・处理技术・

文章编号:1000-7210(2015)03-0411-07

微地震信号频率特性分析

方 兵 孙成禹 唐 杰* 李晶晶

(中国石油大学(华东)地球科学与技术学院,山东青岛 266555)

方兵,孙成禹,唐杰,李晶晶. 微地震信号频率特性分析. 石油地球物理勘探,2015,50(3):411-417.

摘要 微地震信号的频率可影响地震资料的分辨率等,是一种重要特征参数。本文分析了微地震信号的频率 特性,研究了信号在传播过程中的三个影响因素:震源破裂尺度、传播介质的黏弹性效应和接收仪器的响应频 带等。结果表明:随着微地震信号传播距离的增大,信号频率降低,当传播到一定距离时,信号频率基本不再变 化;完全弹性介质中地震波主频不变,但在黏弹性介质中,随着传播距离的增大,地震波能量急剧减小、主频明 显变低;地震信号在传播过程中其主频呈总体下降趋势,但在层位界面处主频有一个增大的转折。

关键词 微地震 频率特性 声发射 分辨率 监测技术 能量

中图分类号:P631 文献标识码:A doi: 10.13810/j. cnki. issn. 1000-7210. 2015. 03. 004

1 引言

微地震即是一种小型地震,裂缝的产生往往会 诱发微地震^[1,2]。信号产生的诱因有自然因素也有 人为因素,如因上覆地层压力过大而产生的岩石破 裂、井中的注水压裂等^[3,4]。现有的微地震研究,大 多专注于研究信号的能谱^[5]、微地震的定位^[6~8]及 微地震监测^[9,10]等,对微地震信号特征参数如振幅、 频率等信息的研究则相对较少^[11],微地震信号的参 数之间也存在某些关系^[12]。地震信号的频率在实 际中是一个很重要参数,可表征地震记录的分辨率, 因此必须对微地震信号的频率信息做重点分析。

微地震信号从产生到被检波器接收,历经三个 主要环节:震源、传播介质、检波器,它们均会对微地 震信号的频率信息产生一定影响。首先是微地震的 震源机制,不同性质震源产生的地震信号性质不可 能相同。其次微地震震源激发的信号要经过传输介 质到达检波器,这些地震信号在不同类型和形状的 介质中的传播特性也各有区别,且还会产生反射、折 射、频散等效应,因此需研讨地震信号在介质中的传 播特性及可能发生的波型转换等。另外,微地震信 号还需经过耦合介质才能被检波器有效接收,故还 需了解耦合介质的传输函数。最后,传感器本身的 影响也是必须考虑的因素,它不仅决定了检测系统 的信噪比,而且还在很大程度上决定获取的信息含 量及其可靠程度。综上所述,微地震信号的频率特 征^[13]需考虑、分析多方面因素。

2 震源信号频率

材料受到外部载荷作用时,因内部结构的不均 匀及各种缺陷(指岩石内部的孔隙、裂纹及裂隙等) 造成应力集中,使局部应力分布不稳定。当这种不 稳定的应力分布状态积蓄的应变能达到一定程度 时,将发生应力的重新分布,从而达到新的稳定状 态,这实际上就是应变能的释放过程。这种被释放 的应变能,一部分是以应力波的形式发射出去,产生 了微地震信号。岩石在破裂过程中,随着时间的推 移,微小破裂逐渐集结为较大断裂。假定在距离 r 上滑动受阻,r 越长,在初始阶段滑动越慢^[14]。所 以,当r较短时,可预测滑动速度和加速度较高。特 征时间常数 t, 可由 r/v 给出

$$t_r = \frac{r}{v} = \frac{\pi \mu G \left[1 - \left(v^2 / \beta^2 \right) \right]^{1/2}}{2\sigma_c^2 v} \tag{1}$$

^{*} 山东省青岛市经济技术开发区长江西路 66 号中国石油大学(华东)地球科学与技术学院,2665555。Email:tangjie@upc.edu.cn 本文于 2014 年 2 月 10 日收到,最终修改稿于 2015 年 4 月 29 日收到。 本项研究受国家自然科学基金项目(41374123)、国家科技重大专项课题(2011ZX05006-002)及山东省自然科学基金项目(ZR2013DQ020)等

平坝研究交回家日然科学基金项目(413/4123)、国家科技重大专项体超(2011ZA03006-002)及田东有日然科学基金项目(ZK2013DQ020)等 联合资助。

