阿尔泰造山带晚古生代高温变质作用与塔里木地幔柱 活动的成因联系:来自泥质和镁铁质麻粒岩的证据^{*}

刘兆^{1,2} 仝来喜^{1**}

LIU Zhao11, 2 and TONG LaiXi1**

1. 中国科学院广州地球化学研究所,同位素地球化学国家重点实验室,广州 510640

2. 中国科学院大学,北京 100049

1. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

2014-12-15 收稿, 2015-03-10 改回.

Liu Z and Tong LX. 2015. The petrogenetic link between the Late Paleozoic high-temperature metamorphism in the Altay orogen and the Tarim mantle plume: Evidence from metapelitic and mafic granulites. *Acta Petrologica Sinica*, 31(6):1761 – 1773

Abstract The Altay orogen is an important part of the Central Asian Orogenic Belt (CAOB), and several high-temperature metapelitic and mafic granulites occur on its southern margin. Constructing their *P*-*T* paths is of great significance to understand the Late Paleozoic tectonic evolution history of the southern Chinese Altay. Detailed petrographic observations on the metapelitic and mafic granulites at Wuqiagou area show that their metamorphic assemblages are garnet + cordierite + biotite + plagioclase + quartz + magnetite + ilmenite ± orthopyroxene ± spinel ± k-feldspar and orthopyroxene + clinopyroxene + biotite + plagioclase + k-feldspar + amphibole + magnetite + ilmenite + quartz, respectively. Peak and post-peak metamorphic *P*-*T* conditions are estimated using conventional thermobarometers and average *P*-*T* approach. *P*-*T* pseudosections are calculated for two metapelitic granulites via the Thermocalc program, yielding peak metamorphic *P*-*T* conditions of 770 ~ 865 °C/3. 0 ~ 5. 1kbar and two post-peak near-isobaric cooling (IBC) *P*-*T* paths. Such IBC *P*-*T* paths suggest that high-temperature metamorphism likely occurred in an overall extensional tectonic setting. The available age results support that the high-temperature metamorphism in the region occurred in the Permian (270 ~ 280Ma) which is coeval with the time of the Tarim mantle plume activity (~ 275Ma). This indicates that the Altay Permian high-temperature metamorphism is likely associated tightly with the Permian Tarim mantle plume activity. We consider that the heat source necessary for the Permian high-temperature metamorphism in the southern Altay was most probably provided by underplating and heating of mantle-derived mafic magma as a result of the Tarim mantle plume.

Key words High-temperature metamorphism; Metapelitic and mafic granulites; Altay orogen; P-T path; Tarim mantle plume

摘要 阿尔泰造山带是中亚造山带(CAOB)的重要组成部分,在其南缘出露有高温泥质和镁铁质麻粒岩,确定其 P-T 轨 迹对于理解阿尔泰造山带南缘在晚古生代的构造演化历史具有重要意义。通过对该区乌恰沟泥质和镁铁质麻粒岩样品精细 的岩相学观察,显示其变质矿物组合分别为石榴石+董青石+黑云母+斜长石+石英+磁铁矿+钛铁矿±斜方辉石±尖晶 石±钾长石,斜方辉石+单斜辉石+角闪石+黑云母+斜长石+钾长石+石英+钛铁矿+磁铁矿。使用传统温压计和平均 温压计算方法对其变质峰期及峰期后的 P-T条件进行了计算,并利用 Thermocalc 软件对其中两个泥质麻粒岩进行了 P-T 视剖 面图模拟,确定了其峰期变质条件为 770~865℃和 3.0~5.1kbar,并得到了两条峰期后近等压冷却(IBC)的 P-T 演化轨迹。 这样近等压冷却的 P-T 轨迹表明高温变质作用可能发生于一个总体伸展的大地构造背景之下。已有年代学数据支持该区高 温变质事件发生于二叠纪(270~280Ma),与塔里木地幔柱活动的时间(~275Ma)高度一致。这说明阿尔泰二叠纪高温变质

^{*} 本文受国家重点基础研究发展计划 973 项目(2011CB808901)资助.

第一作者简介:刘兆,男,1989年生,硕士生,矿物学、岩石学、矿床学专业,E-mail: Gavin_ZLiu@126.com

^{**} 通讯作者: 仝来喜, 男, 1965 年生, 研究员, 从事变质地质学研究, E-mail: lxtong@ gig. ac. cn

事件可能与塔里木地幔柱有着密切的成因联系。因此,我们认为二叠纪地幔柱活动引起的幔源岩浆底侵和加热可能提供了 阿尔泰南缘高温-超高温变质作用所需的热源。

关键词 高温变质作用;泥质和镁铁质麻粒岩;阿尔泰造山带;P-T轨迹;塔里木地幔柱活动 中图法分类号 P588.347

1 引言

麻粒岩是指形成于麻粒岩相条件下的,具有高温变质矿物组合的各类变质岩石(翟明国和刘文军,2001)。麻粒岩构成了大陆下地壳主要成分,因此是研究下地壳的窗口(Harley,1989)。

阿尔泰造山带属于中亚造山带的重要组成部分(图1a),也是世界上典型的显生宙增生造山带(Şengör et al., 1993; Jahn, 2004; Xiao et al., 2004)。该造山带不仅构造活动、变质作用和岩浆活动非常复杂,而且是一条举世闻名的多金属成矿带(陈汉林等, 2006)。

阿尔泰造山带广泛发育古生代中-低压型递增变质带和 数个热-构造-片麻岩穹隆(庄育勋, 1994; 张翠光等, 2004; 徐学纯等, 2005; Wei et al., 2007)。递增变质带可分为蓝 晶石型和红柱石型变质带两种类型,现在一般认为早期蓝晶 石型变质作用的时代为泥盆纪(Windley et al., 2002; Wei et al., 2007; Zheng et al., 2007)。对于阿尔泰造山带在泥盆 纪的构造背景,目前主要有两种认识,一种认为该造山带在 泥盆纪发生弧-陆碰撞(Windley et al., 2002; Wang et al., 2006, 2014; Wei et al., 2007),另一种认为该变质带在泥盆 纪(380~390Ma)发生洋脊俯冲(孙敏等, 2009; Jiang et al., 2010)。

厉子龙等首先报道了阿尔泰造山带南缘乌恰沟地区的 镁铁质麻粒岩,认为其峰期变质条件为750~780℃/6~ 7kbar(厉子龙等, 2004; Li et al., 2004), 角闪岩相退变质的 温压条件为 590~620℃/2.3~3.7kbar。之后, Wang et al. (2009b)又报道了阿勒泰市东南部的中-低压高温泥质麻粒 岩,其峰期条件为780~800℃/5~6kbar。而近几年对于阿 尔泰造山带二叠纪变质事件的研究集中于超高温泥质麻粒 岩方面(Li et al., 2010, 2014; 仝来喜等, 2011, 2013; Tong et al., 2014a, b), Li et al. (2014) 通过对富蕴县乌恰沟地区 含有斜方辉石 + 夕线石矿物组合的超高温泥质麻粒岩的研 究,认为其变质峰期 > 940℃/7.8~10kbar,其 P-T 演化经历 了峰期后等温降压(ITD)的逆时针轨迹。全来喜等过对阿勒 泰市大喀拉苏地区超高温泥质麻粒岩的研究,认为其在峰期 前、峰期以及峰期后的 P-T 条件分别为 890℃/7kbar,970℃/ 8kbar 和 870℃/8~9kbar,因此经历了峰期后等压冷却(IBC) 的逆时针 P-T 演化轨迹 (仝来喜等, 2013; Tong et al., 2014a, b)

麻粒岩或片麻岩中锆石 U-Pb 或独居石 Th-Pb 年龄结果 表明阿尔泰造山带在二叠纪经历了一次重要的高级构造变 质热事件(肖文交等,2006; Xiao et al., 2008),其年龄主要 分布于 260 ~ 293Ma 之间(胡霭琴等,2006; 陈汉林等, 2006; 郑常青等,2007; Briggs et al., 2007; Wang et al., 2009b; 仝来喜等,2013),但是关于二叠纪变质事件的成因 尚存在不同认识,目前主要存在造山后俯冲板片拆沉导致的 软流圈上涌和和地幔柱热冲击两种解释(Zhang et al.,2012; Wang et al.,2014; 仝来喜等,2011,2013; Tong et al., 2014a, b; Li et al.,2014)。

