
Harmonic Analysis of Neural Networks

Emmanuel J. Candès

Stanford University, CA 94305

December 1996; revised June 1997 - January 1998

Abstract

It is known that superpositions of ridge functions (single hidden-layer feedforward neural

networks) may give good approximations to certain kinds of multivariate functions. It remains

unclear, however, how to effectively obtain such approximations.

In this paper, we use ideas from harmonic analysis to attack this question. We introduce a

special admissibility condition for neural activation functions. The new condition is not satis-

fied by the sigmoid activation in current use by the neural networks community; instead, our

condition requires that the neural activation function be oscillatory. Using an admissible neu-

ron we construct linear transforms which represent quite general functions f as a superposition

of ridge functions. We develop

• a continuous transform which satisfies a Parseval-like relation

• a discrete transform which satisfies frame bounds

Both transforms represent f in a stable and effective way. The discrete transform is more chal-

lenging to construct and involves an interesting new discretization of time-frequency-direction

space in order to obtain frame bounds for functions in L2(A) where A is a compact set of Rn.

Ideas underlying these representations are related to Littlewood-Paley theory, wavelet analysis

and group representation theory.
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1 Introduction

Let f(x) : Rn → R be a function of n variables. In this paper, we are interested in constructing

convenient approximations to f using systems called neural networks. A single hidden-layer

feedforward neural network is the name given a function of n-variables constructed by the rule

fm(x) =
m∑
i=1

αiρ(〈ki, x〉 − bi),

where the m terms in the sum are called neurons; the αi and bi, scalars; and the ki, n-vectors.

Each neuron maps a multivariate input x ∈ Rn into a real valued output by composing a

simple linear projection x → 〈ki, x〉 − bi with a scalar nonlinearity ρ, called the activation

function. Traditionally, ρ has been given a sigmoid shape, ρ(t) = et/(1+et), modeled after the

activation mechanism of biological neurons. The vectors ki specify the ‘connection strengths’

of the n inputs to the i-th neuron; the bi specify activation thresholds. The use of this model

for approximating functions in applied sciences, engineering, and finance is large and growing;

for examples, see journals such as IEEE Trans. Neural Networks.

From a mathematical point of view, such approximations amount to taking finite linear

combinations of atoms from the dictionary DRidge = {ρ(〈k, x〉 − b); k ∈ Rn, b ∈ R} of elemen-

tary ridge functions. As is known [6, 18], any function of n variables can be approximated

arbitrarily well by such combinations. As far as constructing these combinations, a frequently

discussed approach is the greedy algorithm that, starting from f0(x) = 0, operates in a stepwise

fashion running through steps i = 1, . . .m; at the i-th stage it augments the approximation

fi−1 by adding a term from the dictionary DRidge which results in the largest decrease in ap-

proximation error; i.e., minimizes ‖f − (fi−1 + α · ρ(〈k, x〉 − b))‖L2 over all choices of (k, α, b).

It is known that when f ∈ L2(D) with D a compact set, the greedy algorithm converges [15];

it is also known that for a relaxed variant of the greedy algorithm, the convergence rate can

be controlled under certain assumptions [16, 1]. There are unfortunately two problems with

the conceptual basis of such results.

First, they lack the constructive character which one ordinarily associates with the word

“algorithm.” In any assumed implementation of minimizing ‖f − (fi−1 + α · ρ(〈k, x〉 − b))‖L2

2



one would need to search for a minimum within a discrete collection of k and b. What are

the properties of procedures restricted to such collections? Or, more directly, how finely

discretized must the collection be so that a search over that collection gives results similar to a

minimization over the continuum? In some sense, applying the word “algorithm” for abstract

minimization procedures in the absence of an understanding of this issue is a misnomer.

Second, even if one is willing to forgive the lack of constructivity in such results, one

must still face the lack of stability of the resulting decomposition. An approximant fN (x) =∑N
i=1 αiρ(〈ki, x〉 − bi) has coefficients which in no way are continuous functionals of f and do

not necessarily reflect the size and organizations of f [20].

Our goal in this paper is to apply the concepts and methods of modern harmonic analysis

to the problem of constructing neural networks. Using techniques developed in group repre-

sentations theory and wavelet analysis, we develop two concrete and stable representations of

functions f as superpositions of ridge functions.

1.1 A Continuous Representation

First, we develop the concept of admissible neural activation function ψ : R → R. Unlike

traditional sigmoidal neural activation functions which are positive and monotone increasing,

such an admissible activation function is oscillating, taking both positive and negative values.

In fact, our condition requires for ψ a number of vanishing moments which is proportional to

the dimension n, so that an admissible ψ has zero integral, zero ‘average slope,’ zero ‘average

curvature,’ etc. in high dimensions.

We show that if one is willing to abandon the traditional sigmoidal neural activation func-

tion ρ, which typically has no vanishing moments and is not in L2, and replace it by an

admissible neural activation function ψ, then any reasonable function f may be represented

exactly as a continuous superposition from the dictionary DRidgelet = {ψγ : γ ∈ Γ} of ridgelets

ψγ(x) = a−1/2ψ( 〈u,x〉−ba ) where the ridgelet parameter γ = (a, u, b) runs through the set

Γ ≡ {(a, u, b); a, b ∈ R, a > 0, u ∈ Sn−1} with Sn−1 denoting the unit sphere of Rn. In

3



short, we establish a continuous reproducing formula

f = cψ

∫
〈f, ψγ〉ψγµ(dγ), (1)

for f ∈ L1∩L2(Rn), where cψ is a constant which depends only on ψ and µ(dγ) ∝ da/an+1dudb

is a kind of uniform measure on Γ; for details, see below. We also establish a Parseval relation

‖f‖2 = cψ

∫
|〈f, ψγ〉|2µ(dγ). (2)

Integral representations like (1) have been independently discovered in Murata [22]. These two

formulas mean that we have a well-defined continuous Ridgelet transform R(f)(γ) = 〈f, ψγ〉

taking functions on Rn isometrically into functions of the ridgelet parameter γ = (a, u, b).

1.2 Discrete Representation

We next develop somewhat stronger admissibility conditions on ψ (which we call frameability

conditions) and replace this continuous transform by a discrete transform. Let D be a fixed

compact set in Rn. We construct a special countable set Γd ⊂ Γ such that every f ∈ L2(D)

has a representation

f =
∑
γ∈Γd

αγψγ , (3)

with equality in the L2(D) sense. This representation is stable in the sense that the coefficients

change continuously under perturbations of f which are small in L2(D) norm. Underlying the

construction of such a discrete transform is of course a quasi-Parseval relation, which in this

case takes the form

A‖f‖2L2(D) ≤
∑
γ∈Γd

|〈f, ψγ〉L2(D)|2 ≤ B‖f‖2L2(D); (4)

Equation (3) follows by use of the standard machinery of frames [10, 7]. Frame machinery also

shows that the coefficients αγ are realizable as bounded linear functionals αγ(f) having Riesz

representers ψ̃γ(x) ∈ L2(D). These representers are not ridge functions themselves; but by

the convergence of Neumann series underlying the frame operator, we are entitled to think of

them as molecules made up of linear combinations of ridge atoms, where the linear concentrate

on atoms with parameters γ′ “near” γ.
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1.3 Applications

As a result of this work, we are, roughly speaking, in a position to efficiently construct finite

approximations by ridgelets which give good approximations to a given function f ∈ L2(D).