式中: t_r 是传播距离为r 时控制地震波谱的最高频 率的时间常数; v 是破裂速度; σ_c 为单位面积上的 内聚力; μ 为剪切模量; β 为剪切波波速; G 为表面 能。图 1 显示激发地震信号与震源破裂半径之间的 关系^[15], 一般遵循 $f = k\beta/r$, 从中可清楚地发现, 随 着半径的增大, 频率呈指数衰减的趋势。

破裂信号的截止频率随裂纹长度增加而降低。 随着微破裂的集结和裂纹的扩展,辐射波的频谱会 向低频部分迁移;微破裂形成过程中,频率具有向低 频区偏移的趋势,且裂缝越大频率越低。地震震级 不同时,地震波的能量有很大差别。表1将地震震

表1 地震震级划分与能量

震级	分类	能量(t/TNT)
小于 1.0	微地震	$< 4.77 \times 10^{-4}$
1.0~2.9	弱震	4.77 \times 10 ⁻⁴ \sim 3.38 \times 10 ⁻¹
3.0~4.4	有感地震	$4.77 \times 10^{-1} \sim 60.0$
4.5~5.9	中强震	84.8 \sim 1.07 \times 10 ⁴
6.0~6.9	强震	$1.51 \times 104 \sim 3.37 \times 10^{5}$
7.0~7.9	大地震	4.77 $\times 105 \sim 1.07 \times 10^7$
大于 8.0	巨大地震	>1.07 $ imes$ 107

级进行了简单划分,并根据 Richter¹⁶的经典计算公式针对几个震级计算了其相应的 TNT 炸药当量。

根据表1所示,微地震的震级通常小于1.0,能 量较小、震源破裂半径也较小。大多数微地震事件 频率范围是200~1500Hz,持续时间小于1.0s^[17]。 震级为0.6时破裂长度为10~20m,震级为-2.0 时破裂长度为0.5~1.0m。不同地区的震级与破裂 半径的关系也并非完全一样^[18]。

为了研究微地震震源信号的频率特性,在实验 室内刚性材料试验机上分别对普通泥岩条样和井下 白云岩岩心进行了破裂测试。通过大量试验,获得了 不同岩性的声发射信号,并对其做频谱分析(图 2)。

图 2 白云岩(a)、砂岩(b)和泥岩(c)岩心高频声发射信号频谱分析

待测岩心是尺寸为Φ25mm×50mm的圆柱体,试验 中确保加载过程与声发射监测同步。采用轴向变形 位移控制加载,PCI-II 声发射系统的采样率高达 40MHz,具有连续波形记录能力。在岩样周围贴有 4 个相互对称的 NANO 声发射探头。可看到岩心 最初破裂时的信号频率高达数百千赫兹,频带宽度 也相对较大。从该图可看到实际岩心破裂时产生 的信号接收主频白云岩约为 310kHz,砂岩约为 290kHz,泥岩相对最低,约为 270kHz。

利用实验室中 TAW-1000 型微机伺服岩石三 轴试验机将泥岩样压裂成尺寸为 10cm×7cm× 120cm 的长条,在该泥岩条上放置检波器,采集记录 整个实验过程中产生的地震信号。实验过程中不可 避免会受到油泵噪声的影响:油泵噪声通过压机传 递给岩样,少量噪声还可通过空气传递给传感器,因 此采集的整个地震信号都会有噪声扰动。选取品质 相对较好的地震记录,再对泥岩条的破裂信号进行 频谱分析(图 3),可看出其频宽达几千赫兹,主频为 几百赫兹。

与岩心的破裂相比,泥岩条的破裂尺度更大,主 频更低且频带较窄。图4为实际不同检波器检测的 频带范围,可看到破裂信号的频带恰好能满足地震 检波器的目的频带范围,因此实际中还是可能接收 到微地震信号的。

图 3 泥岩条破裂实验测试信号及其振幅谱

3 接收信号频率

传感器所获得的信号是声源、传输介质、耦合介 质和检波器响应等因素的综合结果,即

F(t) = S(t) * M(t) * R(t) = S(t) * h(t) (2) 观测谱则为震源谱与传播衰减两个过程的褶积。

传递函数的振幅谱满足 $A = A_0 e^{-\frac{\pi f}{Q_c}}$ 。其中: c

为地震波传播速度; r 为传播距离; Q_e 是波速为 c 时的品质因子。假设地震子波为雷克子波,当地震 子波的主频在几千赫兹以下时,接收信号在传播距 离 r 之后的频率为^[19,20]

$$A(f) = \frac{2}{\sqrt{\pi}} \frac{f^2}{f_{\rm m}^3} \cdot e^{-\left(\frac{\pi rf}{Q_c} + \frac{f^2}{f_{\rm m}^2}\right)}$$
(3)

