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ESTIMATION WHEN P IS MUCH LARGER THAN N

By Emmanuel J. Candès∗ and Terence Tao

California Inst. of Technology and University of California at Los Angeles

First of all, we would like to thank all the discussants for their interest

and comments, as well as for their thorough investigation. The comments all

underlie the importance and timeliness of the topics discussed in our paper,

namely, accurate statistical estimation in high dimensions. We would also

like to thank the editors for this opportunity to comment briefly on a few

issues raised in the discussions.

Of special interest is the diversity of perspectives, which include theoret-

ical, practical and computational issues. With this being said, there are two

main points in the discussions that are quite recurrent:

1. Is it possible to extend and refine our theoretical results, and how do

they compare against the very recent literature?

2. How does the Dantzig Selector (DS) compare with the Lasso?

We will address these issues in this rejoinder but before we begin, we would

like to restate as simply as possible the main point of our paper and put

this work in a broader context as to avoid confusion about our point of view

and motivations.

1. Our background. We assume a linear regression model

(1) y = Xβ + z,

where y is a p-dimensional vector of observations, X is an n by p design

matrix, and z is an n-dimensional vector which we take to be i.i.d. N(0, σ2)
∗E. J. C. would like to thank Chiara Sabatti for fruitful conversations and insights
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2 E. CANDÈS AND T. TAO

for simplicity. We are interested in estimating the parameter vector β in

the situation where the number p of variables is greater than the number

n of observations. Under certain conditions on the design matrix X which

roughly guarantee that the model is identifiable, the main message of the

paper is as follows:

(i) First, it is possible to find an estimator β̂, which does nearly as well

as if one had an oracle supplying perfect information about which

variables actually are present in the model, and which entries of the

vector β are worth estimating.

(ii) Second, such an estimator may be found by solving a very simple linear

program (LP).

That (i) and (ii) are simultaneously possible (or more generally that it is pos-

sible to construct an estimator with a computationally efficient algorithm) is

somewhat still of a surprise to us. Moreover and for some important random

designs, one only needs very few observations per unknown significant com-

ponent of the vector β to be able to reliably estimate the whole vector—in

practice, of the order of 5 or 6. A design in which the elements of X are i.i.d.

samples from the Gaussian distribution or from the Bernoulli distribution or

more generally from subGaussian distributions, would do the job. These are

just special examples and there are many other designs with such properties.

Indeed, the paper presents other instances inspired by important problems

in signal and image processing.

In engineering fields, one can think about the model y = Xβ + z as col-

lecting measurements y about an object of interest β, a signal or an image

for example. The matrix X represents the sensing modality and the stochas-

tic errors model the limited precision of our instrument. As an illustrative

example, one might wish to reconstruct a high resolution image β from

just a few linear noisy functionals (a very common scenario in biomedical

imaging). Now the fact that one can subsample a signal or acquire a high

resolution image with just a few sensors without much loss of information is
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REJOINDER: THE DANTZIG SELECTOR 3

of significant practical interest; there are many projects underway which are

exploiting this fact. For example, Kevin Kelly and Richard Baraniuk from

Rice University have designed a single-pixel camera capable of taking ‘high’

resolution images even though it has only one pixel or photodetector (this

invention was selected by MIT Technology Review for their annual top 10

list of emerging technologies) [23]. Other applications include fast Magnetic

Resonance Imaging (MRI), fast ultra wideband signal acquisition, and fast

error correcting codes over the reals.

We mention this upfront because the DS does not come out of nowhere.

Rather, it is part of a series of papers starting with [9], which aim at un-

derstanding when one can or cannot reconstruct a high dimensional vector

(e.g. a digital signal or image or some other kind of dataset) from just a few

measurements, see also [11, 13, 14, 18]. By way of illustration, the aforemen-

tioned paper [9] showed that one could recover images of scientific interest

from just a few of their Fourier coefficients. We hope that this clarifica-

tion will help the reader to better understand our perspective and the kind

of data that we are mainly interested in, or at the very least that we are

experienced with; specifically data taken from various fields of engineering.