Although we do not attempt to go so far in this paper, one can see where these tools are heading:

from the exact series representation (3), one aims to extract a finite linear combination which

is a good approximation to the infinite series; once such a representation is available, one

has a stable, mathematically tractable method of constructing approximate representations of

functions f based on systems of neuron-like elements. We hope to report on this program in

a later paper.

1.4 Innovations

Underlying our methods is the inspiration of modern harmonic analysis – ideas like the

Calderón reproducing formula and the Theory of Frames. We shall briefly describe what

is new here – that which is not merely an ‘automatic’ consequence of existing ideas.

First, there is of course a general machinery for getting continuous reproducing formulas

like (1), via the theory of square-integrable group representations [11, 8]. Such a theory has

been applied to develop wavelet-like representations over groups other than the usual ax + b

group on Rn, see [3]. However, the particular geometry of ridge functions does not allow

the identification of the action of Γ on ψ with a linear group representation (notice that the

argument of ψ is real, while the argument of ψγ is a vector in Rn). As a consequence, the

possibility of a straightforward application of well-known results is ruled out. As an example of

the difference, our condition for admissibility of a neural activation function for the continuous

ridgelet transform is much stronger – requiring about n/2 vanishing moments in dimension n

– than the usual condition for admissibility of the mother wavelet for the continuous wavelet

transform, which requires only one vanishing moment in any dimension.

Second, in constructing frames of ridgelets, we have been guided by the theory of wavelets,

which holds that one can turn continuous transforms into discrete expansions by adopting a

strategy of discretizing frequency space into dyadic coronae [7, 8]; this goes back to Littlewood-
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Paley [13]. Our approach indeed uses such a strategy for dealing with the location and scale

variables in the Γd dictionary. However, in dealing with ridgelets there is also an issue of

discretizing the directional variable u that seems to be a new element: u must be discretized

more finely as the scale becomes finer. The existence of frame bounds under our discretization

shows that we have achieved, in some sense, the ‘right’ discretization, and we believe this to

be new and of independent interest.

In a discussion section we describe limitations, possible improvements, and possible direc-

tions for further work.

2 The Ridgelet Transform

In this section we present results regarding the existence and the properties of the continuous

representation (1). The measure µ(dγ) on neuron parameter space Γ is defined by µ(dγ) =
da

an+1
σndu db, where σn is the surface area of the unit sphere Sn−1 in dimension n and du the

uniform probability measure on Sn−1. As usual, f̂(ξ) =
∫
e−i〈x,ξ〉f(x)dx denotes the Fourier

transform of f and F(f) as well. To simplify notations we will consider only the case of

multivariate x ∈ Rn with n ≥ 2. Finally, we will always assume that ψ : R → R belongs to

the Schwartz space S(R). Most of what follows holds under weaker conditions on ψ but we

avoid study of various technicalities in this paper.

Definition 1 Let ψ : R→ R satisfy the condition

Kψ =
∫ |ψ̂(ξ)|2
|ξ|n dξ <∞. (5)

Then ψ is called an Admissible Neural Activation Function.

Theorem 1 (Reconstruction) Suppose that f and f̂ ∈ L1(Rn). If ψ is admissible, then

f = cψ

∫
〈f, ψγ〉ψγµ(dγ), (6)

where cψ = π(2π)−nK−1
ψ .
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Remark 1. In fact, for ψ ∈ S(R), the admissibility condition (5) is essentially equivalent

to the requirement of vanishing moments:∫
tkψ(t)dt = 0, k ∈ {0, 1, . . . ,

[
n+ 1

2

]
− 1}.

This clearly shows the similarity of (5) to the 1-dimensional wavelet admissibility condition [7,

Page 24]; however, unlike wavelet theory, the number of necessary vanishing moments grows

linearly in the dimension n.

Remark 2. If ρ(t) is the sigmoid function et/(1 + et), then ρ is not admissible. Actually

no formula like (6) can hold if one uses neurons of the type commonly employed in the theory

of Neural Networks. However, ρ(m)(t) is an admissible activation function for m ≥ [n2 ] + 1.

Hence, sufficiently high derivatives of the functions used in Neural Networks theory do lead to

good reconstruction formulas.

We will call the ridge function ψγ generated by an admissible ψ a ridgelet.

Proof of Theorem 1. The proof uses the Radon Transform Pu defined by: Puf(t) =∫
f(tu+U⊥s)ds with s = (s1, . . . , sn−1) ∈ Rn−1 and U⊥ an n× (n− 1) matrix containing as

columns an orthonormal basis for u⊥.

With a slight abuse of notation, let ψa(x) = a−
1
2ψ(xa ) and ψ̃(x) = ψ(−x). Put wa,u(b) = ψ̃a ∗

Puf(b) and let I =
∫
〈f, ψγ〉ψγ(x)µ(dγ) =

∫
ψa(〈u, x〉 − b)wa,u(b)

da

an+1
σndu db. Recall P̂uf =

f̂(ξu) and, hence, if f̂ ∈ L1(Rn), P̂uf ∈ L1(R). Then, I =
∫
ψa ∗ (ψ̃a ∗ Puf)(〈u, x〉) da

an+1σndu.

Noting that ψa ∗ (ψ̃a ∗ Puf) ∈ L1(R) and that its 1-dimensiopnal Fourier transform is given

by a|ψ̂(aξ)|2f̂(ξu), we have

I =
1

2π

∫
exp{iξ〈u, x〉}f̂(ξu)a|ψ̂(aξ)|2 da

an+1
σndu dξ.

If ψ is real valued, ψ̂(−ξ) = ψ̂(ξ); hence,

I =
1
π

∫
exp{iξ〈u, x〉}f̂(ξu)a|ψ̂(aξ)|21{ξ>0}

da

an+1
σndu dξ.
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Then, by Fubini

I =
1
π

∫
exp{iξ〈u, x〉}f̂(ξu)

{∫
|ψ̂(aξ)|2da

an

}
1{ξ>0}dξσndu

=
1
π

∫
exp{iξ〈u, x〉}f̂(ξu)Kψ|ξ|n−11{ξ>0}dξσndu

=
1
π
Kψ

∫
Rn

exp{i〈x, k〉}f̂(k)dk

=
1
π
Kψ(2π)nf(x).

