate fixed component CD0
, and

the induced drag due to life.

CD = CD0
+

C2
L

πεAR
(2)

where AR is the aspect ratio, and ε is an efficiency factor close to unity. CD0

includes contributions such as friction and form drag. It can be seen from this
equation that L/D is maximized by flying at a lift coefficient such that the two
terms are equal, so that the induced drag is half the total drag. Moreover, the
actual drag due to lift

Dv =
2L2

περV 2b2

varies inversely with the square of the span b. Thus there is a direct conflict
between reducing the drag by increasing the span and reducing the structure
weight by decreasing it.

c© A. Jameson 2004
Stanford University, Stanford, CA

3/55 Aerodynamic Shape Optimization for Aircraft Design



+ Overall Design Process
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Figure 1: The Overall Design Process
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+ Cash flow
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+ Aerodynamic Design Process
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Figure 2: The Aerodynamic Design Process
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+ Vision

Effective Simulation

Simulation−based Design
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+ Automatic Design Based on Control Theory

ã Regard the wing as a device to generate lift (with minimum drag) by controlling
the flow

ã Apply theory of optimal control of systems governed by PDEs (Lions) with
boundary control (the wing shape)

ã Merge control theory and CFD
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+ Automatic Shape Design via Control Theory

ã Apply the theory of control of partial differential equations (of the flow) by
boundary control (the shape)

ã Find the Frechet derivative (infinite dimensional gradient) of a cost function
(performance measure) with respect to the shape by solving the adjoint equation
in addition to the flow equation

ã Modify the shape in the sense defined by the smoothed gradient

ã Repeat until the performance value approaches an optimum
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+ Aerodynamic Shape Optimization: Gradient Calculation

For the class of aerodynamic optimization problems under consideration, the
design space is essentially infinitely dimensional. Suppose that the performance
of a system design can be measured by a cost function I which depends on a
function F(x) that describes the shape,where under a variation of the design
δF(x), the variation of the cost is δI . Now suppose that δI can be expressed to
first order as

δI =
∫

G(x)δF(x)dx

where G(x) is the gradient. Then by setting

δF(x) = −λG(x)

one obtains an improvement

δI = −λ
∫

G2(x)dx

unless G(x) = 0. Thus the vanishing of the gradient is a necessary condition for
a local minimum.
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+ Aerodynamic Shape Optimization: Gradient Calculation

Computing the gradient of a cost function for a complex system can be a
numerically intensive task, especially if the number of design parameters is large
and the cost function is an expensive evaluation. The simplest approach to
optimization is to define the geometry through a set of design parameters, which
may, for example, be the weights αi applied to a set of shape functions Bi(x) so
that the shape is represented as

F(x) =
∑

αiBi(x).

Then a cost function I is selected which might be the drag coefficient or the lift
to drag ratio; I is regarded as a function of the parameters αi. The sensitivities
∂I
∂αi

may now be estimated by making a small variation δαi in each design
parameter in turn and recalculating the flow to obtain the change in I . Then

∂I

∂αi
≈
I(αi + δαi) − I(αi)

δαi
.
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+ Symbolic Development of the Adjoint Method

Let I be the cost (or objective) function

I = I(w,F)

where

w = flow field variables

F = grid variables

The first variation of the cost function is

δI =
∂I

∂w

T

δw +
∂I

∂F

T

δF

The flow field equation and its first variation are

R(w,F) = 0

δR = 0 =






∂R

∂w





 δw +






∂R

∂F





 δF

c© A. Jameson 2004
Stanford University, Stanford, CA

12/55 Aerodynamic Shape Optimization for Aircraft Design



+ Symbolic Development of the Adjoint Method (cont.)