With this in mind, it is now time to respond to some of the points raised

by the discussants.

2. Theory and methodology. Optimality results are important and

we believe that this is what makes the paper interesting. It has been two

years since we wrote the DS and at that time, there were just not many

optimality results available. In the noiseless case—σ = 0 in (1)—our results

imply that β̂ = β; in this simpler case, results had barely started to come

out. Nowadays, novel exciting results seem to come out at a furious pace,

and this testifies to the vitality and intensity of the field. And indeed, the

discussants refer to many fascinating developments [4, 16, 20, 25, 26] which

bear a varying degree of relationship with the topics covered in the DS paper.

Many of these works have actually been completed after we submitted our
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4 E. CANDÈS AND T. TAO

paper for publication and thus, we would be delighted if we could claim some

credit for having spanned a novel interest in such theoretical developments.

2.1. Going beyond the assumptions. A number of discussants ask what

happens when the UUP condition does not hold. When the condition fails,

there are subsets of covariates which may be extremely correlated or even

linearly dependent which means that the model is not identifiable, and thus

statistical estimation may be highly problematic. We need to be clear about

what this means, however. Suppose for simplicity that 2S columns of X

are linearly dependent. Then there is a vector h which is 2S-sparse, which

one can write as β − β′ where β and β′ are each S-sparse. In other words,

Xβ = Xβ′ and one is in bad shape.

But what if mother nature does not select one of these unestimable β’s?

It could very well be that if the support of the true β only partially overlaps

with the collinear covariates, then accurate estimation is still possible. That

is, one can still estimate not all the sparse vectors β, but most of them. In

fact, experiments strongly suggest that this is true. We give an illustrative

example. Let X = [In Fn] be a design matrix which is the concatenation

of the n by n identity matrix and of the n by n Fourier matrix. Here,

p = 2n, we observe a noisy signal which is assumed to be a sparse or near-

sparse superposition of spikes and sinusoids, and we wish to estimate which

components enter in the decomposition. Then if n is a perfect square, there

are subsets of 2
√
n covariates that are collinear. In other words, there are

special β’s with
√
n nonzero entries that one cannot estimate. Yet, numerical

simulations indicate that if one generates β at random with S nonzero terms,

then one can estimate β reliably with the DS even if S is a nonnegligible

fraction of n. That is, way beyond the point at which the model is not

identifiable.

Showing that accurate estimation of most β’s (we almost sound Bayesian

here) when the UUP or identifiability condition does not hold is still possi-

ble seems important, especially when one considers the importance of high-
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dimensional data. This is not wishful thinking. In the noiseless case, there

are results which prove that in the above circumstances, one can recover an

overwhelming majority of β’s exactly, provided that the number of nonzero

terms scales at most like n/ log n in theory [7, 24] and more like n/5 in prac-

tice. What is also interesting about these works is that they give conditions

on the design matrix that can be checked easily1. We also invite the reader to

check [8, 9] which establish that one can recover some sparse signals exactly

from noiseless data even though the UUP does not hold.

To cut a long story short, all kinds of extensions along the lines suggested

by the discussants appear extremely plausible. We have already witnessed

some active research and improvement/refinements in the last two years,

and there is every reason to believe that there is much more to come.

2.2. What about prediction errors?. Ritov writes an apologia for using

the prediction error. This makes sense if one is interested in estimating

the mean response Xβ rather than β. He considers two models, one called

the genuine model and another related to nonparametric estimation where

each column of X represents a vector of sampled values of some given basis

function. While we agree with his observations, we would like to bring to the

discussant’s attention the specific applications that motivated our theory.