Theorem 2 (Parseval relation) Assume f ∈ L1 ∩ L2(Rn) and ψ admissible. Then

‖f‖22 = cψ ·
∫
|〈f, ψγ〉|2µ(dγ).

Proof. With wa,u(b) defined as in the proof of Theorem 1, we then have∫
|〈f, ψγ〉|2µ(dγ) =

∫
|wa,u(b)|2 da

an+1
σndu db = I,

say. Using Fubini’s theorem for positive functions,∫
|wa,u(b)|2 da

an+1
σndu db =

∫
‖wa,u‖22

da

an+1
σndu. (7)

wa,u is integrable, being the convolution between two integrable functions, and belongs to

L2(R) since ‖wa,u‖2 ≤ ‖f‖1‖ψa‖2; its Fourier transform is then well defined and ŵa,u(ξ) =

ψ̂a(ξ)f̂(ξu). By the usual Plancherel theorem,
∫
|wa,u(b)|2db =

1
2π

∫
|ŵa,u(ξ)|2dξ and, hence,

I =
1

2π

∫
|f̂(ξu)|2|ψ̂a(ξ)|2

da

an+1
σndu dξ =

2
2π

∫
{ξ>0}

|f̂(ξu)|2|ψ̂(aξ)|2da
an

σndu dξ.

Since
∫
|ψ̂(aξ)|2da

an
= Kψ|ξ|n−1 (admissibility), we have

I =
2Kψ

2π

∫
|f̂(ξu)|2ξn−1dξdu =

1
π
Kψ(2π)n‖f‖22.

The assumptions on f in the above two Theorems are somewhat restrictive, and the basic

formulas can be extended to an even wider class of objects. It is classical to define the Fourier

Transform first for f ∈ L1(Rn) and only later to extend it to all of L2 using the fact that

L1 ∩ L2 is dense in L2. By a similar density argument, one obtains
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Proposition 1 There is a linear transform R: L2(Rn) → L2(Γ, µ(dγ)) which is an L2-

isometry and whose restriction to L1 ∩ L2 satisfies

R(f)(γ) = 〈f, ψγ〉.

For this extension, a generalization of the Parseval relationship (2) holds.

Proposition 2 (Extended Parseval) For all f, g ∈ L2(Rn),

〈f, g〉 = cψ

∫
R(f)(γ)R(g)(γ)µ(dγ). (8)

We will give the proof in the Appendix. Notice that one need only to prove the property for

a dense subspace of L2(Rn); i.e., L1 ∩ L2(Rn).

Relation (8) allows identification of the integral cψ
∫
〈f, ψγ〉ψγµ(dγ) with f by duality. In

fact, taking the inner product of cψ
∫
〈f, ψγ〉ψγµ(dγ) with any g ∈ L2(Rn) and exchanging the

order of inner product and integration over γ, one obtains

〈cψ
[∫
〈f, ψγ〉ψγµ(dγ)

]
, g〉 = cψ

∫
〈f, ψγ〉〈g, ψγ〉µ(dγ) = 〈f, g〉

which, by Riesz theorem, leads to f ≡ cψ
∫
〈f, ψγ〉ψγµ(dγ) in the prescribed weak sense.

The theory of wavelets and Fourier analysis contain results of a similar flavor: for example,

the Fourier inversion theorem in L2(Rn) can be proven by duality. However, there exists a

more concrete proof of the Fourier inversion theorem. Recall, in fact, that if f ∈ L1 ∩L2(Rn)

and if we consider the truncated Fourier expansion f̂K(ξ) = f̂(ξ)1{|ξ|≤K}, then f̂K ∈ L1(Rn)

and ‖F(f̂K) − (2π)nf‖L2 → 0 as K → ∞. This argument provides an interpretation of the

Fourier inversion formula that reassures about its practical relevance.

We now give a similar result for the convergence of truncated ridgelet expensions. For each

ε > 0, define Γε := {γ = (a, u, b) : ε ≤ a ≤ ε−1, u ∈ Sn−1, b ∈ R} ⊂ Γ.

Proposition 3 Let f ∈ L1(Rn) and {αγ} = {〈f, ψγ〉}(γ∈Γ), then for every ε > 0

αγ1Γε(γ) ∈ L1(Γ, µ(dγ)).
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Proof. Notice that αγ = (ψ̃a ∗ Puf)(b), then∫
Γε

|αγ |µ(dγ) =
∫
|wa,u(b)| da

an+1
σndu db

≤ σn‖f‖1
∫ ε−1

ε
‖ψ‖1

da

an+ 1
2

<∞,

where we have used ‖wa,u‖1 ≤ ‖ψ̃α‖1‖f‖1 = a1/2‖ψ‖11‖f‖1.

The above proposition shows that for any f ∈ L1(Rn), the expression

fε ≡ cψ
∫

Γε

〈f, ψγ〉ψγµ(dγ)

is meaningful, since {ψγ}γ∈Γ is uniformly L∞ bounded over Γε. The next theorem, whose

proof is given in the Appendix, makes more precise the meaning of the reproducing formula.

Theorem 3 Suppose f ∈ L1 ∩ L2(Rn) and ψ admissible.

(1) fε ∈ L2(Rn), and

(2) ‖f − fε‖2 → 0 as ε→ 0.

3 The Discrete Transform: Frames of Ridgelets

The previous section described a class of neurons, the ridgelets {ψγ}γ∈Γ, such that

(i) any function f can be reconstructed from the continuous collection of its coefficients

〈f, ψγ〉, and

(ii) any function can be decomposed in a continuous superposition of neurons ψγ .

The purpose of this section is to achieve similar properties using only a discrete set of neurons

Γd ⊂ Γ.

3.1 Generalities about Frames

The theory of frames [7, 27] deals precisely with questions of this kind. In fact, if H is a

Hilbert space and {ϕn}n∈N a frame, an element f ∈ H is completely characterized by its
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coefficients {〈f, ϕn〉}n∈N and can be reconstructed from them via a simple and numerically

stable algorithm. In addition, the theory provides an algorithm to express f as a linear

combination of the frame elements ϕn.

Definition 2 Let H be a Hilbert space and let {ϕn}n∈N be a sequence of elements of H. Then

{ϕn}n∈N is a frame if there exist 0 < A, B <∞ such that for any f ∈ H

A‖f‖2H ≤
∑
n∈N
|〈f, ϕn〉H|2 ≤ B‖f‖2H (9)

in which case A and B are called frame bounds.