在阿尔泰造山带南缘的乌恰沟地区,除了超高温泥质麻 粒岩外,还出露有一些中-低压泥质和镁铁质麻粒岩(厉子龙 等,2004; Li et al.,2004),并未达到超高温条件,但对其却 一直缺少深入的研究,年代学上的耦合性说明它们形成于同 期变质事件(270~280Ma),本文着重对乌恰沟地区发生高 温变质作用的泥质和镁铁质麻粒岩进行了研究(图1b)。二 叠纪变质事件在时间上与新疆二叠纪塔里木地幔柱活动的 时间(~275Ma)高度一致(Zhang et al.,2010),因此阿尔泰 高温-超高温麻粒岩的研究对于理解阿尔泰造山带南缘的二 叠纪变质事件与塔里木地幔柱的成因联系也具有重要的 意义。

2 地质背景

阿尔泰造山带记录了新元古代到晚古生代的构造演化 过程,由北向南通常被划分为五个以断层为边界的地体或大 地构造单元(Windley et al., 2002; Xiao et al., 2004; Wang et al., 2006, 2009a)。单元 I 主要为晚泥盆纪-早石炭纪的 变沉积岩,最老岩石为低绿片岩相的安山岩和英安岩;单元 Ⅱ主要由新元古代-奥陶纪及少量泥盆纪沉积-火山岩组成; 单元Ⅲ(或中阿尔泰地体)形成阿尔泰造山带的主体,主要由 新元古代-奥陶纪变沉积岩和变火山岩组成,普遍经历了绿 片岩相-高角闪岩相变质作用, Windley et al. (2002)把正片麻 岩原岩的形成时代定为志留纪:单元Ⅳ(或阿巴宫地体)主要 由志留纪-泥盆纪火山-碎屑沉积岩组成,主要为康布铁堡组 和阿勒泰组,并经历了绿片岩相-高角闪岩相变质作用,局部 达到麻粒岩相变质作用(厉子龙等,2004;陈汉林等,2006; Chen et al., 2006; Wang et al., 2009b; 仝来喜等, 2011, 2013);单元V(或额尔齐斯地体)由前寒武纪基底和泥盆纪-石炭纪火山-碎屑沉积岩组成,经历了绿片岩相-角闪岩相变 质作用。部分学者认为单元2和3可能属于同一单元 (Windley et al., 2002),从而构成阿尔泰微大陆的主要部分 (Hu et al., 2000; Li et al., 2003; Xiao et al., 2004) $_{\circ}$

阿尔泰造山带中分布着大量花岗质岩石和正片麻岩,其

图1 中国阿尔泰地区变质地质简图(a, 据 Wei et al., 2007 修改)和阿尔泰地区富蕴一带地质简图及采样点位置(b, 据 厉子龙等, 2004 修改)

☆-代表采样点位置;O_{2,3}-中-晚奧陶世哈巴河群;S_{k1}-志留世库鲁姆提群;D_{1k}-早泥盆世康布铁堡组;D_{2y}-中泥盆世蕴都喀拉组;D_{2a}-中泥盆 世阿勒泰组;C_{3k}-晚石炭世喀喇额尔齐斯组;J₃-晚侏罗世石树沟群;C_a-新生界;ψ₄-华力西期基性、超基性岩;γ₄-华力西期花岗质岩石;黑色 块体表示辉长岩侵入体

Fig. 1 A simplified metamorphic geological map of the Chinese Altay (a, modified after Wei *et al.*, 2007) and a geological sketch map of the Fuyun area and sampling location of the Altay granulites (b, modified after Li *et al.*, 2004)

 \approx -sample location; O₂₋₃-Middle to Late Ordovician Habahe Group; S_{k1}-Silurian Kulumuti Group; D_{1k}-Early Devonian Kangbutibao Group; D_{2y}-Middle Devonian Wendukala Formation; D_{2a}-Middle Devonian Aletai Formation; C_{3k}-Late Carboniferous Kala-Erqix Formation; J₃-Late Jurassic Shishugou Group; C_z-Cenozoic; ψ_4 -Variscan mafic mafic and ultramafic rocks; γ_4 -Variscan granitic rocks; Black block is gabbro intrusions 面积占该带约40%左右。中国阿尔泰广泛分布的花岗岩和 基性侵入体可以划分为早-中古生代(460~370Ma)同造山类 型,晚古生代(290~270Ma)的后造山类型,中生代(220~ 150Ma)非造山类型(邹天人等,1988; Wang et al., 2009a)。 中阿尔泰地体和琼库尔-阿巴宫地体的高级变质岩之前被视 为古生代沉积岩(哈巴河群)的变质岩,但在90年代初被认 为是古-中元古代克木齐群和新元古代富蕴群变质形成的 (李天德等,1996),因此被理解为元古代基底(Windley et al., 2002)或者前寒武纪微大陆(李会军等, 2006),近年来 的研究表明该区域内的副片麻岩原岩沉积于大陆弧或者活 动大陆边缘环境(Long et al., 2007;龙晓平等, 2008),时代 为泥盆纪(胡霭琴等, 2002, 2006)。

厉子龙等(2004)和陈汉林等(2006)首先报道了阿尔泰 造山带南缘富蕴县乌恰沟的镁铁质麻粒岩,后来 Wang et al. (2009b)报道了阿勒泰附近的泥质麻粒岩。近年来又不断有 阿尔泰超高温麻粒岩的报道(Li et al., 2010, 2014; 仝来喜 等, 2011, 2013; Tong et al., 2014a, b)。阿尔泰造山带已报 道的麻粒岩均采自额尔齐斯断裂带附近,本文的泥质和镁铁 质麻粒岩样品采自富蕴县乌恰沟,以透镜体位于二叠纪基 性-超基性侵入岩附近,该地区主要由片麻岩、混合岩和斜长 角闪岩组成,而乌恰沟达板北为混合岩、混合片麻岩、片麻岩 和变粒岩等(李天德等, 1996; 厉子龙等, 2004)。

3 岩相学特征

本文的泥质和镁铁质麻粒岩均采自阿尔泰造山带南缘 的富蕴县乌恰沟地区(图1a,b),泥质麻粒岩样品包括LT11-47,LT12-35 和 LT12-36 三个样品,镁铁质麻粒岩样品为 LT12-02,各样品的显微照片及背散射照片见图2。泥质麻粒 岩主要矿物为石榴石+堇青石+黑云母+斜长石+石英+ 磁铁矿+钛铁矿±斜方辉石±尖晶石±钾长石,均不含夕 线石。

LT11-47 为石榴石斜方二长菫青片麻岩,中细粒鳞片粒状变晶结构,手标本呈暗灰色,弱片麻状构造,矿物组合为石榴石(8%~12%)+斜方辉石(8%~12%)+菫青石(25%~30%)+黑云母(15%~20%)+斜长石(15%~20%)+ 钾长石(15%~20%)+石英(5%~8%)+磁铁矿(<5%) +钛铁矿(<5%),为典型的泥质麻粒岩相矿物组合(图 2a)。石榴石不显变斑晶,粒度为0.4~1.2mm,常包裹有黑云母、堇青石和磁铁矿等早期矿物。其中,斜方辉石、堇青石、钾长石和斜长石大小在0.2~0.8mm之间。黑云母有的包裹在石榴石及堇青石中,自形程度较差,或为峰期前残留 矿物,有的穿插其他矿物,呈细条状或针状,可能为退变质阶段矿物。