对 f 求导,得到

Ŷ

$$\frac{\partial A(f)}{\partial f} = \frac{2}{\sqrt{\pi}} \cdot \frac{f^2}{f_{\rm m}^3} \left[2 - f \left(\frac{\pi r}{Q_c} + \frac{2f}{f_{\rm m}^2} \right) \right] \cdot e^{-\left(\frac{\pi r}{Q_c} + \frac{f^2}{f_{\rm m}^2} \right)}$$
(4)

$$\frac{\partial A(f)}{\partial f} = 0, 则有$$
$$f = \frac{f_{\rm m}^2}{4} \cdot \left[\sqrt{\left(\frac{\pi r}{Q_{\rm c}}\right)^2 + \frac{16}{f_{\rm m}^2}} - \frac{\pi r}{Q_{\rm c}} \right]$$
(5)

从式(5)可见,对接收信号频率影响较大的参数 有品质因子 Q、传播距离 r 和地震子波主频 f_m。为 了直观地显示这几个参数对接收信号频率的影响, 分别令 Q=3 和 Q=30,在 r=50m,c=2000m/s 时, 得到如图 5a 所示的接收信号频率 f 与地震波主频 f_m 之间的关系; 再分别令 Q=200 和 Q=3,在 f_m = 300Hz, c=2000m/s 时,得到如图 5b 所示的接收信 号频率 f 与传播距离 r 之间的关系。

在图 5a 参数条件下,若为黏弹性介质,则在距 离震源 50m 处接收到的地震信号频率明显受 Q 值 变化的影响;随着地震子波主频的增加,接收信号频 率趋近于一个稳定值,且 Q 值越大该稳定值越大。 在图 5b 参数条件下,若为黏弹性介质,则随着传播 距离的增大,地震信号频率都呈减小趋势,且 Q 值 越小频率衰减越明显;当传播距离增大到一定程度 时,接收信号频率变化率减小,趋近于一个稳定值。 当地震子波主频高达几十、几百千赫兹,甚至兆 赫兹时,式(3)不再适用,而应用下式

$$A(f) = \frac{2}{\sqrt{\pi}} \frac{f^2}{f_m^3} \cdot e^{-\left(\frac{\pi f^4}{Q_c} + \frac{f^2}{f_m^2}\right)}$$
(6)

式中 *a* 为衰减次幂,表征频率衰减的速率,不同数量级的频率对应不同的 *a*。对式(6)求偏导,可得

$$\frac{2}{f_{\rm m}^2} \cdot f^2 + \frac{a\pi r f^a}{Q_c} - 2 = 0 \tag{7}$$

基于对地震波频率衰减的研讨,求取式(7)的数 值解,得到一组地震波接收信号频率和地震子波频 率随传播距离变化的关系列表(表 2)。

图 5 接收信号频率与子波主频(a)、传播距离(b)之间的关系

子波主频 f_m/Hz	衰减次幂 a	有效因子 Q	传播距离 r/m	波速 $c/(m \cdot s^{-1})$	接收信号频率 f/Hz
10000000	0.33	200	500	2000	9286701
9286701	0.4	200	500	2000	7011617
7011617	0.5	150	1000	2000	145776
145776	0.6	150	1000	2000	14592
14592	0.7	100	500	2000	4059
4059	0.8	100	500	2000	1199
1199	0.9	60	80	2000	904
904	1	15	20	2000	572
572	1	5	5	2000	458
458	1	3	5	2000	340
340	1	3	5	2000	272
100	1	3	5	2000	93

表 2 接收信号与震源子波频率变化关系

从表 2 可见,当初始地震子波主频选择为 10MHz时,衰减次幂 *a* 为 0.33;随着地震信号的传 播,给定的震源信号频率降低,衰减次幂随震源子波 主频的降低而逐渐升高;当给定子波主频下降到几 千赫兹时,衰减次幂接近于 1.0,当频率继续降低至 1kHz 以下时,该值即可设置为 1.0。综上,初始地 震子波主频越高,衰减次幂的绝对值越小。如 10MHz高频时对应衰减次幂为0.33,10~1000kHz 时约为0.5,1~10kHz时约为0.8,1kHz以下时趋 近于1.0,即衰减次幂与初始震源频率之间呈反比 关系。因此,地震信号传播过程中高频成分衰减很 快,低频成分的变化幅度极小。

4 传播介质对频率影响

4.1 不同接收方法的影响

基于 Marmousi 模型将 VSP 地震与地面地震 进行对比,分析不同接收方法对地震频谱的影响。 模型尺寸为 737m(横)×750m(纵)网格点(图 6a),