Let H be a Hilbert space and {ϕn}n∈N a frame with bounds A and B. Notice that

A‖f‖2H ≤
∑
|〈f, ϕn〉|2 implies that {ϕn}n∈N is a complete set in H. A frame {ϕn}n∈N is said

to be tight if we can take A = B in Definition 1. Furthermore, if {ϕn}n∈N is a basis for H,

it is called a Riesz basis. Simple examples of Frames include Orthonormal Basis, Riesz Basis,

concatenation of several Riesz Bases...

The following results are stated without proofs and can be found in Daubechies [7, Page

56] and Young [27, Page 184]. Define the coefficient operator F : H → l2(N) by F (f) =

(〈f, ϕn〉)n∈N . Suppose that F is a bounded operator (‖Ff‖ ≤ B‖f‖H). Let F ∗ be the

adjoint of F and let G = F ∗F be the Frame Operator; then A Id ≤ G ≤ B Id in the sense

of orders of positive definite operators. Hence, G is invertible and its inverse G−1 satisfies

B−1Id ≤ G−1 ≤ A−1Id. Define ϕ̃n = G−1ϕn; then {ϕ̃n}n∈N is also a frame (with frames

bounds B−1 and A−1) and the following holds:

f =
∑
n∈N
〈f, ϕ̃n〉Hϕn =

∑
n∈N
〈f, ϕn〉Hϕ̃n. (10)

Moreover, if f =
∑

n∈N anϕn is an another decomposition of f , then
∑

n∈N |〈f, ϕ̃n〉|2 ≤∑
n∈N |an|2. To rephrase Daubechies, the frame coefficients are the most economical in an

L2 sense. Finally, G = A+B
2 (I − R) where ‖R‖ < 1, and so G−1 can be computed as

G−1 = 2
A+B

∑∞
k=0R

k.

11



3.2 Discretization of Γ

The special geometry of ridgelets imposes differences between the organization of ridgelet

coefficients and the organization of traditional wavelet coefficients.

With a slight change of notation, we recall that ψγ = a1/2ψ(a(〈u, x〉 − b)). We are looking

for a countable set Γd and some conditions on ψ such that the quasi-Parseval relation (4) holds.

Let R(f)(γ) = 〈f, ψγ〉; then R(f)(γ) = 〈Puf, ψa,b〉 with ψa,b(t) = a1/2ψ(a(t − b)). Thus, the

information provided by a ridgelet coefficientR(f)(γ) is the one-dimensional wavelet coefficient

of Puf , the Radon transform of f . Applying Plancherel, R(f)(γ) may be expressed as

R(f)(γ) =
1

2π
〈P̂uf, ψ̂a,b〉 =

a−1/2

2π

∫
f̂(ξu)ψ̂(ξ/a) exp{ibξ}dξ, (11)

which corresponds to a one-dimensional integral in the frequency domain (see Figure 1).

In fact, it is the line integral of f̂ ψ̂a,0, modulated by exp{ibξ}, along the line {tu : t ∈ R}.

If as,in the Littlewood-Paley theory [13], a = 2j and supp(ψ) ⊂ [1/2, 2], it emphasizes a certain

dyadic segment {t : 2j ≤ t ≤ 2j+1}. In contrast, in the multidimensional wavelets case where

the wavelet ψa,b = a−
n
2 ψ(x−ba ) with a > 0 and b ∈ Rn, the analogous inner product 〈f, ψa,b〉

corresponds to the average of f̂ ψ̂a over the whole frequency domain, emphasizing the dyadic

corona {ξ : 2j ≤ |ξ| ≤ 2j+1}.

Now, the underlying object f̂ must certainly satisfy specific smoothness conditions in order

for its integrals on dyadic segments to make sense. Equivalently, in the original domain f

must decay sufficiently rapidly at ∞. In this paper, we take for our decay condition that f be

compactly supported so that f̂ is band limited. From now on, we will only consider functions

supported on the unit cube Q = {x ∈ Rn, ‖x‖∞ ≤ 1} with ‖x‖∞ =maxi|xi|. Thus H = L2(Q).

Guided by the Littlewood-Paley theory, we choose to discretize the scale parameter a as

{aj0}j≥j0 (a0 > 1, j0 being the coarsest scale) and the location parameter b as {kb0a−j0 }k,j≥j0 .

Our discretization of the sphere will also depend on the scale: the finer the scale, the finer

the sampling over Sn−1. At scale aj0, our discretization of the sphere, denoted Σj , is an εj-net

of Sn−1 with εj = ε0a
−(j−j0)
0 for some ε0 > 0. We assume that for any j ≥ j0, the sets Σj

satisfy the following Equidistribution Property: two constants kn,Kn > 0 must exist s.t. for
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ξ 1

 2 j  2 j+ 1  2 j+ 2

ξ 2

Figure 1: Diagram schematically illustrating the ridgelet discretization of

the Frequency plane (2-dimensional case). The circles represent the scales

2j (we have chosen a0 = 2) and the different segments essentially correspond

to the support of different coefficient functionals. There are more segments

at finer scales.
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any u ∈ Sn−1 and r such that εj ≤ r ≤ 2

kn

(
r

εj

)n−1

≤ |{Bu(r) ∩ Σj}| ≤ Kn

(
r

εj

)n−1

. (12)

On the other hand, if r ≤ εj , then from Bu(r) ⊂ Bu(εj) and the above display, |{Bu(r) ∩

Σj}| ≤ Kn. Furthermore, the number of points Nj satisfies kn
(

2
εj

)n−1
≤ Nj ≤ Kn

(
2
εj

)n−1
.

Essentially, our condition guarantees that Σj is a collection of Nj almost equispaced points

on the sphere Sn−1, Nj being of order a(j−j0)(n−1)
0 . The discrete collection of ridgelets is then

given by

ψγ(x) = a
j/2
0 ψ(aj0〈u, x〉 − kb0), γ ∈ Γd = {(aj0, u, kb0a

j
0), j ≥ j0, u ∈ Σj , k ∈ Z}. (13)

In our construction, the coarsest scale is determined by the dimension of the space Rn. Defining

d as sup{ π2k , k ∈ N and π
2k <

log2
2n }, we choose j0 s.t. aj0+1

0 ≤ d < aj0+2
0 . Finally, we will set

ε0 = 1/2 so that εj = a
−(j−j0)
0 /2.

3.3 Main Result

We now introduce a condition that allows us to construct frames.

Definition 3 The function ψ is called frameable if ψ ∈ C1(R) and

• inf
1≤|ξ|≤a0

∑
j≥0

∣∣∣ψ̂(a−j0 ξ)
∣∣∣2 ∣∣∣a−j0 ξ

∣∣∣−(n−1)
> 0

• |ψ̂(ξ)| ≤ C|ξ|α(1 + |ξ|)−γ where α > n−1
2 , γ > 2 + α.