LT12-35 为石榴石二长堇青片麻岩,斑状变晶结构,手标本呈暗灰色,块状构造,其矿物组合为石榴石(6%~8%)+ 堇青石(18%~25%)+黑云母(25%~30%)+斜长石 (20%~25%)+钾长石(10%~15%)+石英(10%~15%) +磁铁矿(<3%)+钛铁矿(<3%)。石榴石呈变斑晶状, 大小为0.8~2.5mm,常包裹有黑云母、磁铁矿和石英等峰期 前矿物,其边部发育有黑云母+堇青石+钾长石等矿物(图 2b)。堇青石、黑云母、斜长石、钾长石和石英等矿物组成基 质,粒径约为0.4~0.8mm。石榴石及基质矿物中均发育有 黑云母包裹体。

LT12-36为尖晶石斜长堇青片麻岩,斑状变晶结构,具有 明显的混合岩外貌,出现很多浅色的脉体。矿物组合为石榴 石(15%~20%)+斜方辉石(5%~8%)+尖晶石(15%~ 20%)+堇青石(25%~30%)+黑云母(15%~20%)+斜 长石(15%~20%)+石英(<5%)+磁铁矿(<5%)+钛铁 矿(<5%)(图 2c,d),为典型的泥质麻粒岩相矿物组合。 石榴石部分呈变斑晶状,粒径为0.8~1.5mm,另有部分小颗 粒石榴石与斜方辉石、尖晶石、堇青石、斜长石和石英等矿物 构成基质,大小为0.1~0.6mm。在石榴石核部包裹有黑云 母、堇青石、尖晶石和钛铁矿等矿物,其边部矿物主要为堇青 石、黑云母、斜长石和石英。尖晶石呈自形或半自形颗粒集 合体,主要以三种形式产出:部分包裹于石榴石中,部分位于 石榴石边部,还有一部分位于基质中的尖晶石具有堇青石冠 状体,尖晶石集合体中还包裹有堇青石和钛铁矿。黑云母自 形程度较差,多呈水滴状,可能不是峰期矿物。

有的尖晶石集合体具有堇青石冠状体,其中还包裹有少 量堇青石,推测二者应为峰期前的矿物,指示可能发生过变 质反应:

石榴石 + 夕线石 ± 石英 = 尖晶石 + 堇青石 (Bindu, 1997)

该反应是典型的低压变质反应,并借此消耗了峰期前存 在的少量夕线石。

LT12-02 为黑云母斜长二辉麻粒岩,手标本呈暗灰色,花 岗变晶结构,块状构造。主要矿物组合为斜方辉石(20%~ 25%)+单斜辉石(35%~40%)+斜长石(30%~40%)+ 黑云母(5%~10%)+石英(5%),另有少量钾长石和角闪 石(<5%),不透明矿物主要为钛铁矿和少量磁铁矿(图 2e, f)。斜方辉石、单斜辉石和石英等粒状矿物大小不一,中细 粒均存在,粒径变化于0.05~1.20mm之间。黑云母自形程 度较差,多数为港湾状,大多在0.10mm 以下,存在于基质中 或者以包裹体形式存在于其他矿物中。在斜方辉石中含有 一些定向排列的富钛角闪石和钛铁矿,斜长石、黑云母中普 遍含有一些针状磷灰石(图 2e 和 f),有时可见磷灰石同时切 穿二者,表明磷灰石应是后期变质产物。不透明矿物以钛铁 矿为主,主要包裹其他矿物中,粒径通常小于0.20mm,少数 存在于基质中的大颗粒钛铁矿粒径可达0.40mm。

上述矿物组合,指示在进变质过程中可能发生过角闪石 分解熔融反应:

角闪石 + 石英 = 斜方辉石 + 单斜辉石 ± 斜长石 + 熔体 (Pattison *et al.*, 2003)。

图 2 阿尔泰泥质和镁铁质麻粒岩的显微照片以及背散射照片

(a) LT11-47,石榴子石与斜方辉石、堇青石、斜长石和磁铁矿等;(b) LT12-35,石榴子石变斑晶附近的黑云母、堇青石和石英;(c) LT12-36, 尖晶石周围具有堇青石冠状体,尖晶石中包裹有堇青石和钛铁矿;(d) LT12-36,靠近大的石榴石变斑晶的尖晶石,并且有的尖晶石被石榴 子石包裹;(e) LT12-02,斜方辉石变斑晶与单斜辉石、斜长石、黑云母等共生,opx 中有钛铁矿和定向排列的角闪石;(f) LT12-02,镁铁质麻 粒岩中出现钾长石,并与单斜辉石、斜方辉石、黑云母和斜长石共生.矿物缩写:gt-石榴石;opx-斜方辉石;cpx-单斜辉石;cd-堇青石;sp-尖晶 石;bt-黑云母;pl-斜长石;ksp-钾长石;ilm-钛铁矿;mt-磁铁矿;amph-角闪石;q-石英

Fig. 2 Photomicrographs and Back Scattered Images (BSI) of metapelitic and mafic granulites in the Altay orogen

(a) LT11-47, garnet + orthopyroxene + cordierite + plagioclase + magnetite; (b) LT12-35, the assemblage of biotite, cordierite and quartz near the garnet porphyroblast; (c) LT12-36, coronas cordierite develops along the spinel rim, and some cordierite and ilmenite inclusions occur in the spinel; (d) LT12-36, some spinels occur near the garnet porphyroblast, and some spinels occur as inclusions in the garnet porphyroblast; (e) LT12-02, BSI image showing assemblage of orthopyroxene + clinopyroxene + plagioclase + biotite, and ilmenite as well as directional amphibole inclusions occur in orthopyroxene; (f) LT12-02, potash feldspar occurs in a assemblage of k-feldspar + plagioclase + orthopyroxene + clinopyroxene + biotite in the mafic granulite. Mineral abbreviations: gr-garnet; opx-orthopyroxene; ccx-clinopyxene; cd-cordierite; sp-spinel; bt-biotite; pl-plagioclase; ksp-k-feldspar; ilm-ilmenite; mt-magnetite; amph-amphibole; q-quartz

4 矿物化学

本文单矿物的电子探针数据由中国科学院广州地球化 学研究所同位素地球化学国家重点实验室的 JXA-8100 型电 子探针仪完成,其实验条件为:加速电压 15kV,束流 30nA,束 斑 1µm;大部分元素的分析时间为为 10s,采样 ZAF 校正方法,各样品主要矿物的电子探针数据见表 1。

样品 LT11-47 中,石榴石主要是铁铝榴石-镁铝榴石-锰 铝榴石的固溶体,从核部向边部成分变化为 Alm₆₄₆₅ Pyr₂₂₋₂₁

表1 阿尔泰泥质和镁铁质麻粒岩中主要矿物探针分析(wt%)

Table 1 The EPMA analysis results of representative minerals in the metapelitic and mafic granulites in the Altay orogen (wt%)