Sometimes, we really care about β and only ‖β − β̂‖2 make sense. We give

three examples:

• Biomedical imaging. Magnetic resonance imaging MRI is a very pop-

ular non-invasive method used to render images of the inside of an

object, typically the human body. We will skip the details but basi-

cally, this data acquisition process furnishes (noisy) Fourier coefficients

of the image we seek to render. In this case, β is the image we are inter-

ested and Xβ the noiseless measurements we have just made. Clearly
1As noted by Cai and Lv and as mentioned in our paper, it is true that it is com-

putationally unrealistic to check the UUP condition although one could make a similar

argument for other types of checks as well. For instance, it is computationally unrealistic

to check whether the model is identifiable or not.
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6 E. CANDÈS AND T. TAO

we care about β and predicting other measurements is pointless here.

Moreover, measuring the performance by the mean-squared pixel error

‖β̂ − β‖2 is more than reasonable, and is used as a figure of merit in

most imaging applications.

• Data conversion. Suppose we wish to design an analog-to-digital con-

verter (ADC) able to capture signals in a very wide radio-frequency

band. The famous Nyquist theorem asserts that if one wants to cap-

ture a signal with maximal frequency fmax, then one needs to sample

the signal at a rate which is at least twice this number. Suppose for

instance that fmax = 10 GHz, then we need to take 20 Giga samples

per second. This is extremely problematic since high speed ADC tech-

nology indicates that current capabilities fall well short of needs, and

that hardware implementations operating at this speed seem out of

sight for decades to come.

But there is a way out. In the typical case where the signal we wish

to acquire has a sparse or nearly sparse spectrum (many real world

signals are like this), then our theory says that one can take far fewer

samples than Nyquist suggests with nearly no information loss. (For

information, one could design other sampling schemes that would ac-

commodate other types of structured signals.) In the context of the

DS paper, we think of our digital signal s(t), t = 0, . . . , p − 1 as a

superposition of its frequency components

(2) s(t) =
1
√
p

p−1∑
k=0

βke
i2πkt/p,

and we then sample the signal at only n� p time points (which we can

now implement in hardware since the sampling rate is now effectively

much slower). In short, one collects data

yj = s(tj) + σzj , 1 ≤ j ≤ n,

and our acquisition model is then (1) with Xj,k = 1√
n
ei2πktj/p. Clearly

we care about reconstructing the full signal s or equivalently, since
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REJOINDER: THE DANTZIG SELECTOR 7

s and β are related by the Fourier isometry (2), we care about re-

constructing β. Moreover, measuring the performance by the mean-

squared sample error
∑
|ŝ(t) − s(t)|2 = ‖β̂ − β‖2 is more than rea-

sonable, and is used as a figure of merit in most signal processing

applications.

• Genomics. Finally, consider an example in genomics which is funda-

mentally different than the last two: association mapping of quantita-

tive traits. The genome is probed in 100,000 locations which are all

potential explanatory variables for the trait. The problem is to under-

stand which locations play a role for it is by examining these locations

that one will be able to understand something about the biological

pathway behind the disease. This is an example where we care about

β and not prediction (we do not necessarily recommend using an `1

method here).

There are many other examples of this nature. In fact, there is a whole

field in the applied sciences and engineering dedicated to these problems. In

contrast, in the statistical theory community, the problem of estimating Xβ

may have received more attention than that of estimating β.

With this being said, we agree with Ritov’s observation, and there is

definitely a place for prediction error among the criteria that would want to

minimize for cases other than those considered in the paper. Further, the

discussant is right to point out that in case of collinearity, one can always

estimate Xβ even though estimating β may be impossible.