This type of condition bears a resemblance to conditions in the theory of wavelet frames

(compare, for example, [7, Page 55].) In addition, this condition looks like a discrete version

of the admissible neural activation condition described in the previous section.

There are many frameable ψ. For example, sufficiently high derivatives (larger than n/2 + 1)

of the sigmoid are frameable.

Theorem 4 (Existence of Frames) Let ψ be frameable. Then there exists b∗0 > 0 so that

for any b0 < b∗0, we can find two constants A,B > 0 (depending on ψ, a0, b0 and n) so that,
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for any f ∈ L2(Q) (where Q denotes the unit cube of Rn),

A‖f‖22 ≤
∑
γ∈Γd

|〈f, ψγ〉|2 ≤ B‖f‖22. (14)

The theorem is proved in several steps. We first show:

Lemma 1

∣∣∣ ∑
γ∈Γd

|〈f, ψγ〉|2 −
1

2πb0

∫
R

∑
j≥j0,u∈Σj

|f̂(ξu)|2|ψ̂(a−j0 ξ)|2dξ
∣∣∣

≤ 1
2π

√√√√∫
R

∑
j≥j0,u∈Σj

|f̂(ξu)|2|ψ̂(a−j0 ξ)|2dξ|
√√√√∫

R

∑
j≥j0,u∈Σj

|f̂(ξu)|2|a−j0 ξ|2|ψ̂(a−j0 ξ)|2dξ (15)

The argument is a simple application of the analytic principle of the large sieve [21]. Note that

it presents an alternative to Daubechies’ proof of one-dimensional dyadic affine frames [7]. We

first recall an elementary lemma that we state without proof.

Lemma 2 Let f be a ral valued function in C1[0, δ] for some δ > 0: then,

|f(δ/2)− 1
δ

∫ δ

0
f(x)dx| ≤ 1

2

∫ δ

0
|f ′(x)|dx.

Again, let ψj(x) be aj/20 ψ(aj0x). The ridgelet coefficient is then 〈f, ψγ〉 = (Puf ∗ ψj)(kb0a−j0 ).

For simplicity we denote Fj = |Puf ∗ ψj |2. Applying the Lemma gives∣∣∣Fj(kb0a−j0 )− aj0
b0

∫ (k+1/2)b0a
−j
0

(k−1/2)b0a
−j
0

Fj(b)db
∣∣∣ ≤ 1

2

∫ (k+1/2)b0a
−j
0

(k−1/2)b0a
−j
0

|F ′j(b)|db.

Now, we sum over k:

∣∣∣∑
k

|(Puf ∗ ψj)(kb0a−j0 )|2 − aj0
b0

∫
R
|(Puf ∗ ψj)(b)db

∣∣∣
≤
∫

R
|(Puf ∗ ψj)(b)| |(Puf ∗ (ψj)′)(b)|db ≤ ‖Puf ∗ ψj‖2‖(Puf ∗ (ψj)′)‖2.

Applying Plancherel, we have

∣∣∣∑
k

|(Puf ∗ ψj)(kb0a−j0 )|2 − 1
2πb0

∫
R
|f̂(ξu)|2|ψ̂(a−j0 ξ)|2dξ

∣∣∣
≤ 1

2π

√∫
R
|f̂(ξu)|2|ψ̂(a−j0 ξ)|2dξ

√∫
R
|f̂(ξu)|2|a−j0 ξ|2|ψ̂(a−j0 ξ)|2dξ.
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Hence, if we sum the above expression over u ∈ Σj and j and apply the Cauchy-Schwartz

inequality to the right-hand side, we get the desired result.

We then show that there exist A′, B′ > 0 s.t. for any f ∈ L2(Q); we have

A′‖f̂‖22 ≤
∑

j≥j0,u∈Σj

∫ ∞
−∞

∣∣∣f̂(ξu)
∣∣∣2 ∣∣∣ψ̂(a−j0 ξ)

∣∣∣2 dξ ≤ B′‖f̂‖22 ; (16)

∑
j≥j0,u∈Σj

∫ ∞
−∞

∣∣∣f̂(ξu)
∣∣∣2 ∣∣∣a−j0 ξ

∣∣∣2 ∣∣∣ψ̂(a−j0 ξ)
∣∣∣2 dξ ≤ B′‖f̂‖22 . (17)

Thus, if b0 is chosen small enough, Theorem 4 holds.

3.4 Irregular Sampling Theorems

Relationship (16) is, in fact, a special case of a more abstract result which holds for general

multivariate entire functions of exponential type. An excellent presentation of entire functions

may be found in Boas [4]. In the present section, B2
1(Rn) denotes the set of square integrable

functions whose Fourier Transform is supported in [−1, 1]n and Qa(d) = {x, ‖x − a‖∞ ≤ d},

the cube of center a and volume (2d)n. Finally, let {zm}m∈Zn be the grid on Rn defined by

zm = 2dm.

Theorem 5 Suppose F ∈ B2
1(Rn) and d < log2

n with π
2d an integer; then ∀a ∈ Rn,

∑
m∈Zn

min
Qa+zm (d)

|F (x)|2 ≥ c2
d

∑
m∈Zn

max
Qa+zm (d)

|F (x)|2 (18)

where cd can be chosen equal to 2e−nd − 1.

In fact, a more general version of this result holds for any exponent p > 0. (In this case, the

constants d and cd will depend on p). The requirement that π/2d must be an integer simplifies

the proof but this assumption may be dropped.

Proof of Theorem 5. First, note that by making use of Fa(x) = F (x − a), we just need

to prove the result for a = 0. The proof is then based on the lemma stated below which

is an extension to the multivariate case of a theorem of Paley and Wiener on non-harmonic
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Fourier series ([27, Page 38]). Then with |F (λ−m)| = minQzm (d) |F (x)| (resp. |F (λ+
m)| =

maxQzm (d) |F (x)|), we have (using Lemma 3)

∑
m∈Zn

|F (λ−m)|2 ≥ (1/2d)n(1− ρd)2‖F‖22 ≥
(1− ρd

1 + ρd

)2 ∑
m∈Zn

|F (λ+
m)|2.

And 1−ρd
1+ρd

= 2e−nd − 1.

Lemma 3 Let F ∈ B2
1(Rn) and {λm}m∈Zn be a sequence of Rn such that

supm∈Zn ‖λm −mπ‖∞ < log2
n ; then

(1− ρd)2π−n‖F‖22 ≤
∑
m∈Zn

|F (λm)|2 ≤ (1 + ρd)2π−n‖F‖22, (19)

for ρd = end − 1 < 1.

Proof of Lemma 3. The Polya-Plancherel theorem (see [25, Page 116]) gives that

∑
m∈Zn

|F (mπ)|2 = π−n‖F‖22.