样品号	LT12-36							LT12-35						
矿物	gt(c)	gt(r)	opx	$^{\mathrm{sp}}$	$^{\rm cd}$	bi	pl	gt(c) gt((r) l	ksp	pl	cd	bi
SiO_2	37.43	37.16	52.51	0.02	48.51	35.91	60.66	37.8	36 38.	. 35 63	8.66	61.81	50.98	35.72
TiO ₂	0.03	0.09	0	0	0.08	3.9	0	0.0	5 0.	06	0	0.04	0	3.23
Al_2O_3	21.84	22.06	0.22	60.76	33.32	19.11	25.04	21.8	81 21.	. 89 19	9.36	24.36	1.45	18.37
$\operatorname{Cr}_2\operatorname{O}_3$	0.07	0	0.02	0.04	0	0.03	0	0	0.	04	0	0.09	0.02	0.12
$\mathrm{Fe}_2\mathrm{O}_3$	0	0	0	0	0	0	0	0	(0	0	0	0	0
FeO	29.87	30.15	30.35	34.35	7.81	17.21	0.13	30. 9	31.	. 19 0	. 03	0.03	30.62	18.03
MnO	5.5	5.76	1.6	0.61	0.32	0.14	0	4	3.	24	0	0	1.81	0.08
MgO	4.84	4.34	14.58	4.54	8.37	8.84	0.01	5.3	7 4.	97	0	0.01	15.53	10.2
CaO	0.95	1.01	0.03	0	0.01	0.14	6.23	0.9′	7 0.	98 0	. 08	5.13	0.15	0
Na ₂ O	0.01	0	0	0.06	0.14	0.14	8.52	0. 02	2 0.	01 1	. 56	8.78	0	0.17
K_2O	0	0	0.01	0.01	0.02	9.39	0.14	0	(0 15	5. 33	0.27	0.01	10.26
总量	100.54	100.57	99.32	100.39	98.57	94.81	100.73	3 101	100	0.73 10	0.02	100. 52	100. 57	96.19
0	12	12	6	4	18	11	8	12	1	2	8	8	18	11
Si	2.96	2.947	2.047	0.001	4.976	2.715	2.684	2.97	1 3.0	011 2.	944	2.731	5.824	2.691
Ti	0.002	0.005	0	0	0.006	0. 222	0	0.00)3 0.0	004	0	0.001	0	0. 183
Al	2.036	2.062	0.01	1, 993	4.022	1.704	1.306	2.01	8 2.0	026 1.	056	1.269	0.195	1.632
Cr	0.004	0	0.001	0.001	0	0.002	0	0	0.0	003	0	0.003	0.001	0.007
Fe ^{3 +}	0.036	0.033	0	0.009	0.063	0	0.005	0. 03	37 (0.0.	001	0.001	0. 585	0
Fe^{2+}	1.94	1.967	0, 989	0. 791	0, 606	1. 088	0	1. 99)2 2.0	048	0	0	2. 341	1.136
Mn	0.368	0.387	0.053	0.014	0.028	0.009	0	0.26	56 0. Ű	215	0	0	0.175	0.005
Mg	0. 571	0.513	0.847	0, 188	1. 277	0. 996	0.001	0. 62	28 0. 5	582	0	0.001	2.645	1. 146
Ca	0.081	0.086	0.001	0	0.001	0.011	0.295	0.08	32 0 0	082 0	004	0 243	0.019	0
Na	0.002	0	0	0.003	0.028	0.021	0.731	0.00)3 0 (002 0	139	0.752	0.001	0.025
K	0	0 0	0 0	0	0.003	0.906	0.008	0	(0 0.	905	0.015	0.001	0. 986
Total	8	8	3 948	3	11	7 674	5 03	8	7 (972 5	05	5 016	1 7866	7.812
	-	*	2.7.5	-			2.02	*						
样品号			LT11	-47						LT12	2-02			
<u>样品号</u> 矿物	et	opx	LT11 ksp	l-47 pl	cd	bi	$\frac{1}{0}$	opx(r)	cpx	LT12 ksp	2-02 pl	am(o)	am(in)	bi
 矿物 SiO ₂	gt 37.68	opx 49, 15	LT11 ksp 63. 13	pl 62, 55	cd 47. 43	bi 35. 32	opx(c) c	opx(r) 50.45	срх 52	LT12 ksp 66. 28	2-02 pl 61. 62	am(o) 44,63	am(in) 45.69	bi 36, 51
<u>样品号</u> 矿物 SiO ₂ TiO ₂	gt 37.68 0	орх 49. 15 0. 11	LT11 ksp 63. 13 0	pl 62. 55 0	cd 47. 43 0	bi 35. 32 3. 92	opx(c) c 49.99	opx(r) 50.45 0.22	срх 52 0. 11	LT12 ksp 66. 28 0. 01	2-02 pl 61. 62 0. 05	am(o) 2 44.63 1.94	am(in) 45.69 2.19	bi 36. 51 5. 32
<u>样品号</u> <u>矿物</u> SiO ₂ TiO ₂ Al ₂ O ₃	gt 37.68 0 22.01	opx 49.15 0.11 2.3	LT11 ksp 63. 13 0 19. 31	pl 62. 55 0 23. 3	cd 47. 43 0 32. 7	bi 35. 32 3. 92 17. 34	opx(c) c 49.99 : 0.13 0.22	opx(r) 50.45 0.22 0.25	срх 52 0. 11 0. 74	LT12 ksp 66. 28 0. 01 15. 57	2-02 pl 61. 62 0. 05 24. 23	am(o) 2 44.63 1.94 8 8.38	am(in) 45.69 2.19 6.96	bi 36. 51 5. 32 13. 85
<u>样品号</u> <u>矿物</u> SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃	gt 37.68 0 22.01 0	opx 49. 15 0. 11 2. 3 0. 02	LT11 ksp 63. 13 0 19. 31 0, 03	pl 62.55 0 23.3 0	cd 47. 43 0 32. 7 0. 02	bi 35. 32 3. 92 17. 34 0. 08	opx(c) (49.99 (0.13 (0.22 (0.02 (ppx(r) 50. 45 0. 22 0. 25 0. 02	cpx 52 0. 11 0. 74 0	LT12 ksp 66. 28 0. 01 15. 57 0	2-02 pl 61. 62 0. 05 24. 23 0. 01	am(0) 2 44.63 1.94 8.38 0.05	am(in) 45.69 2.19 6.96 0.01	bi 36. 51 5. 32 13. 85 0. 02
<u>样品号</u> <u>矿物</u> SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ Fe ₂ O ₃	gt 37. 68 0 22. 01 0 0	opx 49.15 0.11 2.3 0.02 0	LT11 ksp 63. 13 0 19. 31 0. 03 0	pl 62.55 0 23.3 0 0	cd 47. 43 0 32. 7 0. 02 0	bi 35. 32 3. 92 17. 34 0. 08 0	opx(c) c 49.99 2 0.13 0.22 0.02 0	ppx(r) 50.45 0.22 0.25 0.02 0	cpx 52 0. 11 0. 74 0 0	LT12 ksp 66. 28 0. 01 15. 57 0 0	2-02 pl 61. 62 0. 05 24. 23 0. 01 0	am(0) 2 44.63 1.94 8.38 0.05 0	am(in) 45.69 2.19 6.96 0.01 0	bi 36. 51 5. 32 13. 85 0. 02 0
<u>样品号</u> <u>矿物</u> SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ Fe ₂ O ₃ FeO	gt 37. 68 0 22. 01 0 0 29. 11	opx 49. 15 0. 11 2. 3 0. 02 0 32. 14	LT11 ksp 63. 13 0 19. 31 0. 03 0 0. 02	l-47 pl 62.55 0 23.3 0 0 0 0.08	cd 47.43 0 32.7 0.02 0 8.49	bi 35. 32 3. 92 17. 34 0. 08 0 19. 16	opx(c) c 49.99 2 0.13 0.22 0.02 0 33.44	<pre>ppx(r) 50.45 0.22 0.25 0.02 0 33.52</pre>	cpx 52 0. 11 0. 74 0 0 13, 49	LT12 ksp 66. 28 0. 01 15. 57 0 0 0 0, 01	2-02 pl 61. 62 0. 05 24. 23 0. 01 0 0. 06	am(o) 2 44.63 1.94 8.38 0.05 0 18.55	am(in) 45.69 2.19 6.96 0.01 0 19.28	bi 36. 51 5. 32 13. 85 0. 02 0 20. 67