Suppose one takes the point of view developed in the paper and asks

whether there is an estimator which can mimic the predictive performance

of an oracle driven estimator. In details, for each subset I ⊂ {1, . . . , p} of

covariates, consider the least-squares estimator β̂I obtained by regressing y

onto I:

β̂I = argminb∈VI
‖y −Xb‖2`2 , VI := {b : bi = 0, i ∈ Ic}.
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8 E. CANDÈS AND T. TAO

What is the prediction accuracy of β̂I? A standard calculation shows that

(3) E‖Xβ̂I −Xβ‖2 = min
b∈VI

‖Xb−Xβ‖2 + σ2|I|,

which can be interpreted as the classical bias and variance trade-off. Consider

now the ideal estimator β? which selects the least-squares estimator with the

lowest prediction error

(4) E‖Xβ? −Xβ‖2 = min
I⊂{1,...,p}

min
b∈VI

‖Xb−Xβ‖2 + σ2|I|.

In plain English, one has fitted all the models and rely on an oracle to select

that with the best predictive power. The question is whether one can do

nearly as well without an oracle. A series of brilliant papers [1–3, 17] have

shown that this is indeed possible. Consider an estimator β̂ which is the

solution of the complexity-penalized residual sum of squares

(5) β̂ = argminb∈Rp ‖y −Xb‖2 + Λp · σ2 · ‖b‖`0 ,

where ‖b‖`0 is the number of nonzero terms in b. This is sometimes referred

as the “canonical selection procedure” [17]. Then if Λp is sufficiently large,

e.g. of size about 2 log p, then

(6) E‖Xβ̂ −Xβ‖2 ≤ O(log p) ·E‖Xβ? −Xβ‖2.

In other words, ignoring the logarithmic factor, one can mimic the perfor-

mance of the oracle-driven estimator. We emphasize that this valid for all

matrices X.

As mentioned in our paper, solving (5) is in general NP-hard. To the

best of our knowledge, solving this problem essentially requires exhaustive

searches over all subsets of columns of X, a procedure which is clearly combi-

natorial in nature and has exponential complexity since, for p of size about

n, there are about 2p such subsets. A fundamental question arises then:

can one mimic the oracle or select a nearly best model with an efficient

algorithm, e.g. with a polynomial-time algorithm? Although this is a really

important question, it does not have a satisfactory answer at the moment.
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REJOINDER: THE DANTZIG SELECTOR 9

In truth, it is possible to design matrices X for which `1 methods—e.g. the

lasso and the DS—provide poor answers but one would like to understand

under what general conditions one could expect good performance. (Note

that under the hypotheses of our paper, the DS will mimic the oracle since

X maps sparse vectors nearly isometrically).

In conclusion, in light of Ritov’s discussion on objective criteria and of

the spirit of many of the examples brought up by the discussants, one would

like to re-emphasize that the DS was designed to solve specific problems:

problems in which one cares about β and where the UUP property holds.

These are the problems for which we can recommend the use of the DS with

confidence, a confidence built on both the theoretical results we presented

and on a number of serious application studies we have conducted. Since

the DS behaves so well in theory and in practice in such setups, one may be

tempted to use it in other situations. But whether it will behave well or not

is an open question.

2.3. The choice of λp. Several commentaries (Bickel, Cai and Lv, Mein-

shausen) discuss the choice of λp in the constraint (we assume that the

columns have unit norm for now)

‖X∗r‖`∞ ≤ λp σ, r = y −Xβ̂.

In theory, one should select λp so that the true vector β be feasible for the

optimization problem with reasonably high probability. That is, we select

λp so that with high probability

(7) ‖X∗z‖`∞ ≤ λp σ;

now X∗z ∼ N(0, σ2X∗X) and so this a question about the typical value of

the maximum entry of a mean-zero Gaussian process with covariance matrix

X∗X. As pointed out in the paper, the choice λp =
√

2 log p would work but

it is too conservative in the sense that (7) holds with smaller values of λp.

Indeed and as is well known, the largest entry of X∗z is dominated (in a
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10 E. CANDÈS AND T. TAO

probabilistic sense) by the maximum of p independent mean-zero Gaussian

random variables. Now the question of finding the precise location of the bulk

of the distribution of ‖X∗z‖`∞ is very delicate, and this is the reason why we

recommend to resort to Monte-Carlo simulations to adjust this parameter.