Let k denote the usual multi-index (k1, . . . , kn) and let |k| = k1 + · · · + kn, k! = k1! . . . kn!

and xk = xk1
1 . . . xknn . For any k, ∂kF is an entire function of type π. Moreover, Bernstein’s

inequality gives ‖∂kF‖2 ≤ ‖F‖2; see [4, Page 211] for a proof. Since F is an entire function

of exponential type, F is equal to its absolutely convergent Taylor expansion. Letting s be a

constant to be specified below, we have

F (λm)− F (mπ) =
∑
|k|≥1

∂kF (mπ)
k!

(λm −m)k

=
∑
|k|≥1

∂kF (mπ)
k!

(λm −m)k
s|k|

s|k|
.

Applying Cauchy-Schwarz and summing over m, we get

∑
m∈Zn

|F (λm)− F (mπ)|2 ≤
∑
m∈Zn

∑
|k|≥1

|∂kF (mπ)|2
k!s2|k|

∑
|k|≥1

‖λm −m‖2|k|∞ s2|k|

k!

≤
∑
|k|≥1

π−n‖F‖22
k!s2|k|

∑
|k|≥1

d2|k|s2|k|

k!

= π−n‖F‖22(en
1
s2 − 1)(end

2s2 − 1).
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We choose s2 = 1
d . If ρd = end − 1 < 1, then

∑
m∈Zn

|F (λm)− F (mπ)|2 ≤ ρ2
dπ
−n‖F‖22

and, by the triangle inequality, the expected result follows.

Let µ be a measure on Rn; µ will be called d-uniform if there exist α, β > 0 such that

α ≤ µ(Qzm(d))/(2d)n ≤ β. The following result is completely equivalent to the previous

theorem.

Corollary 1 Fix d < log2
n with π

2d an integer. Let F ∈ B2
1(Rn) and µ be an d-uniform measure

with bounds α, β. Then

αcd‖F‖22 ≤
∫
|F |2dµ ≤ β

cd
‖F‖22. (20)

3.5 Proof of the Main Result

We notice that the frameability condition implies that

(i) sup
1≤|ξ|≤a0

∑
j∈Z

∣∣∣ψ̂(aj0ξ)
∣∣∣2∣∣∣aj0ξ∣∣∣n−1 <∞, and

(ii) sup
1≤|ξ|≤a0

∑
j≥0

∣∣∣ψ̂(aj0ξ)
∣∣∣2 <∞.

And respectively (i′) and (ii′) where ψ̂(ξ) is replaced by ξψ̂(ξ).

For any measurable set A, let µψ be the measure defined as

µψ(A) =
∑

j≥j0,u∈Σj

∫ ∣∣∣ψ̂(a−j0 ξ)
∣∣∣2 1A(ξu)dξ.

And similarly, we can define µ′ψ by changing ψ̂(ξ) into ξψ̂(ξ). Then,

∑
j≥j0,u∈Σj

∫ ∣∣∣f̂(ξu)
∣∣∣2 ∣∣∣ψ̂(a−j0 ξ)

∣∣∣2 dξ =
∫ ∣∣∣f̂ ∣∣∣2 dµψ

and likewise for µ′ψ.

Proposition 4 If ψ is frameable, µψ and µ′ψ are d-uniform and therefore there exist A′, B′ > 0

s.t. (16)-(17) hold.
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We only give proof for the measure µψ. The proof for µ′ψ being exactly the same. Let ρu

be the standard polar form of x. In this section, we will denote by ∆x(r, δ) the sets defined by

∆x(r, δ) = {y = ρ′u′, 0 ≤ ρ′ − ρ ≤ r, ‖u′ − u‖ ≤ δ}. These sets are truncated cones. The proof

uses the technical Lemma 4.

Lemma 4 For ψ frameable,

0 < inf
‖x‖≥d

µψ

(
∆x(d,

d

2‖x‖)
)
≤ sup
‖x‖≥d

µψ

(
∆x(d,

d

2‖x‖)
)
<∞

and respectively for µ′ψ.

Proof. To simplify the notations, we will use ρ for ‖x‖ and u for x/‖x‖. Let jx be defined

by a−(jx−j0)
0 ≤ d/ρ < a0a

−(jx−j0)
0 . Hence, if j ≥ jx, ∀ε ∈ {−1, 1}, the Equidistribution Property

(12) implies that

kn

(a(j−j0)
0 d

ρ

)n−1
≤ |{Bεu(d/2ρ) ∩ Σj}| ≤ Kn

(a(j−j0)
0 d

ρ

)n−1
.

We have

µψ(∆x(d, d/2ρ)) =
∑

j≥j0≤,u∈Σj

∫ ∣∣∣ψ̂(a−j0 ξ)
∣∣∣2 1∆x(d,d/2ρ)(ξu)dξ

≥
∑
j≥jx

kn

(a(j−j0)
0 d

ρ

)n−1
∫
ρ≤|ξ|≤ρ+d

∣∣∣ψ̂(a−j0 ξ)
∣∣∣2 dξ

≥ kn(a−j00 d)n−1

∫
ρ≤|ξ|≤ρ+d

( |ξ|
ρ

)n−1 ∑
j′≥0

|ψ̂(a−j
′

0 a−jx0 ξ)|2

|a−j′0 a−jx0 ξ|n−1
dξ.

Now, since by assumption, d ≤ ρ, we have ∀ |ξ| ∈ [ρ, ρ+ d], da−(j0+1)
0 ≤ |a−jx0 ξ| ≤ 2da−j00 . We

recall that da−(j0+1)
0 ≥ 1. Therefore,

µψ(∆x(d, d/2ρ)) ≥ kn(a−j00 d)n−1 2d inf
da
−(j0+1)
0 ≤|ξ|≤2da

−j0
0

∑
j′≥0

|ψ̂(a−j
′

0 ξ)|2

|a−j′0 ξ|n−1

≥ kn(a−j00 d)n−1 2d inf
1≤|ξ|≤a0

∑
j′≥0

|ψ̂(a−j
′

0 ξ)|2

|a−j′0 ξ|n−1
.
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Similarly, we have

∑
j≥jx,u∈Σj

∫ ∣∣∣ψ̂(a−j0 ξ)
∣∣∣2 1∆x(d,d/2ρ)(ξu)dξ ≤ Kn(a−j00 d)n−12n−12d sup

da
−(j0+1)
0 ≤|ξ|≤2da

−j0
0

∑
j′≥0

|ψ̂(a−j
′

0 ξ)|2

|a−j′0 ξ|n−1

≤ Kn(a−j00 d)n−12n−12d sup
1≤|ξ|≤a0

∑
j′∈Z

|ψ̂(a−j
′

0 ξ)|2

|a−j′0 ξ|n−1
.