Introducing a Lagrange Multiplier, ψ, and using the flow field equation as
a constraint

δI =
∂I

∂w

T

δw +
∂I

∂F

T

δF − ψT
















∂R

∂w





 δw +






∂R

∂F





 δF











=



















∂I

∂w

T

− ψT






∂R

∂w

























δw +



















∂I

∂F

T

− ψT






∂R

∂F

























δF

By choosing ψ such that it satisfies the adjoint equation






∂R

∂w







T

ψ =
∂I

∂w
,

we have

δI =



















∂I

∂F

T

− ψT






∂R

∂F

























δF

This reduces the gradient calculation for an arbitrarily large number of design
variables at a single design point to

+ One Flow Solution + One Adjoint Solution
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+ Design using the Euler Equations

The three-dimensional Euler equations may be written as

∂w

∂t
+
∂fi
∂xi

= 0 in D, (3)

where

w =































































ρ
ρu1

ρu2

ρu3

ρE































































, fi =































































ρui
ρuiu1 + pδi1
ρuiu2 + pδi2
ρuiu3 + pδi3

ρuiH































































(4)

and δij is the Kronecker delta function. Also,

p = (γ − 1) ρ











E −
1

2

(

u2

i

)











, (5)

and
ρH = ρE + p (6)

where γ is the ratio of the specific heats.
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+ Design using the Euler Equations

In order to simplify the derivation of the adjoint equations, we map the solution
to a fixed computational domain with coordinates ξ1, ξ2, ξ3 where

Kij =









∂xi
∂ξj








, J = det (K) , K−1

ij =









∂ξi
∂xj








,

and
S = JK−1.

The elements of S are the cofactors of K, and in a finite volume discretization
they are just the face areas of the computational cells projected in the x1, x2,
and x3 directions. Using the permutation tensor εijk we can express the
elements of S as

Sij =
1

2
εjpqεirs

∂xp
∂ξr

∂xq
∂ξs

. (7)
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+ Design using the Euler Equations

Then

∂

∂ξi
Sij =

1

2
εjpqεirs









∂2xp
∂ξr∂ξi

∂xq
∂ξs

+
∂xp
∂ξr

∂2xq
∂ξs∂ξi









= 0. (8)

Also in the subsequent analysis of the effect of a shape variation it is useful to
note that

S1j = εjpq
∂xp
∂ξ2

∂xq
∂ξ3

,

S2j = εjpq
∂xp
∂ξ3

∂xq
∂ξ1

,

S3j = εjpq
∂xp
∂ξ1

∂xq
∂ξ2

. (9)
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+ Design using the Euler Equations

Now, multiplying equation(3) by J and applying the chain rule,

J
∂w

∂t
+R (w) = 0 (10)

where

R (w) = Sij
∂fj
∂ξi

=
∂

∂ξi
(Sijfj) , (11)

using (8). We can write the transformed fluxes in terms of the scaled
contravariant velocity components

Ui = Sijuj

as

Fi = Sijfj =

































ρUi
ρUiu1 + Si1p
ρUiu2 + Si2p
ρUiu3 + Si3p

ρUiH

































.

c© A. Jameson 2004
Stanford University, Stanford, CA

17/55 Aerodynamic Shape Optimization for Aircraft Design



+ Design using the Euler Equations

For simplicity, it will be assumed that the portion of the boundary that
undergoes shape modifications is restricted to the coordinate surface ξ2 = 0.
Then equations for the variation of the cost function and the adjoint boundary
conditions may be simplified by incorporating the conditions

n1 = n3 = 0, n2 = 1, dBξ = dξ1dξ3,

so that only the variation δF2 needs to be considered at the wall boundary. The
condition that there is no flow through the wall boundary at ξ2 = 0 is equivalent
to

U2 = 0, so that δU2 = 0

when the boundary shape is modified. Consequently the variation of the inviscid
flux at the boundary reduces to

δF2 = δp
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+ p


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
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
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
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
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




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










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




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
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






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
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
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





































. (12)
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+ Design using the Euler Equations

In order to design a shape which will lead to a desired pressure distribution, a
natural choice is to set

I =
1

2

∫

B (p− pd)
2 dS

where pd is the desired surface pressure, and the integral is evaluated over the
actual surface area. In the computational domain this is transformed to

I =
1

2

∫∫

Bw
(p− pd)

2 |S2| dξ1dξ3,

where the quantity
|S2| =

√

S2jS2j

denotes the face area corresponding to a unit element of face area in the
computational domain.
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+ Design using the Euler Equations

In the computational domain the adjoint equation assumes the form

CT
i

∂ψ

∂ξi
= 0 (13)

where

Ci = Sij
∂fj
∂w

.