样品号 ず物 SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ Fe ₂ O ₃ Fe ₀ MnO	gt 37. 68 0 22. 01 0 0 29. 11 5. 21	opx 49. 15 0. 11 2. 3 0. 02 0 32. 14 1. 54	LT11 ksp 63. 13 0 19. 31 0. 03 0 0. 02 0. 01	pl pl 62.55 0 23.3 0 0.08 0.02	cd 47.43 0 32.7 0.02 0 8.49 0.36	bi 35. 32 3. 92 17. 34 0. 08 0 19. 16 0. 12	opx(c) c 49.99 2 0.13 0.22 0.02 0 33.44 2 0.91	opx(r) 50.45 0.22 0.25 0.02 0 33.52 0.9	cpx 52 0.11 0.74 0 0 13.49 0.39	LT12 ksp 66. 28 0. 01 15. 57 0 0 0. 01 0. 02	2-02 pl 61. 62 0. 05 24. 23 0. 01 0 0. 06 0. 02	am(0) 2 44. 63 1. 94 8. 38 0. 05 0 18. 55 0 26	am(in) 45.69 2.19 6.96 0.01 0 19.28 0.91	bi 36. 51 5. 32 13. 85 0. 02 0 20. 67 0. 1
样品号 ず物 SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ Fe ₂ O ₃ Fe ₀ MnO MgO	gt 37. 68 0 22. 01 0 0 29. 11 5. 21 5. 59	opx 49. 15 0. 11 2. 3 0. 02 0 32. 14 1. 54 15. 01	LT11 ksp 63. 13 0 19. 31 0. 03 0 0. 02 0. 01 0	pl pl 62.55 0 23.3 0 0.08 0.02 0	cd 47. 43 0 32. 7 0. 02 0 8. 49 0. 36 8. 17	bi 35. 32 3. 92 17. 34 0. 08 0 19. 16 0. 12 10. 29	opx(c) 6 49.99 2 0.13 0.22 0.02 0 33.44 0.91 14.57	ppx(r) 50.45 0.22 0.25 0.02 0 33.52 0.9 14.78	cpx 52 0. 11 0. 74 0 0 13. 49 0. 39 11. 16	LT12 ksp 66. 28 0. 01 15. 57 0 0 0. 01 0. 02 0	2-02 pl 61. 62 0. 05 24. 23 0. 01 0 0. 06 0. 02 0. 01	am(0) 2 44. 63 1. 94 5 8. 38 0. 05 0 18. 55 0. 26 10. 01	am(in) 45.69 2.19 6.96 0.01 0 19.28 0.91 10.09	bi 36. 51 5. 32 13. 85 0. 02 0 20. 67 0. 1 9. 96
样品号 矿物 SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO	gt 37. 68 0 22. 01 0 0 29. 11 5. 21 5. 59 0. 68	opx 49. 15 0. 11 2. 3 0. 02 0 32. 14 1. 54 15. 01 0. 05	LT11 ksp 63. 13 0 19. 31 0. 03 0 0. 02 0. 01 0 0, 08	I-47 pl 62.55 0 23.3 0 0.08 0.02 0 3.96	cd 47. 43 0 32. 7 0. 02 0 8. 49 0. 36 8. 17 0	bi 35. 32 3. 92 17. 34 0. 08 0 19. 16 0. 12 10. 29 0	opx(c) 6 49.99 2 0.13 0.22 0.02 0 33.44 0.91 14.57 0.93	ppx(r) 50.45 0.22 0.25 0.02 0 33.52 0.9 14.78 0.78	cpx 52 0. 11 0. 74 0 0 13. 49 0. 39 11. 16 22. 39	LT12 ksp 66. 28 0. 01 15. 57 0 0. 01 0. 02 0 0. 04	2-02 pl 61. 62 0. 05 24. 23 0. 01 0 0. 06 0. 02 0. 01 5. 65	am(0) 2 44. 63 1. 94 5 8. 38 0. 05 0 18. 55 0. 26 10. 01 11. 82	am(in) 45.69 2.19 6.96 0.01 0 19.28 0.91 10.09 11.82	bi 36. 51 5. 32 13. 85 0. 02 0 20. 67 0. 1 9. 96 0
样品号 が物 SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 Fe0 MnO Mg0 Ca0 Na2O	gt 37. 68 0 22. 01 0 0 29. 11 5. 21 5. 59 0. 68 0 08	opx 49. 15 0. 11 2. 3 0. 02 0 32. 14 1. 54 15. 01 0. 05 0. 05	LT11 ksp 63. 13 0 19. 31 0. 03 0 0. 02 0. 01 0 0. 08 1. 63	I-47 pl 62.55 0 23.3 0 0.08 0.02 0 3.96 10.03	cd 47. 43 0 32. 7 0. 02 0 8. 49 0. 36 8. 17 0 0 17	bi 35. 32 3. 92 17. 34 0. 08 0 19. 16 0. 12 10. 29 0 0. 09	opx(c) 6 49.99 2 0.13 0.22 0.02 0 33.44 2 0.91 14.57 0.93 0	ppx(r) 50.45 0.22 0.25 0.02 0 33.52 0.9 14.78 0.78 0	cpx 52 0.11 0.74 0 13.49 0.39 11.16 22.39 0.42	LT12 ksp 66. 28 0. 01 15. 57 0 0 0. 01 0. 02 0 0. 04 0. 58	2-02 pl 61. 62 0. 05 24. 23 0. 01 0 0. 06 0. 02 0. 01 5. 65 8. 58	am(0) 2 44. 63 1. 94 5 8. 38 0. 05 0 18. 55 0. 26 10. 01 11. 82 1. 88	am(in) 45.69 2.19 6.96 0.01 0 19.28 0.91 10.09 11.82 0.83	bi 36. 51 5. 32 13. 85 0. 02 0 20. 67 0. 1 9. 96 0 0 02
样品号 矿物 SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O	gt 37. 68 0 22. 01 0 0 29. 11 5. 21 5. 59 0. 68 0. 08 0	opx 49. 15 0. 11 2. 3 0. 02 0 32. 14 1. 54 15. 01 0. 05 0. 05 0	LT11 ksp 63. 13 0 19. 31 0. 03 0 0. 02 0. 01 0 0. 08 1. 63 15. 22	I-47 pl 62.55 0 23.3 0 0.08 0.02 0 3.96 10.03 0.17	cd 47. 43 0 32. 7 0. 02 0 8. 49 0. 36 8. 17 0 0. 17 0. 01	bi 35. 32 3. 92 17. 34 0. 08 0 19. 16 0. 12 10. 29 0 0. 09 10. 21	opx(c) c 49.99 c 0.13 c 0.22 c 0.02 c 33.44 c 0.91 c 14.57 c 0.93 c 0.02 c 0.02 c 0.03 c 0.02 c 0.03 c 0.03 c 0.03 c 0.04 c 0.05 c 0	ppx(r) 50.45 0.22 0.25 0.02 0 33.52 0.9 14.78 0.78 0 0	cpx 52 0.11 0.74 0 13.49 0.39 11.16 22.39 0.42 0	LT12 ksp 66. 28 0. 01 15. 57 0 0 0. 01 0. 02 0 0. 04 0. 58 16. 81	2-02 pl 61. 62 0. 05 24. 23 0. 01 0 0. 06 0. 02 0. 01 5. 65 8. 58 0. 53	am(0) 44. 63 1. 94 8. 38 0. 05 0 18. 55 0. 26 10. 01 11. 82 1. 88 1. 16	am(in) 45.69 2.19 6.96 0.01 0 19.28 0.91 10.09 11.82 0.83 1.4	bi 36. 51 5. 32 13. 85 0. 02 0 20. 67 0. 1 9. 96 0 0. 02 10. 81