We finally consider the case of the j’s s.t. j0 ≤ j < jx. We recall that in this case, we have

|{Bεu(d/2ρ) ∩ Σj}| ≤ Kn, and thus

∑
j0≤j<jx,u∈Σj

∫ ∣∣∣ψ̂(a−j0 ξ)
∣∣∣2 1∆x(d,d/2ρ)(ξu)dξ ≤ Kn

∫
ρ≤|ξ|≤ρ+d

∑
j0≤j<jx

∣∣∣ψ̂(ajx−j0 a−jx0 ξ)
∣∣∣2

≤ Kn2d sup
da
−(j0+1)
0 ≤|ξ|≤2da

−j0
0

∑
j′>0

∣∣∣ψ̂(aj
′

0 ξ)
∣∣∣2

≤ Kn2d sup
1≤|ξ|≤a0

∑
j′>0

∣∣∣ψ̂(aj
′

0 ξ)
∣∣∣2 .

The lemma follows.

Proof of Proposition 4. Now, we recall that {zm}m∈Zn is the grid on Rn defined by

zm = 2dm and we show that supm µψ(Qzm(d)) <∞ and that infm µψ(Qzm(d)) > 0.

Again, we shall use the polar coordinates i.e. zm = ρmum. For m 6= 0, let z′m be ρ′mum with

ρ′m = ρm − d/2. Then, we have that ∆z′m(d, d/2ρ′m) = {ρ′u′ s.t |ρ′ − ρm| ≤ d/2, ‖u′ − um‖ ≤

d/2ρ′m} ⊂ Bzm(d) ⊂ Qzm(d). To see the first inclusion, we can check that ‖ρ′u′ − ρmum‖2 =

(ρ′ − ρm)2 + ρ′ρm‖u′ − um‖2. Then we use the fact that ρ′/ρ′m ≤ 5/3 and ρm/ρ
′
m ≤ 4/3 to

prove the inclusion.

For m 6= 0, let {x(m)
j }1≤j≤Jm with ‖x(m)

j ‖ ≥ d s.t Qzm(d) ⊂ ∪1≤j≤Jm∆
x

(m)
j

(d, d/2‖x(m)
j ‖)

and Tn,m be the minimum number of j’s such that the above inclusion is satisfied. By rescaling,

we see that the numbers Tn,m are independent of d. Moreover, it is easy to check that if δ

is chosen small enough, then any set ∆x(d, d/2‖x‖) (where again ‖x‖ ≥ d) contains a ball

of radius δ. (Although we don’t prove it here, δ maybe chosen equal to d/2.) Therefore,

the number Tn,m are bounded above and we let Tn = supm6=0 Tn,m. It follows that for all
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m 6= 0, (m ∈ Zn we have

0 < inf
‖x‖≥d

µψ

(
∆x(d,

d

2‖x‖)
)
≤ µψ

(
∆z′m(d, d/2ρ′m)

)
≤ µψ (Qzm(d)) ≤ Tn sup

‖x‖≥d
µψ

(
∆x(d,

d

2‖x‖)
)
<∞.

Finally, we need to prove the result for the cube Q0(d). In order to do so, we need to establish

two last estimates:

µψ (B0(d)) =
∑
j≥j0
|Σj |

∫
{|ξ|≤d}

∣∣∣ψ̂(a−j0 ξ)
∣∣∣2 dξ

≥ kna
(j−j0)(n−1)
0

∫
{|ξ|≤d}

∑
j≥j0

∣∣∣ψ̂(a−j0 ξ)
∣∣∣2 dξ

= kn

∫
{|ξ|≤d}

|a−j00 ξ|n−1
∑
j′≥0

|ψ̂(a−j
′

0 a−j00 ξ)|2

|a−j′0 a−j00 ξ|n−1
dξ

≥ kn

∫
{d/a0≤|ξ|≤d}

|a−j00 ξ|n−1
∑
j′≥0

|ψ̂(a−j
′

0 a−j00 ξ)|2

|a−j′0 a−j00 ξ|n−1
dξ

≥ kn 2d(1− 1/a0) (da−(j0+1)
0 )n−1 inf

da
−(j0+1)
0 ≤|ξ|≤da−j00

∑
j′≥0

|ψ̂(a−j
′

0 a−j00 ξ)|2

|a−j′0 a−j00 ξ|n−1
.

Repeating the argument of Lemma 4 finally gives

µψ (B0(d)) ≥ kn 2d(1− 1/a0) (da−(j0+1)
0 )n−1 inf

1≤|ξ|≤a0

∑
j′≥0

|ψ̂(a−j
′

0 ξ)|2

|a−j′0 ξ|n−1
.

After similar calculations, we can prove that

µψ (B0(d)) ≤ Kn2d(da−j00 )n−1 sup
da
−(j0+1)
0 ≤|ξ|≤da−j00

∑
j′≥0

|ψ̂(a−j
′

0 ξ)|2

|a−j′0 ξ|n−1
.

Again let {xj}1≤j≤J with ‖xj‖ ≥ d s.t Q0(d) ⊂ ∪1≤j≤J∆xj (d, d/2‖xj‖)∪B0(d) and T 0
n be the

minimum number of j’s needed. We then have

0 < µψ (B0(d)) ≤ µψ (Q0(d)) ≤ µψ (B0(d)) + T 0
n sup
‖x‖≥d

µψ

(
∆x(d,

d

2‖x‖)
)
<∞.

This completes the proof of Proposition 4.

21



Although we do not prove it here, we may replace the frameability condition by one slightly

weaker. For any traditional one-dimensional wavelet ϕ which satisfies the sufficient conditions

listed in Daubechies [7, Page 68-69], define ψ via ψ̂(ξ) ≡ sgn(ξ)|ξ|n−1
2 (1 + ξ2)−

n−1
4 ϕ̂(ξ); then

Theorem 4 holds for such a ψ.

4 Discussion

4.1 Quantitative Improvements

Our goal in this paper has been merely to provide a qualitative result concerning the existence

of frames of ridgelets. However, quantitative refinements will undoubtedly be important for

practical applications.

The coefficients aγ in a frame expansion may be computed via a Neumann series expansion

for the frame operator; see Daubechies [7]. For computational purposes, the closer the ratio of

the upper and lower frame bounds to 1, the fewer terms will be needed in the Neumann series

to compute a dual element within an accuracy of ε. Thus for computational purposes, it may

be desirable to have good control of the frames bound ratio. Of course, the proof presented

in section 3 provides only crude estimates for the upper bound of the frame bound ratio. The

interest of this method is that it uses general ideas, stated in section 3.4, which may be applied

in a variety of different settings. The author is confident that further detailed studies will allow

proof of versions of Theorem 4 with tighter bounds. Such refinements are beyond the scope of

the present study.