When the columns are not normalized one could adjust (λi), 1 ≤ i ≤ p such

that

max
1≤i≤p

|X∗z|i
λi σ

≤ 1

with high probability. A possible choice might be to select λi proportional

to ‖Xi‖2, the ith column norm.

But these are just some ideas among others and we are pleased to see

that other statisticians have other ideas. For example, suggestions based on

cross-validation arguments as proposed by Bickel and Meinshausen et al.

make a lot of sense as well.

Now interestingly and in response to the comments of Cai and Lv, the

error bound in the DS is in fact

‖β̂ − β‖2 ≤ O(λ2
p) · (σ2 +

∑
i

min(β2
i , σ

2)),

where λp obeys (7). In other words, there are situations in very high dimen-

sions where λ2
p will be smaller than log p, and so the bound will be much

better than what it seems. Again, to get precise estimates, one would need

to understand the behavior of ‖X∗z‖`∞ .

2.4. Why XT r?. Bickel offers another reason for why one wants XT r to

be small rather than the residuals r = y − Xβ̂ themselves. We thank him

for clarifying this point further. Note that our goodness of fit criterion is

natural since it is a simple relaxation of the normal equations as noted by

Cai and Lv. In the paper we gave two other explanations which we briefly

review.

A first explanation is that X∗r measures the correlation between the

residuals and the predictors. Obviously, when the response has a significant

correlation with a predictor, one would want to include it in the model.
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Put differently, we do not want to leave the jth predictor out when 〈r,Xj〉
is large! The point here is that it is not the size of r that matters but

that of X∗r. Consider an extreme example. Suppose that y = Xj and that

σ > ‖Xj‖`∞ . Then a criterion of the form ‖r‖`∞ ≤ σ (or a multiple of σ)

would set r = y and β̂ = 0 even though y is a single predictor! In contrast,

our criterion forces us to correctly include the jth predictor in the model.

A second explanation is a desirable invariance property. Imagine that

upon receiving the data y (1), the statistician applies an orthogonal trans-

formation U and obtains

Uy = UXβ + Uz

ỹ = X̃β + z̃.

In this process, β does not change (it is still a picture of living tissues, say)

and one would probably not want to have an estimator that depends on

which U has been applied! The DS obeys this invariance property and one

gets the same estimate (the lasso also has this invariance property by the

way). In contrast, if one had a constraint of the form ‖r‖`∞ ≤ λσ, the

estimator would change.

3. Comparisons with the Lasso. Nearly all the discussants bring up

the comparison with the Lasso, and this is natural. In the paper, we men-

tioned similarities, but also purposely avoided a direct comparison thinking

that every interested statistician would compare things on their own. And

indeed, the discussants were quick to do this!

The first observation is that the DS and the lasso are related but different.

Friedlander and Saunders and Meinshausen et al. give a formulation which

exhibits this resemblance since the lasso takes the generic form

(8) min ‖Xβ̂‖`2 subject to ‖X∗(y −Xβ̂)‖`∞ ≤ λ,

whereas the DS is of the form

(9) min ‖β̂‖`1 subject to ‖X∗(y −Xβ̂)‖`∞ ≤ λ.
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12 E. CANDÈS AND T. TAO

The comparison between (9) and

(10) min
1
2
‖y −Xβ‖2 + λ‖β‖`1

needs to be taken carefully. It is not true that (9) and (10) are equivalent

when p > n. With this in mind and with the same type of constraint, the

lasso minimizes ‖Xβ̂‖`2 while the DS minimizes ‖β̂‖`1 . It is hard to say

which is best.