To cancel the dependence of the boundary integral on δp, the adjoint boundary
condition reduces to

ψjnj = p− pd (14)

where nj are the components of the surface normal

nj =
S2j

|S2|
.
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+ Design using the Euler Equations

This amounts to a transpiration boundary condition on the co-state variables
corresponding to the momentum components. Note that it imposes no
restriction on the tangential component of ψ at the boundary.

We find finally that

δI = −
∫

D

∂ψT

∂ξi
δSijfjdD

−
∫∫

BW
(δS21ψ2 + δS22ψ3 + δS23ψ4) p dξ1dξ3. (15)

Here the expression for the cost variation depends on the mesh variations
throughout the domain which appear in the field integral. However,
the true gradient for a shape variation should not depend on the way in which
the mesh is deformed, but only on the true flow solution. In the next
section we show how the field integral can be eliminated to produce a reduced
gradient formula which depends only on the boundary movement.
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+ The Reduced Gradient Formulation

Consider the case of a mesh variation with a fixed boundary. Then,

δI = 0

but there is a variation in the transformed flux,

δFi = Ciδw + δSijfj.

Here the true solution is unchanged. Thus, the variation δw is due to the mesh
movement δx at each mesh point. Therefore

δw = ∇w · δx =
∂w

∂xj
δxj (= δw∗)

and since
∂

∂ξi
δFi = 0,

it follows that
∂

∂ξi
(δSijfj) = −

∂

∂ξi
(Ciδw

∗) . (16)

It has been verified by Jameson and Kim∗ that this relation holds in the general
case with boundary movement.

* Reduction of the Adjoint Gradient Formula in the Continuous Limit, A.Jameson and S. Kim, 41 st AIAA Aerospace Sciences

Meeting & Exhibit, AIAA Paper 2003-0040, Reno, NV, January 6-9, 2003.
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+ The Reduced Gradient Formulation

Now
∫

D φ
TδRdD =

∫

D φ
T ∂

∂ξi
Ci (δw − δw∗) dD

=
∫

B φ
TCi (δw − δw∗) dB

−
∫

D

∂φT

∂ξi
Ci (δw − δw∗) dD. (17)

Here on the wall boundary

C2δw = δF2 − δS2jfj. (18)

Thus, by choosing φ to satisfy the adjoint equation and the adjoint boundary
condition, we reduce the cost variation to a boundary integral which depends
only on the surface displacement:

δI =
∫

BW
ψT (δS2jfj + C2δw

∗) dξ1dξ3

−
∫∫

BW
(δS21ψ2 + δS22ψ3 + δS23ψ4) p dξ1dξ3. (19)
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+ The Need for a Sobolev Inner Product in the Definition of the
Gradient

Another key issue for successful implementation of the continuous adjoint
method is the choice of an appropriate inner product for the definition of the
gradient. It turns out that there is an enormous benefit from the use of a
modified Sobolev gradient, which enables the generation of a sequence of
smooth shapes. This can be illustrated by considering the simplest case of a
problem in the calculus of variations.

Suppose that we wish to find the path y(x) which minimizes

I =
b

∫

a
F (y, y

′
)dx

with fixed end points y(a) and y(b). Under a variation δy(x),

δI =
b

∫

a









∂F

∂y
δy +

∂F

∂y′
δy

′







dx

=
b

∫

a









∂F

∂y
−

d

dx

∂F

∂y′








δydx
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+ The Need for a Sobolev Inner Product in the Definition of the
Gradient

Thus defining the gradient as

g =
∂F

∂y
−

d

dx

∂F

∂y′

and the inner product as

(u, v) =
b

∫

a
uvdx

we find that

δI = (g, δy).