样品号 矿物 SiO2 TiO2 Al2O3 Cr2O3 Fe0 MnO MgO CaO Na2O K2O 点量	gt 37. 68 0 22. 01 0 0 29. 11 5. 21 5. 59 0. 68 0. 08 0 100. 35	opx 49. 15 0. 11 2. 3 0. 02 0 32. 14 1. 54 15. 01 0. 05 0. 05 0 100, 37	LT11 ksp 63. 13 0 19. 31 0. 03 0 0. 02 0. 01 0 0. 08 1. 63 15. 22 99. 44	I 47 pl 62.55 0 23.3 0 0 0.08 0.02 0 3.96 10.03 0.17 100.11	cd 47. 43 0 32. 7 0. 02 0 8. 49 0. 36 8. 17 0 0. 17 0. 01 97. 35	bi 35. 32 3. 92 17. 34 0. 08 0 19. 16 0. 12 10. 29 0 0. 09 10. 21 96. 53	opx(c) 6 49.99 2 0.13 0.22 0.02 0 33.44 2 0.91 14.57 0.93 0 0.02 100.23 1	ppx(r) 50. 45 0. 22 0. 25 0. 02 0 33. 52 0. 9 14. 78 0. 78 0 0 00. 92	cpx 52 0.11 0.74 0 13.49 0.39 11.16 22.39 0.42 0 100.7	LT12 ksp 66. 28 0. 01 15. 57 0 0 0. 01 0. 02 0 0. 04 0. 58 16. 81 99. 32	2-02 pl 61. 62 0. 05 24. 23 0. 01 0 0. 06 0. 02 0. 01 5. 65 8. 58 0. 53 100. 7	am(0) 44. 63 1. 94 3. 38 0. 05 0 18. 55 0. 26 10. 01 11. 82 1. 88 1. 16 5. 98. 68	am(in) 45.69 2.19 6.96 0.01 0 19.28 0.91 10.09 11.82 0.83 1.4 99.18	bi 36. 51 5. 32 13. 85 0. 02 0 20. 67 0. 1 9. 96 0 0. 02 10. 81 97. 26
样品号 矿物 SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 Fe0 MnO MgO CaO Na2O K2O 总量 O	gt 37. 68 0 22. 01 0 29. 11 5. 21 5. 59 0. 68 0. 08 0 100. 35 12	opx 49. 15 0. 11 2. 3 0. 02 0 32. 14 1. 54 15. 01 0. 05 0. 05 0 100. 37 6	LT11 ksp 63. 13 0 19. 31 0. 03 0 0. 02 0. 01 0 0. 08 1. 63 15. 22 99. 44 8	I-47 pl 62.55 0 23.3 0 0.08 0.02 0 3.96 10.03 0.17 100.11	cd 47. 43 0 32. 7 0. 02 0 8. 49 0. 36 8. 17 0 0. 17 0. 01 97. 35 18	bi 35. 32 3. 92 17. 34 0. 08 0 19. 16 0. 12 10. 29 0 0. 09 10. 21 96. 53 11	opx(c) 6 49.99 2 0.13 0.22 0.02 0 33.44 0.91 14.57 0.93 0 0.02 100.23 1 6	opx(r) 50.45 0.22 0.25 0.02 0 33.52 0.9 14.78 0 0 000.92 6	cpx 52 0.11 0.74 0 13.49 0.39 11.16 22.39 0.42 0 100.7 6	LT12 ksp 66. 28 0. 01 15. 57 0 0 0. 01 0. 02 0 0. 04 0. 58 16. 81 99. 32 8	2-02 pl 61. 62 0. 05 24. 23 0. 01 0 0. 06 0. 02 0. 01 5. 65 8. 58 0. 53 100. 76 8	am(0) 44. 63 1. 94 8. 38 0. 05 0 18. 55 0. 26 10. 01 11. 82 1. 88 1. 16 5 98. 68 23	am(in) 45.69 2.19 6.96 0.01 0 19.28 0.91 10.09 11.82 0.83 1.4 99.18 23	bi 36. 51 5. 32 13. 85 0. 02 0 20. 67 0. 1 9. 96 0 0. 02 10. 81 97. 26 11
样品号 矿物 SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 Fe0 MnO MgO CaO Na2O K2O 总量 O Si	gt 37. 68 0 22. 01 0 29. 11 5. 21 5. 59 0. 68 0. 08 0 100. 35 12 2. 967	opx 49. 15 0. 11 2. 3 0. 02 0 32. 14 1. 54 15. 01 0. 05 0. 05 0 100. 37 6 1. 915	LT11 ksp 63. 13 0 19. 31 0. 03 0 0. 02 0. 01 0 0. 08 1. 63 15. 22 99. 44 8 2. 939	I-47 pl 62.55 0 23.3 0 0.08 0.02 0 3.96 10.03 0.17 100.11 8 2.772	cd 47. 43 0 32. 7 0. 02 0 8. 49 0. 36 8. 17 0 0. 17 0. 01 97. 35 18 4. 93	bi 35. 32 3. 92 17. 34 0. 08 0 19. 16 0. 12 10. 29 0 0. 09 10. 21 96. 53 11 2. 673	$\begin{array}{c} 0px(c) & c \\ 49. 99 & c \\ 49. 99 & c \\ 0. 13 & 0. 22 \\ 0. 02 & 0 \\ 33. 44 & c \\ 0. 91 & 14. 57 \\ 0. 93 & 0 \\ 0. 02 & 100. 23 & 1 \\ 6 & 1. 964 \end{array}$	opx(r) 50.45 0.22 0.25 0.02 0 33.52 0.9 14.78 0 000.92 6 1.967	cpx 52 0.11 0.74 0 13.49 0.39 11.16 22.39 0.42 0 100.7 6 1.962	LT12 ksp 66. 28 0. 01 15. 57 0 0. 01 0. 02 0 0. 04 0. 58 16. 81 99. 32 8 3. 092	pl 61. 62 0. 05 24. 23 0. 01 0 0. 06 0. 02 0. 01 5. 65 8. 58 0. 53 100. 70 8 2. 724	am(o) 44. 63 1. 94 3. 38 0. 05 0 18. 55 0. 26 10. 01 11. 82 1. 88 1. 16 5 98. 68 23 6 703	am(in) 45.69 2.19 6.96 0.01 0 19.28 0.91 10.09 11.82 0.83 1.4 99.18 23 6.816	bi 36. 51 5. 32 13. 85 0. 02 0 20. 67 0. 1 9. 96 0 0. 02 10. 81 97. 26 11 2. 776
样品号 矿物 SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 Fe0 MnO MgO CaO Na2O K2O 总量 O Si Ti	gt 37. 68 0 22. 01 0 29. 11 5. 21 5. 59 0. 68 0. 08 0 100. 35 12 2. 967 0	opx 49. 15 0. 11 2. 3 0. 02 0 32. 14 1. 54 15. 01 0. 05 0. 05 0 100. 37 6 1. 915 0. 003	LT11 ksp 63. 13 0 19. 31 0. 03 0 0. 02 0. 01 0 0. 08 1. 63 15. 22 99. 44 8 2. 939 0	$\begin{array}{c} 1.47 \\ pl \\ 62.55 \\ 0 \\ 23.3 \\ 0 \\ 0 \\ 0.08 \\ 0.02 \\ 0 \\ 3.96 \\ 10.03 \\ 0.17 \\ 100.11 \\ 8 \\ 2.772 \\ 0 \end{array}$	cd 47. 43 0 32. 7 0. 02 0 8. 49 0. 36 8. 17 0 0. 17 0. 01 97. 35 18 4. 93 0	bi 35. 32 3. 92 17. 34 0. 08 0 19. 16 0. 12 10. 29 0 0. 09 10. 21 96. 53 11 2. 673 0. 223	$\begin{array}{c} 0 px(c) & c \\ 49.99 & c \\ 49.99 & c \\ 0.13 & 0.22 \\ 0.02 & 0 \\ 33.44 & c \\ 0.91 & 14.57 \\ 0.93 & 0 \\ 0.02 & 100.23 & 1 \\ 6 & 1.964 \\ 0.004 & 0 \\ \end{array}$	ppx(r) 50. 45 0. 22 0. 25 0. 02 0 33. 52 0. 9 14. 78 0 0 0 0 0 0 0 0 0 14. 78 0 0 0 0 0 0 0 0 0 0 0 0 0	cpx 52 0.11 0.74 0 0 13.49 0.39 11.16 22.39 0.42 0 100.7 6 1.962 0 0.003 0	LT12 ksp 66. 28 0. 01 15. 57 0 0 0. 01 0. 02 0 0. 04 0. 58 16. 81 99. 32 8 3. 092 0	2-02 pl 61. 62 0. 05 24. 23 0. 01 0 0. 06 0. 02 0. 01 5. 65 8. 58 0. 53 100. 70 8 2. 724 0. 002	am(o) 44.63 1.94 8.38 0.05 0 18.55 0.26 10.01 11.82 1.88 1.16 6 98.68 23 6.703 0 219	am(in) 45.69 2.19 6.96 0.01 0 19.28 0.91 10.09 11.82 0.83 1.4 99.18 23 6.816 0.246	bi 36. 51 5. 32 13. 85 0. 02 0 20. 67 0. 1 9. 96 0 0. 02 10. 81 97. 26 11 2. 776 0. 304