震源点位于(50,700)处,为了使 VSP 地震与地面地 震分析的两道数据有相同的炮检距,取地面地震位 于(50,100)处,VSP 地震道位于(650,700)处,震源 子波主频取为 120Hz,采用弹性介质。对比两种情 况下的频谱图可发现,VSP 地震的高频成分较强, 频带较宽。地面地震的主频为地震子波的主频 (120Hz),即在弹性介质情况下,不论有多少层位、

图 6 模型复杂性对信号频率的影响 (a)Marmousi 模型;(b)频谱

地层条件有多复杂,地面地震信号的主频均不改变。 而对于 VSP 地震来说,地下各地层的影响使其频带 比地面接收有明显变宽。说明用 VSP 地震进行地 震勘探具有相对较高的分辨率,此处暂且忽略其他 因素的影响。

4.2 不同层位接收的影响

基于多层模型(图 7),分别在弹性介质和黏弹 性介质的不同层位接收,当震源子波类型参数、模型 参数均相同时,得到的地震记录也会有很大差别。 模型尺寸为 1000m × 1000m 网格点,震源位于 (500,900)处,接收点依次布设于距离震源点 100, 250,400,500m 处,得到如图 8 所示的弹性介质和黏 弹介质时的频谱分析结果。

对比图 8 可发现:当为弹性介质时地震波主频 无变化,能量的减小仅缘于地震波的球面扩散和层 位界面反射;当为黏弹性介质时,地震波主频和能量 下降都很明显。通常地下地层均属于黏弹性介质, 故地震波在上传过程中随着传播距离增大,越接近 地面时主频越低、能量越低^[21]。实际传播过程中存 在的近地表效应这里未做讨论。

将观测系统改为 VSP 地震,检波器间距设为 10m,对所得地震记录做频谱分析后得到如图 9 所 示的主频一深度关系图,其中红色直线为层位线。 从该图可看出:在微地震信号向地面传播过程中,地 震波主频总体呈下降趋势;但在地层界面处地震波 主频都有几个局部极大值。其原因可能是到达层面 的直达波与下传反射波之间相互影响,导致地震信 号主频表现为局部增大。

4.3 介质黏弹性影响

采用上述多层模型,震源位于(500,900)处,接

收点位于地面,接收点间距为一个网格点。地震子 波为雷克子波,主频为80Hz。在所得地震记录中抽 取第500道数据(图10a)进行分析,得到如图10b 所示的频谱分析结果。可见当为黏弹介质(图中实 线)时,对地震波能量有明显吸收,振幅显著变小,且 地震波同相轴被显著拉宽,对应主频降低;其频谱图 中频带明显变窄,且能量变小。

图 10 介质黏弹性对地震信号频率的影响 (a)第 500 道地震数据;(b)频谱

5 结论

本文分别对微地震信号的震源频率特性、接收 器响应特性及传播过程中介质特性等进行了分析、 对比,从接收信号的频带得出地面监测微地震信号 的可能性^[22,23]。主要有以下认识和结论。

(1)微地震信号频率随传播距离的增大而降低, 当传播距离足够大时,信号频率基本不变;微地震信 号通常具有较宽的初始频带范围,传播过程中的能 量衰减和检波器接收均会导致信号主频降低。

(2)完全弹性介质中地震波主频不变,层位数目 等因素也不会影响主频,只有当存在散射体时会导 致频谱的剧变;当为黏弹性介质时,随着传播距离增大,地震波能量急剧减小、主频明显降低。

(3)接收信号频率是震源信号与传播衰减褶积的结果,不同频率信号的衰减系数不同;纵波信号频 率高于横波信号频率,且随着波速增大两者都呈减 小趋势;从深层向浅层传播过程中,地震信号主频总 体下降,但在层位分界面主频有增大趋势,这缘于直 达波、反射波的相互作用。

参考文献

- [1] Davies P. The American Heritage Dictionary of the English Language. Dell Pub Co, 1976.
- [2] Ebel J E. Watching the weather using a seismograph. Seismological Research Letters, 2002, 73 (6): 930-

932.