If we now set

δy = −λg, λ > 0

we obtain a improvement

δI = −λ(g, g) ≤ 0

unless g = 0, the necessary condition for a minimum.
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+ The Need for a Sobolev Inner Product in the Definition of the
Gradient

Note that g is a function of y, y
′
, y

′′
,

g = g(y, y
′
, y

′′
)

In the well known case of the Brachistrone problem, for example, which calls for
the determination of the path of quickest descent between two laterally
separated points when a particle falls under gravity,

F (y, y
′
) =

√

√

√

√

√

√

√

1 + y′2

y

and

g = −
1 + y

′2 + 2yy
′′

2
(

y(1 + y′2)
)3/2

It can be seen that each step

yn+1 = yn − λngn

reduces the smoothness of y by two classes. Thus the computed trajectory
becomes less and less smooth, leading to instability.
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+ The Need for a Sobolev Inner Product in the Definition of the
Gradient

In order to prevent this we can introduce a weighted Sobolev inner product

〈u, v〉 =
∫

(uv + εu
′
v
′
)dx

where ε is a parameter that controls the weight of the derivatives. We now
define a gradient g such that

δI = 〈g, δy〉

Then we have
δI =

∫

(gδy + εg
′
δy

′
)dx

=
∫

(g −
∂

∂x
ε
∂g

∂x
)δydx

= (g, δy)

where

g −
∂

∂x
ε
∂g

∂x
= g

and g = 0 at the end points. Thus g can be obtained from g by a smoothing
equation. Now the step

yn+1 = yn − λngn

gives an improvement
δI = −λn〈gn, gn〉

but yn+1 has the same smoothness as yn, resulting in a stable process.
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+ Outline of the Design Process

The design procedure can finally be summarized as follows:

1. Solve the flow equations for ρ, u1, u2, u3, p.

2. Solve the adjoint equations for ψ subject to appropriate boundary conditions.

3. Evaluate G and calculate the corresponding Sobolev gradient Ḡ.

4. Project Ḡ into an allowable subspace that satisfies any geometric constraints.

5. Update the shape based on the direction of steepest descent.

6. Return to 1 until convergence is reached.

Sobolev Gradient

Gradient Calculation

Flow Solution

Adjoint Solution

Shape & Grid

Repeat the Design Cycle
until Convergence

Modification

Figure 3: Design cycle
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+ Computational Costs∗

Cost of Search Algorithm

Steepest Descent O(N 2) steps
Quasi-Newton O(N) steps
Smoothed Gradient O(K) steps
(Note: K is independent of N)

Total Computational Cost of Design

Finite Difference Gradients
+ Steepest Descent O(N 3)
Finite Difference Gradients
+ Quasi-Newton Search O(N 2)
Adjoint Gradients
+ Quasi-Newton Search O(N)
Adjoint Gradients
+ Smoothed Gradient Search O(K)

(Note: K is independent of N)

* Studies of Alternative Numerical Optimization Methods Applied to the Brachistrone Problem, A.Jameson and J. Vassberg,
Computational Fluid Dynamics, Journal, Vol. 9, No.3, Oct. 2000, pp. 281-296
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+ Two dimensional studies of transonic airfoil design

Attainable shock-free solutions for various shape optimized airfoils
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+ Transonic similarity rule: M and CL scale with thickness ratio
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+ Planform and Aero-Structural Optimization

The shape changes in the section needed to improve the transonic wing design
are quite small. However, in order to obtain a true optimum design larger scale
changes such as changes in the wing planform (sweepback, span, chord, and
taper) should be considered. Because these directly affect the structure weight,
a meaningful result can only be obtained by considering a cost function that
takes account of both the aerodynamic characteristics and the weight.