样品号 矿物 SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 Fe0 MnO MgO CaO Na2O K2O 总量 O Si Ti Al	gt 37. 68 0 22. 01 0 29. 11 5. 21 5. 59 0. 68 0. 08 0 100. 35 12 2. 967 0 2. 043	opx 49. 15 0. 11 2. 3 0. 02 0 32. 14 1. 54 15. 01 0. 05 0. 05 0 100. 37 6 1. 915 0. 003 0, 106	LT11 ksp 63. 13 0 19. 31 0. 03 0 0. 02 0. 01 0 0. 08 1. 63 15. 22 99. 44 8 2. 939 0 1. 06	$\begin{array}{c} 1.47 \\ pl \\ 62.55 \\ 0 \\ 23.3 \\ 0 \\ 0 \\ 0.08 \\ 0.02 \\ 0 \\ 3.96 \\ 10.03 \\ 0.17 \\ 100.11 \\ 8 \\ 2.772 \\ 0 \\ 1.217 \end{array}$	cd 47. 43 0 32. 7 0. 02 0 8. 49 0. 36 8. 17 0 0. 17 0. 01 97. 35 18 4. 93 0 4. 007	bi 35. 32 3. 92 17. 34 0. 08 0 19. 16 0. 12 10. 29 0 0. 09 10. 21 96. 53 11 2. 673 0. 223 1. 547	$\begin{array}{c} 0px(c) & c \\ 49.99 & c \\ 49.99 & c \\ 0.13 & 0.22 \\ 0.02 & 0 \\ 33.44 & c \\ 0.91 & 14.57 \\ 0.93 & 0 \\ 0.02 & 100.23 & 1 \\ 6 & 1.964 \\ 0.004 & 0 \\ 0.01 & c \\ \end{array}$	ppx(r) 50. 45 0. 22 0. 25 0. 02 0 33. 52 0. 9 14. 78 0 0 0 00. 92 6 1. 967 0. 006 0. 001	cpx 52 0. 11 0. 74 0 13. 49 0. 39 11. 16 22. 39 0. 42 0 100. 7 6 1. 962 0. 003 0. 033	LT12 ksp 66. 28 0. 01 15. 57 0 0 0. 01 0. 02 0 0. 04 0. 58 16. 81 99. 32 8 3. 092 0 0. 856	pl pl 61. 62 0. 05 24. 23 0. 01 0 0. 06 0. 02 0. 01 5. 65 8. 58 0. 53 100. 70 8 2. 724 0.002 1. 263	am(o) 44.63 1.94 8.38 0.05 0 18.55 0.26 10.01 11.82 1.88 1.16 6 98.68 23 6.703 2 0.219 1.484	am(in) 45.69 2.19 6.96 0.01 0 19.28 0.91 10.09 11.82 0.83 1.4 99.18 23 6.816 0.246 1.224	bi 36. 51 5. 32 13. 85 0. 02 0 20. 67 0. 1 9. 96 0 0. 02 10. 81 97. 26 11 2. 776 0. 304 1. 242
样品号 矿物 SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 Fe0 MnO MgO CaO Na2O K2O 总量 O Si Ti Al	gt 37. 68 0 22. 01 0 29. 11 5. 21 5. 59 0. 68 0 100. 35 12 2. 967 0 2. 043 0	opx 49. 15 0. 11 2. 3 0. 02 0 32. 14 1. 54 15. 01 0. 05 0. 05 0 100. 37 6 1. 915 0. 003 0. 106 0. 001	LT11 ksp 63. 13 0 19. 31 0. 03 0 0. 02 0. 01 0 0. 08 1. 63 15. 22 99. 44 8 2. 939 0 1. 06 0. 001	$\begin{array}{c} 1.47 \\ pl \\ 62.55 \\ 0 \\ 23.3 \\ 0 \\ 0 \\ 0.08 \\ 0.02 \\ 0 \\ 3.96 \\ 10.03 \\ 0.17 \\ 100.11 \\ 8 \\ 2.772 \\ 0 \\ 1.217 \\ 0 \end{array}$	cd 47. 43 0 32. 7 0. 02 0 8. 49 0. 36 8. 17 0 0. 17 0. 01 97. 35 18 4. 93 0 4. 007 0. 002	bi 35. 32 3. 92 17. 34 0. 08 0 19. 16 0. 12 10. 29 0 0. 09 10. 21 96. 53 11 2. 673 0. 223 1. 547 0. 005	opx (c) opx 49.99 49.99 0.13 0.22 0.02 0 33.44 4 0.91 14.57 14.57 0.93 0 02 100.23 1 6 1.964 0.004 0 0.01 0	ppx(r) 50. 45 0. 22 0. 25 0. 02 0 33. 52 0. 9 14. 78 0 00. 92 6 1. 967 0. 006 0. 011 0. 001	cpx 52 0. 11 0. 74 0 13. 49 0. 39 11. 16 22. 39 0. 42 0 100. 7 6 1. 962 0. 003 0	LT12 ksp 66. 28 0. 01 15. 57 0 0 0. 01 0. 02 0 0. 04 0. 58 16. 81 99. 32 8 3. 092 0 0. 856 0	2-02 pl 61. 62 0. 05 24. 23 0. 01 0 0. 06 0. 02 0. 01 5. 65 8. 58 0. 53 100. 70 8 2. 724 0. 002 1. 263 0	am(o) 44.63 1.94 8.38 0.05 0 18.55 0.26 10.01 11.82 1.88 1.16 5 98.68 23 6.703 2 0.219 1.484 0.006	am(in) 45.69 2.19 6.96 0.01 0 19.28 0.91 10.09 11.82 0.83 1.4 99.18 23 6.816 0.246 1.224 0.001	bi 36. 51 5. 32 13. 85 0. 02 0 20. 67 0. 1 9. 96 0 0. 02 10. 81 97. 26 11 2. 776 0. 304 1. 242 0. 001
样品号 矿物 SiO2 TiO2 Al2O3 Cr2O3 Fe0 MnO MgO CaO Na2O K2O 总量 O Si Ti Al Cr Fa ³⁺	gt 37. 68 0 22. 01 0 0 29. 11 5. 21 5. 59 0. 68 0 100. 35 12 2. 967 0 2. 043 0 0 0 0 0 0 0 0 0 0 0 0 0	opx 49. 15 0. 11 2. 3 0. 02 0 32. 14 1. 54 15. 01 0. 05 0. 05 0 100. 37 6 1. 915 0. 003 0. 106 0. 001 0. 061	LT11 ksp 63. 13 0 19. 31 0. 03 0 0. 02 0. 01 0 0. 08 1. 63 15. 22 99. 44 8 2. 939 0 1. 06 0. 001 0 0. 01	$\begin{array}{c c} 1.47 \\ \hline pl \\ 62.55 \\ 0 \\ 23.3 \\ 0 \\ 0 \\ 0.08 \\ 0.02 \\ 0 \\ 3.96 \\ 10.03 \\ 0.17 \\ 100.11 \\ 8 \\ 2.772 \\ 0 \\ 1.217 \\ 0 \\ 0 \\ 0.03 \\ \end{array}$	cd 47. 43 0 32. 7 0. 02 0 8. 49 0. 36 8. 17 0 0. 17 0. 01 97. 35 18 4. 93 0 4. 007 0. 002 0, 148	bi 35. 32 3. 92 17. 34 0. 08 0 19. 16 0. 12 10. 29 0 0. 09 10. 21 96. 53 11 2. 673 0. 223 1. 547 0. 005 0	opx (c) opx 49.99 49.99 0.13 0.22 0.02 0 33.44 4 0.91 14.57 14.57 0.93 0 02 100.23 1 6 1.964 0.004 0 0.01 0 0.055 0	opx(r) 50.45 0.22 0.25 0.02 0 33.52 0.9 14.78 0 00.92 6 1.967 0.006 0.011 0.0041	cpx 52 0.11 0.74 0 13.49 0.39 11.16 22.39 0.42 0 100.7 6 1.962 0.003 0 0.033 0	LT12 ksp 66. 