Efron et al. take on the comparison between the DS and the Lasso from

two viewpoints. On the one hand, they wonder whether the optimality prop-

erty of the DS also hold for the lasso. We do not know the answer to this

question. What we know is that if β is sufficiently sparse and if our condition

holds, then the lasso obeys with high probability [10]

(11) ‖β̂Lasso − β‖2`2 ≤ C · nσ
2,

for some small constant C (see also [12]). This is satisfying but not close to

the adaptivity property of the DS where the accuracy is simply proportional

to the number of significant parameters times the noise level. Whether the

lasso can do just as well is an open question. In fact it is not known whether

any other practical selection algorithm would do as well (a properly tuned

canonical selection procedure would, but it is unpractical). Along these lines,

it would be nice—following Bickel’s suggestion—to compare the theoretical

performance of the DS with other recent results and especially [5] and [20].

On the other hand, they reason in a fashion that we would like to compare—

if the reader allows an ‘insider’s analogy’—to a classical test of hypothesis:

do we have evidence to reject the null hypothesis recommending the use of

the lasso in favor of the alternative recommending the DS? The statistics

community is indeed now well familiar with the lasso and everyone knows

from experience that it seems to perform well in a number of situations.

Specialists also know that a number of well-oiled implementations are avail-

able. Against this background, the DS is a new player; one that comes with

good recommendations, but one that has not been tested extensively. To
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REJOINDER: THE DANTZIG SELECTOR 13

carry out their “test,” Efron and al. consider one real data example and a

small simulation study. They conclude that in the first case, the DS and the

lasso perform similarly and that in one instance (discussed below) of the

second case, the lasso performs a bit better. Hence, they fail to reject the

hypothesis that the lasso is the procedure to be recommended. A couple of

comments are in order.

For the diabetes data example, Efron et al. observe that the variable most

correlated with the response is not included in the DS model. Given the

amount of information provided, it is not clear whether this variable should

be included or left out. In any event, this gives us the opportunity to point

out a good feature of the DS; it is not greedy. A good model selection strategy

should not always include variables exhibiting the largest correlations. For

instance, one can imagine that a response depends linearly on two covariates

X1 and X2, say, and that at the same time, a third covariate X3 is well

correlated with this linear combination. In such a case, one does not want

to include the third covariate. Instead, one would want to be able to look

ahead in order to find this more powerful combination of covariates.

We find some of the results of the simulation study hard to interpret.

For instance, they consider a “sparse case” in which n = 25, p = 100 and

the sparsity level (number of nonzero coefficients) is equal to 15. This is

hardly sparse at all and accurate estimation in this setting is not possible

(for accurate estimation, one needs 4,5 observations per nonzero parameter).

In the noiseless case, the minimum-`1 solution is far from the truth. In the

noisy case, we studied the performance of the lasso by solving min ‖y−Xb‖
subject to ‖b‖`1 ≤ t, where t was taken to be the `1 norm of the true

β (so that the procedure is oracle informed). Out of 500 simulations, we

found that the relative error ‖β̂ − β‖/‖β‖ had a median of about .68 and a

standard deviation of .18. For comparison, plugging β̂ = 0 gives a relative

error equal to 1. It is possible that the lasso may be a bit better than the

DS in this regime, but since the estimates are unreliable, it is unclear what

one should make of it. Again, we would like to point out our difference
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14 E. CANDÈS AND T. TAO

in perspective: when reconstructing an image of living tissues for possible

medical diagnostic, or a waveform for signals intelligence, we are interested

in reliable estimates and small mean-squared errors. In such situations, we

have found the DS and the lasso to be roughly on a par.

We believe that Efron et al. have performed a small scale study aimed

at stimulating the discussion rather than at finding a definite answer. We

would like to contribute some observations to this discussion (we address

computational issues in the next section).

First, it seems to us that the performance of the two procedures are very

similar in the two examples they considered: even when the lasso is better,

it is not so by a very large margin.