- [3] Hasselmann K. A statistical analysis of the generation of microseisms. Reviews of Geophysics, 1963, 1(2):177-210.
- [4] 刘振武,撒利明,杨晓等.页岩气勘探开发对地球物 理技术的需求.石油地球物理勘探,2011,46(5): 810-818.
 Liu Zhenwu, Sa Liming, Yang Xiao et al. Needs of geophysical technologies for shale gas exploration. OGP,2011,46(5):810-818.
- [5] 姜福兴, Xun Luo,杨淑华.采场覆岩空间破裂与采动应力场的微震探测研究.岩土工程学报,2003,25(1):23-25.
 Jiang Fuxing, Xun Luo, Yang Shuhua. Study on microseismic for spatial structure of overlying strata and mining pressure field in longwall face. Chinese Journal of Geotechnical Engineering,2003,25(1):23-25.
- [6] Rothert E, Shapiro S A. Microseismic monitoring of borehole fluid injections: Data modeling and inversion for hydraulic properties of rocks. Geophysics, 2003, 68(2):685-689.
- [7] 宋维琪,冯超. 微地震有效事件自动识别与定位方法. 石油地球物理勘探,2013,48(2):283-288.
 Song Weiqi and Feng Chao. Automatic identification and localization of micro seismic effective events. OGP,2013,48(2):283.
- 【8】张山,刘清林. 微地震监测技术在油田开发中的应用. 石油物探,2002,41(2):226-231.
 Zhang Shan,Liu Qinglin. Application of microseismic monitoring technology in development of oil field.
 GPP,2002,41(2):226-231.
- [9] Maxwell S C, Urbancic T I. The role of passive microseismic monitoring in the instrumented oil field. The Leading Edge, 2001, 20(6):636-639.
- [10] Rothert E, Shapiro S A. Microseismic monitoring of borehole fluid injections: Data modeling and inversion for hydraulic properties of rocks. Geophysics, 2003, 68(2):685-689.
- [11] Oye V, Roth M. Automated seismic event location for hydrocarbon reservoirs. Computers & Geosciences, 2003,29(7):851-863.
- [12] Lu C, Dou L, Wu X et al. Frequency spectrum analysis on microseismic monitoring and signal differentiation of rock material. Chinese Journal of Geotechnical Engineering — Chinese Edition, 2005, 27(7):772.
- [13] 李智敏,苟先太,金炜东等.微地震信号的频率特征. 岩土工程学报,2008,30(6):830-834.
 Li Zhimin,Gou Xiantai,Jin Weidong et al. Frequency features of microseismic signals. Chinese Journal of Geotechnical Engineering,2008,30(6):830-834.
- [14] Aki K, Richards P G. Quantitative Seismology. Freeman and Co, New York, 1980.
- [15] Madariaga R. Dynamics of an expanding circular

fault. Bulletin of the Seismological Society of America, 1976,66(3):639-666.

- [16] Richter C F. An instrumental earthquake magnitude scale. Bull Seism Soc Am, 1935, 25(1):1-32.
- [17] 朱卫星.相关滤波在微地震数据处理中的应用.勘探 地球物理进展,2007,30(2):130-134.
 Zhu Weixing. Application of correlation filter in processing of microseismic data. Progress in Exploration Geophysics,2007,30(2):130-134.
- [18] 卓钰如.破裂长度、地震矩及地震应力降与震级关系的讨论.地球物理学报,1984,27(3):298-302.
 Zhuo Yuru. On the relationships between ruture-length, seismic moment, stress drop of earthquakes sources and magnitude. Acta Geophysics Sinica, 1984,27(3):298-302.
- [19] 孙成禹. 地震波理论与方法. 山东东营:中国石油大 学出版社,2007.
- [20] 唐杰,王宝善,葛洪魁等.小当量激发的远距离信号 检测研究.地球物理学报,2008,51(6):1810-1818.
 Tang Jie, Wang Baoshan, Ge Hongkui et al. Study on weak signal of small shot in regional scale deep exploration. Chinese Journal of Geophysics, 2008, 51(6): 1810-1818.
- [21] 李子顺. 地震波衰减规律及其恢复方法. 地球物理学进展,2007,22(5):1545-1551.
 Li Zishun. Seismic wave attenuation and recovering method. Progress in Geophysics,2007,22(5):1545-1551.
- [22] 刘百红,秦绪英,郑四连等. 微地震监测技术及其在 油田中的应用现状. 勘探地球物理进展,2005, 28(5):325-329.
 Liu Baihong, Qin Xuying, Zheng Silian et al. Microseismic monitoring and its applications in oilfield operations. Progress in Exploration Geophysics, 2005, 28(5):325-329.
- [23] Chambers K, Kendall J M, Brandsberg-Dahl S et al. Testing the ability of surface arrays to monitor microseismic activity. Geophysical Prospecting, 2010, 58(5):821-830.

(本文编辑:朱汉东)

作者简介

方兵 硕士研究生,1989年生; 2012年本科毕业于中国石油大学(华 东)勘查技术与工程专业;现在中国石 油大学(华东)攻读地质资源与地质工 程专业硕士学位。