Consider a cost function is defined as

I = α1CD + α2

1

2

∫

B(p− pd)
2dS + α3CW

Maximizing the range of an aircraft provides a guide to the values for α1 and α3.
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+ Choice of Weighting Constants

The simplified Breguet range equation can be expressed as

R =
V

C

L

D
log

W1

W2

where W2 is the empty weight of the aircraft.

With fixed V
C

, W1, and L, the variation of R can be stated as

δR =
V

C


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+ Choice of Weighting Constants (cont.)

Therefore minimizing
I = CD + αCW ,

by choosing

α =
CD

CW2
log

CW1

CW2

, (20)

corresponds to maximizing the range of the aircraft.
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+ Boeing 747 Euler Planform Results: Pareto Front

Test case: Boeing 747 wing-fuselage and modified geometries at the following
flow conditions M∞ = 0.87, CL = 0.42 (fixed), multiple α3

α1
.
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      and planform   
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+ Boeing 747 Euler Planform Results: Sweepback, Span, Chord, and Section

Variations to Maximize Range

Baseline geometry —

Optimized geometry —

Geometry Baseline Optimized Variation(%)
Sweep (deg) 42.1 38.8 - 7.8

Span (ft) 212.4 226.7 + 6.7
Croot (ft) 48.1 48.6 + 1.0

Cmid (ft) 30.6 30.8 + 0.7
Ctip (ft) 10.78 10.75 + 0.3

troot (in) 58.2 62.4 + 7.2
tmid (in) 23.7 23.8 + 0.4
ttip (in) 12.98 12.8 - 0.8

  

  
  

  

  

  

  SYMBOL  
  
  

  

  

  SOURCE  
SYN88 DESIGN  19
SYN88 DESIGN   0

  

  

  ALPHA  
  1.930
  2.189

  

  

     CD     
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 0.01077

  

  

  
  

  

  

COMPARISON OF CHORDWISE PRESSURE DISTRIBUTIONS
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ã CD is reduced from 107.7 drag counts to 87.2 drag counts (19.0%).

ã CW is reduced from 0.0455 (69,970 lbs) to 0.0450 (69,201 lbs) (1.1%).
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+ Super B747

ã Design a new wing for the Boeing 747

ã Strategy

- Use the Boeing 747 fuselage

- Use a new planform (from the Planform Optimization result)

- Use new airfoil section (AJ airfoils)

- Optimized for fixed lift coefficient at three Mach numbers:

.78, .85, and .87
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+ Super B747 at Mach .78: (Solid line = redesigned configuration), (Dash line = initial configuration)

B747 WING-BODY                                                                  
Mach: 0.780    Alpha: 2.683                                                     
CL:  0.449    CD: 0.01137    CM:-0.1369                                         
Design:  30    Residual:  0.1710E-02                                            
Grid: 257X 65X 49                                                               

Cl:  0.344    Cd: 0.05089    Cm:-0.1171                                         
Root Section:  13.0% Semi-Span

Cp = -2.0

Cl:  0.569    Cd: 0.00036    Cm:-0.2516                                         
Mid Section:  50.6% Semi-Span

Cp = -2.0

Cl:  0.453    Cd:-0.01561    Cm:-0.2117                                         
Tip Section:  92.5% Semi-Span

Cp = -2.0
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+ Super B747 at Mach .85: (Solid line = redesigned configuration), (Dash line = initial configuration)

B747 WING-BODY                                                                  
Mach: 0.850    Alpha: 2.220                                                     
CL:  0.449    CD: 0.01190    CM:-0.1498                                         
Design:  30    Residual:  0.7857E-03                                            
Grid: 257X 65X 49                                                               

Cl:  0.335    Cd: 0.05928    Cm:-0.1213                                         
Root Section:  13.0% Semi-Span