Second, it is our impression from reading their piece that the DS was used

for the comparison as opposed to the two stage procedure we recommend in

the paper for practical implementation (Gauss DS or GDS for short). As we

showed, the GDS substantially reduces the shrinkage bias of the DS. Had

they applied the GDS, they would have experienced lower discrepancies, and

perhaps even an overall better performance (one can apply the same idea to

the lasso as well, see below).

Third and to address the fundamental question that Efron et al. pose,

we would like to resort to our own simulation studies which give different

conclusions. This may reflect a difference in choices of datasets or objectives

as explained earlier, see Section 1. Indeed, we have carried out a very large

number of experiments and accumulated a lot of experience since we wrote

this paper, and found comparable performance, see [6] for instance. Some-

times the lasso is a bit better and sometimes the DS is a bit better. Now the

fact that the DS does well ‘out of the box’ is encouraging since it is brand

new whereas the lasso is well developed and has been studied for years now.

When comparing the lasso and the DS, we urge to apply the two step

procedure recommended in the paper to reduce the bias as this significantly

enhances the performance; that is,

1. use the lasso or the DS to find a subset Î of ‘significant’ covariates,
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2. and regress y onto this subset.

4. Other issues.

4.1. Estimating σ. A question that naturally comes up and is raised

in several commentaries is how one should go about estimating σ when it

is not known. This problem deserves attention and the discussants (Bickel,

Meinshausen et al.) have some interesting suggestions. This is important not

only for the DS but for any estimation method in high dimensions. When

X ‘mixes’ all the entries of β, it is challenging to estimate which fraction

of a component of y is signal and which is noise since in the situations of

interest, Xβ looks a bit like noise itself. In our applications, X is a sensing

device (a camera, an MRI scan, an ADC) which can be calibrated so that

σ is known, and this is one of the reasons why we did not elaborate on this

issue in the paper.

4.2. Computational issues. The software `1-magic provides a general

purpose implementation of the DS, among several other things. Our imple-

mentation is based on a standard and general purpose primal-dual interior

point algorithm. In particular, we did not develop a customized solver nor

have we tried to optimize our code in any way. We would like to thank Fried-

lander and Saunders for their useful suggestions, especially that concerning

the suitability of the technique we use to reduce the dimension of the linear

system we need to invert. More generally, and as `1 methods gain popular-

ity, we expect that lots of researchers will produce far more sophisticated

implementations in the years to come—witness for instance the exploding

literature for solving the lasso [15, 21, 22]. In fact, this research has already

started and we give two examples.

Researchers have developed a new method for solving some large-scale

`1-regularized least squares problems [19]. Their method is based upon a

standard interior-point method, and uses a conjugate gradient (CG) method

to compute search directions. But the authors make two key contributions
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to improve performance: a fast and effective preconditioner to reduce the

number of CG iterations required, and a more effective method of control-

ling the algorithm itself. Although this concerns `1-regularized least squares

problems, there is hope that some of these ideas will apply to other problems

as well.

Motivated by the applications we wish to develop, we are also investing

a significant amount of time in this issue, and have recently discovered a

very curious phenomenon. That is, when a sparse solution to the DS exists,

it seems to be possible to invoke linear programming to find it extremely

rapidly (faster than homotopy methods?), a phenomenon we that we hon-

estly did not expect. We hope to confirm this finding and report on our

progress as soon as possible. In addition, we are experiencing some success

with modern preconditioners to find search directions resulting in substan-

tial speedups.

“When the lasso came out it was a challenge to solve,” to quote from

Friedlander and Saunders. Now one has available a wide array of efficient

algorithms and we expect that the same will soon be true for the DS and

related LPs. In the meantime, we suggest not to select a method over another

on the basis of ease of computing especially when one method has been

optimized for years while the other is still in its infancy.

5. Conclusion. We are extremely pleased that our results have already

stimulated further theoretical developments and sincerely hope this will con-

tinue to be true in the future. Clearly, there is a lot of research ahead to

improve the theory, to improve the algorithms and to improve the method-

ology. With time, things will only get better.
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