The redundancy of the frame that one can construct by this strategy depends heavily

on the quality of the underlying “quasi-uniform” sampling of the sphere at each scale j. The

construction of quasi-uniform discrete point sets on spheres has received considerable attention

in the literature; see Sloane and Conway [5] and additional references given in the bibliography.

Quantitative improvements of our results would follow from applying some of the known results

obtained in that field.

Another area for investigation has to do with rapid calculation of groups of coefficients.
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Note that if the sets Σj for j ≥ j0 present some symmetries, it may not be necessary to

compute ψ̃γ for all γ ∈ Γd; many dual elements would simply be translations, rotations and

rescalings of each other. This type of relationship would be important to pursue for practical

applications.

4.2 Finite Approximations

The frame dictionary DΓd = {ψγ , γ ∈ Γd} may be used for constructing approximations of

certain kinds of multivariate functions. It would be interesting to know the “Approximation

Space” associated to this frame; that is, the collection of multivariate functions f obeying

‖f − fN‖2 ≤ CN−r, (21)

where fN is an appropriately chosen superposition of dictionary elements

fN =
N∑
i=1

λi,Nψγi,N . (22)

Based on obvious analogies with the orthogonal basis case, one naturally expects that functions

f of this type can be characterized by their frame coefficients, saying (21) is possible if, and

only if, the frame coefficients {αγ}γ∈Γd belong to the Lorentz weak lp space lp,∞, with r =

(1/p − 1/2)+. Work to establish those conditions under which the above would hold is in

progress.

It would also be interesting to establish results saying that (21) is equivalent to a weak lp

condition on the frame coefficients even when the approximant (22) is not restricted to use

only γ ∈ Γd. If one could establish that any continuous choices γi,N ∈ Γ would still only lead

to f with weak-lp conditions on frame coefficients, then one would know that the frame system

is really an effective way of obtaining high-quality nonlinear approximations.

5 Appendix

Proof of Proposition 2. Let f, g ∈ L1 ∩ L2; then we can write∫
R(f)(γ)R(g)(γ)µ(dγ) =

∫
〈ψ̃a ∗ f, ψ̃a ∗ g〉

da

an+1
σndu = I.
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Applying Plancherel

I =
1

2π

∫
〈 ˜̂ψa ∗ f, ˜̂ψa ∗ g〉 da

an+1
σndu

=
1

2π

∫
f̂(ξu)ĝ(ξu)a|ψ̂(aξ)|2 da

an+1
σndu dξ

and, by Fubini, we get the desired result.

Proof of Theorem 3.

Step 1 Letting φλ(x) = (
1

2πλ
)
n
2 exp{−‖x‖

2

2λ
} and defining fλε as

fλε = cψ

∫
Γε

〈f ∗ φλ, ψγ〉ψγµ(dγ),

we start proving that fλε ∈ L2(Rn). Notice that Pu(f ∗ φλ) = Puf ∗ Puφλ and Puφλ(t) =
1

(2πλ)1/2
exp{− t

2

2λ
} . Now F(Puf∗Puφλ)(ξ) = (P̂uf ·P̂uφλ)(ξ) = f̂(ξu) exp{−λ

2 ξ
2}. Repeating

the argument in the proof of Theorem 1, we get

fλε =
c

π

∫
{ξ>0},Sn−1

{∫
ε≤a≤ε−1

da

an
|ψ̂(aξ)|2

}
exp{iξ〈u, x〉 − λ

2
ξ2}f̂(ξu)σndξdu.

Note that for ξ 6= 0, we have
∫ ε−1

ε
|ψ̂(aξ)|2da

an
= |ξ|n−1

∫ ε−1|ξ|

ε|ξ|
|ψ̂(t)|2dt

tn
(which we will abbre-

viate as Kψ|ξ|n−1cε(|ξ|)) and cε(|ξ|) ↑ 1 as ε → 0. After the change of variable k = |ξ|u, we

obtain

fλε =
cψ
π
Kψ

∫
exp{i〈k, x〉 − λ‖k‖2

2
}cε(‖k‖)f̂(k)dk,

which allows the interpretation of fλε as the “conjugate” Fourier transform of an L2 element

and therefore the conclusion fλε ∈ L2(Rn).

Step 2 We aim to prove that fλε → fε pointwise and in L2(Rn). The dominated convergence

theorem leads to

cε(‖k‖)f̂(k) exp{−λ
2
‖k‖2} −→ cε(‖k‖)f̂(k) in L2(Rn) as λ→ 0.

Then by the Fourier Transform isometry, we have fλε → (2π)−nFT (cεf̂) in L2(Rn). It remains
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to be proved that this limit, which we will abbreviate with gε, is indeed fε:

|fλε (x)− fε(x)| = cψ

∫
Γε

(〈f ∗ φλ, ψγ〉 − 〈f, ψγ〉)ψγµ(dγ)

≤ cψ sup
γ∈Γε

|ψγ(x)|
∫ ε−1

ε

∫
Sn−1

‖ψ̃a ∗ (Puf ∗ Puφλ − Puf)‖1
da

an+1
σndu

≤ cψε
− 1

2 ‖ψ‖∞
∫ ε−1

ε

∫
Sn−1

‖ψ̃a‖1‖Puf ∗ Puφλ − Puf‖1
da

an+1
σndu

= cψε
− 1

2 ‖ψ‖∞
∫ ε−1

ε

da

an+ 1
2

‖ψ‖1
∫

Sn−1

‖Puf ∗ Puφλ − Puf‖1σndu.

Then for a fixed u, ‖Puf ∗ Puφλ − Puf‖1 → 0 as λ→ 0 and

‖Puf ∗ Puφλ − Puf‖1 ≤ ‖Puf‖1 + ‖Puf ∗ Puφλ‖1

≤ 2‖Puf‖1 ≤ 2‖f‖1.

Thus by the dominated convergence theorem,
∫
Sn−1 ‖Puf ∗ Puφλ − Puf‖1σndu→ 0.

From |fλε (x)−fε(x)| ≤ δ(ε)‖ψ‖∞ψ‖1
∫
Sn−1 ‖Puf∗Puφλ−Puf‖1σndu, we obtain ‖fλε −fε‖∞ → 0

as λ→ 0. Note that the convergence is in C(Rn) as the functions are continuous.

Finally, we get fε = gε and, therefore, fε is in L2(Rn) by completeness.

To show that ‖fε−f‖2 → 0 as ε→ 0, it is necessary and sufficient to show that ‖f̂ε− f̂‖2 → 0,

‖f̂ε − f̂‖22 =
∫
|f̂(k)|2(1− cε(‖k‖)2dk.

Recalling that 0 ≤ cε ≤ 1 and that cε ↑ 1 as ε→ 0, the convergence follows.
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