Cp = -2.0

Cl:  0.572    Cd:-0.00217    Cm:-0.2602                                         
Mid Section:  50.6% Semi-Span

Cp = -2.0

Cl:  0.462    Cd:-0.01878    Cm:-0.2213                                         
Tip Section:  92.5% Semi-Span

Cp = -2.0
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+ Super B747 at Mach .87: (Solid line = redesigned configuration), (Dash line = initial configuration)

B747 WING-BODY                                                                  
Mach: 0.870    Alpha: 1.997                                                     
CL:  0.449    CD: 0.01224    CM:-0.1590                                         
Design:  30    Residual:  0.3222E-03                                            
Grid: 257X 65X 49                                                               

Cl:  0.332    Cd: 0.06246    Cm:-0.1273                                         
Root Section:  13.0% Semi-Span

Cp = -2.0

Cl:  0.574    Cd:-0.00334    Cm:-0.2674                                         
Mid Section:  50.6% Semi-Span

Cp = -2.0

Cl:  0.464    Cd:-0.02110    Cm:-0.2222                                         
Tip Section:  92.5% Semi-Span

Cp = -2.0
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+ Drag Rise and Wing L
D of Super B747

Drag Rise Wing L
D
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+ Drag Polars of Baseline and Super B747 at Mach .86

B747 WING-BODY                                                                  

MACH       0.860    CD0        0.000

GRID   256X64X48
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Solid line = Super B747, Dash line = Baseline B747
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+ Drag Polars of Baseline and Super B747 at Mach .86

Boeing 747 Super B747
CL CD CL CD

0.0045 94.3970 0.0009 76.9489
0.0500 82.2739 0.0505 67.8010
0.1000 74.6195 0.1005 64.6147
0.1501 72.1087 0.1506 65.5073
0.2002 73.9661 0.2006 69.4840
0.2503 79.6424 0.2507 76.0041
0.3005 88.7551 0.3008 84.9889
0.3507 101.5293 0.3509 95.6117
0.4009 118.0487 0.4010 106.9625
0.4512 141.2927 0.4510 121.7183
0.5014 177.0959 0.5010 141.8675
0.5516 228.1786 0.5512 175.2569
0.6016 298.0458 0.6014 222.5459

(CD in counts)
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+ Comparison between Boeing 747 and Super B747

CL CD CW
counts counts

Boeing 747 .45 141.3 499
(107.0 pressure, 34.3 viscous) (82,550 lbs)

Super B747 .50 141.9 427
(104.8 pressure, 37.1 viscous) (70,620 lbs)

“Same drag at higher CL”
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+ Super Wide-Body
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+ Super Wide-Body at Mach .75: (Solid line = redesigned configuration), (Dash line = initial configuration)

SUPER WIDE-BODY                                                                 
Mach: 0.750    Alpha: 2.611                                                     
CL:  0.445    CD: 0.01243    CM:-0.1912                                         
Design:  30    Residual:  0.1709E-02                                            
Grid: 257X 65X 49                                                               

Cl:  0.389    Cd: 0.04637    Cm:-0.1437                                         
Root Section:  13.4% Semi-Span

Cp = -2.0

Cl:  0.557    Cd: 0.00144    Cm:-0.2355                                         
Mid Section:  50.8% Semi-Span

Cp = -2.0

Cl:  0.454    Cd:-0.01243    Cm:-0.2037                                         
Tip Section:  92.5% Semi-Span

Cp = -2.0
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+ Super Wide-Body at Mach .83: (Solid line = redesigned configuration), (Dash line = initial configuration)

SUPER WIDE-BODY                                                                 
Mach: 0.830    Alpha: 2.065                                                     
CL:  0.446    CD: 0.01329    CM:-0.2038                                         
Design:  30    Residual:  0.3274E-03                                            
Grid: 257X 65X 49                                                               

Cl:  0.383    Cd: 0.05328    Cm:-0.1521                                         
Root Section:  13.4% Semi-Span

Cp = -2.0

Cl:  0.561    Cd:-0.00100    Cm:-0.2441                                         
Mid Section:  50.8% Semi-Span

Cp = -2.0

Cl:  0.459    Cd:-0.01608    Cm:-0.2115                                         
Tip Section:  92.5% Semi-Span

Cp = -2.0
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+ Super Wide-Body at Mach .84: (Solid line = redesigned configuration), (Dash line = initial configuration)

SUPER WIDE-BODY                                                                 
Mach: 0.840    Alpha: 1.944                                                     
CL:  0.446    CD: 0.01358    CM:-0.2091                                         
Design:  30    Residual:  0.2807E-03                                            
Grid: 257X 65X 49                                                               

Cl:  0.382    Cd: 0.05451    Cm:-0.1557                                         
Root Section:  13.4% Semi-Span

Cp = -2.0

Cl:  0.563    Cd:-0.00097    Cm:-0.2505                                         
Mid Section:  50.8% Semi-Span

Cp = -2.0

Cl:  0.459    Cd:-0.01761    Cm:-0.2102                                         
Tip Section:  92.5% Semi-Span

Cp = -2.0
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+ Drag Rise and Wing L
D of Super Wide-Body
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+ Shape Optimization of Complete Business Jet Configuration

                                                                                

      AIRPLANE                                                                  
                                                                                
DENSITY                          from     0.6250 to     1.1000                  

FALCON                                          
MACH   0.800    ALPHA  2.000      Z     6.00
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FALCON                                          
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CL    0.5283    CD    0.0135    CM   -0.2117

NNODE   353887  NDES       0    RES0.287E-05

0.
1E

+0
1

0.
8E

+0
0

0.
4E

+0
0

0.
0E

+0
0

-.4
E

+0
0

-.8
E

+0
0

-.1
E

+0
1

-.2
E

+0
1

-.2
E

+0
1

C
p

+++++++
++

+++++
+

+++++++++++++++++++++++++
+

+
+++

+
+

+
++

+

+

+

+

+

+++
++

+++++ +++ ++ ++
+ + +

+++ +
+

+

+++

+
+

+ +++ +
+++

+
++

+
+

FALCON                                          
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Figure 4: Density contours for a business jet at M = 0.8, α = 2 and pressure distribution at 66,77,88 % of the wing
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+ Shape Optimization of Complete Business Jet Configuration
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Figure 5: Density contours for a business jet at M = 0.8, α = 2 and pressure distribution at 66,77,88 % of the wing
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+ Conclusions

ã An important conclusion of both the two- and the three-dimensional design
studies is that the wing sections needed to reduce shock strength or produce
shock-free flow do not need to resemble the familiar flat-topped and aft-loaded
super-critical profiles.

ã The section of almost any of the aircraft flying today, such as the Boeing 747 or
McDonnell-Douglas MD 11, can be adjusted to produce shock-free flow at a
chosen design point.
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+ Conclusions

ã The accumulated experience of the last decade suggests that most existing
aircraft which cruise at transonic speeds are amenable to a drag reduction of the
order of 3 to 5 percent, or an increase in the drag rise Mach number of at least
.02.

ã These improvements can be achieved by very small shape modifications, which
are too subtle to allow their determination by trial and error methods.

ã When larger scale modifications such as planform variations or new wing
sections are allowed, larger gains in the range of 5-10 percent are attainable.
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+ Conclusions

ã The potential economic benefits are substantial, considering the fuel costs of the
entire airline fleet.

ã Moreover, if one were to take full advantage of the increase in the lift to drag
ratio during the design process, a smaller aircraft could be designed to perform
the same task, with consequent further cost reductions.

ã It seems inevitable that some method of this type will provide a basis for
aerodynamic designs of the future.

c© A. Jameson 2004
Stanford University, Stanford, CA

55/55 Aerodynamic Shape Optimization for Aircraft Design