28 0. 01 15. 57 0 0. 01 0. 02 0 0. 04 0. 58 16. 81 99. 32 8 3. 092 0 0. 856 0 0. 001	2-02 pl 61. 62 0. 05 24. 23 0. 01 0 0. 06 0. 02 0. 01 5. 65 8. 58 0. 53 100. 76 8 2. 724 0. 002 1. 263 0 0. 002 0. 01 0 0 0 0 0 0 0 0 0 0 0 0 0	am(o) 44.63 1.94 8.38 0.05 0 18.55 0.26 10.01 11.82 1.88 1.16 5 98.68 23 6.703 2 0.219 1.484 0.006 0 058	am(in) 45.69 2.19 6.96 0.01 0 19.28 0.91 10.09 11.82 0.83 1.4 99.18 23 6.816 0.246 1.224 0.001 0.262	bi 36. 51 5. 32 13. 85 0. 02 0 20. 67 0. 1 9. 96 0 0. 02 10. 81 97. 26 11 2. 776 0. 304 1. 242 0. 001 0
样品号 矿物 SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O 总量 O Si Ti Al Cr Fe ³⁺ Fe ²⁺	gt 37. 68 0 22. 01 0 0 29. 11 5. 21 5. 59 0. 68 0. 08 0 100. 35 12 2. 967 0 2. 043 0 0. 035 1 882	opx 49. 15 0. 11 2. 3 0. 02 0 32. 14 1. 54 15. 01 0. 05 0 100. 37 6 1. 915 0. 003 0. 106 0. 001 0. 061 0. 986	LT11 ksp 63. 13 0 19. 31 0. 03 0 0. 02 0. 01 0 0. 08 1. 63 15. 22 99. 44 8 2. 939 0 1. 06 0. 001 0. 001 0 0	$\begin{array}{c c} 1.47 \\ \hline pl \\ \hline 62.55 \\ 0 \\ 23.3 \\ 0 \\ 0 \\ 0.08 \\ 0.02 \\ 0 \\ 3.96 \\ 10.03 \\ 0.17 \\ 100.11 \\ 8 \\ 2.772 \\ 0 \\ 1.217 \\ 0 \\ 0.003 \\ 0 \\ \end{array}$	cd 47. 43 0 32. 7 0. 02 0 8. 49 0. 36 8. 17 0 0. 17 0. 01 97. 35 18 4. 93 0 4. 007 0. 002 0. 148 0 59	bi 35. 32 3. 92 17. 34 0. 08 0 19. 16 0. 12 10. 29 0 0. 09 10. 21 96. 53 11 2. 673 0. 223 1. 547 0. 005 0 1. 213	opx(c) 6 49.99 2 0.13 0.22 0.02 0 33.44 0.91 14.57 0.93 0 0.02 100.23 1 6 1.964 0.004 0 0.01 0 0.055 0 1.043	$\begin{array}{c} ppx(r) \\ 50. 45 \\ 0. 22 \\ 0. 25 \\ 0. 02 \\ 0 \\ 33. 52 \\ 0. 9 \\ 14. 78 \\ 0. 78 \\ 0 \\ 0 \\ 0.00. 92 \\ 6 \\ 1. 967 \\ 0. 006 \\ 0. 011 \\ 0. 001 \\ 0. 041 \\ 1. 052 \end{array}$	cpx 52 0. 11 0. 74 0 13. 49 0. 39 11. 16 22. 39 0. 42 0 100. 7 6 1. 962 0. 003 0. 033 0 0. 067 0 358	LT12 ksp 66. 28 0. 01 15. 57 0 0 0. 01 0. 02 0 0. 04 0. 58 16. 81 99. 32 8 3. 092 0 0. 856 0 0. 001 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 2.02 \\ \hline pl \\ 61, 62 \\ 0, 05 \\ 24, 23 \\ 0, 01 \\ 0 \\ 0, 06 \\ 0, 02 \\ 0, 01 \\ 5, 65 \\ 8, 58 \\ 0, 53 \\ 100, 76 \\ 8 \\ 2, 724 \\ 0, 002 \\ 1, 263 \\ 0 \\ 0, 002 \\ 0 \end{array}$	am(0) 2 44. 63 1. 94 8. 38 0. 05 0 18. 55 0. 26 10. 01 11. 82 1. 88 1. 16 6 98. 68 23 4 6. 703 2 0. 219 5 1. 484 0. 006 2 0. 058 2 272	am(in) 45.69 2.19 6.96 0.01 0 19.28 0.91 10.09 11.82 0.83 1.4 99.18 23 6.816 0.246 1.224 0.001 0.262 2.144	bi 36. 51 5. 32 13. 85 0. 02 0 20. 67 0. 1 9. 96 0 0. 02 10. 81 97. 26 11 2. 776 0. 304 1. 242 0. 001 0 1. 314
样品号 矿物 SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O 总量 O Si Ti Al Cr Fe ³⁺⁺ Fe ²⁺⁺ Mn	gt 37. 68 0 22. 01 0 0 29. 11 5. 21 5. 59 0. 68 0. 08 0 100. 35 12 2. 967 0 2. 043 0 0. 035 1. 882 0. 347	opx 49. 15 0. 11 2. 3 0. 02 0 32. 14 1. 54 15. 01 0. 05 0 100. 37 6 1. 915 0. 003 0. 106 0. 001 0. 061 0. 986 0. 051	LT11 ksp 63. 13 0 19. 31 0. 03 0 0. 02 0. 01 0 0. 08 1. 63 15. 22 99. 44 8 2. 939 0 1. 06 0. 001 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c c} 1.47 \\ \hline pl \\ 62.55 \\ 0 \\ 23.3 \\ 0 \\ 0 \\ 0.08 \\ 0.02 \\ 0 \\ 3.96 \\ 10.03 \\ 0.17 \\ 100.11 \\ 8 \\ 2.772 \\ 0 \\ 1.217 \\ 0 \\ 0.003 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$\begin{array}{c} cd \\ 47. 43 \\ 0 \\ 32. 7 \\ 0. 02 \\ 0 \\ 8. 49 \\ 0. 36 \\ 8. 17 \\ 0 \\ 0. 17 \\ 0. 01 \\ 97. 35 \\ 18 \\ 4. 93 \\ 0 \\ 4. 007 \\ 0. 002 \\ 0. 148 \\ 0. 59 \\ 0. 032 \end{array}$	bi 35. 32 3. 92 17. 34 0. 08 0 19. 16 0. 12 10. 29 0 0. 09 10. 21 96. 53 11 2. 673 0. 223 1. 547 0. 005 0 1. 213 0. 007	opx (c) opx 49. 99 49. 99 0. 13 0. 22 0. 02 0 33. 44 4 0. 91 14. 57 14. 57 0. 93 0 02 100. 23 1 6 1. 964 0. 001 0 0. 001 0 0. 055 1. 043 0. 03 0	$\begin{array}{c} ppx(r) \\ 50. 45 \\ 0. 22 \\ 0. 25 \\ 0. 02 \\ 0 \\ 33. 52 \\ 0. 9 \\ 14. 78 \\ 0. 78 \\ 0 \\ 000. 92 \\ 6 \\ 1. 967 \\ 0. 006 \\ 0. 011 \\ 0. 001 \\ 0. 041 \\ 1. 052 \\ 0. 03 \\ \end{array}$	cpx 52 0. 11 0. 74 0 13. 49 0. 39 11. 16 22. 39 0. 42 0 100. 7 6 1. 962 0. 003 0. 033 0 0. 358 0 012	LT12 ksp 66. 28 0. 01 15. 57 0 0 0. 01 0. 02 0 0. 04 0. 58 16. 81 99. 32 8 3. 092 0 0. 856 0 0. 001 0 0. 001 0 0. 001 0 0 0 0 0 0 0 0 0 0 0 0 0	2-02 pl 61. 62 0. 05 24. 23 0. 01 0 0. 06 0. 02 0. 01 5. 65 8. 58 0. 53 100. 76 8 2. 724 0. 002 1. 263 0 0. 002 0 0. 002 0 0 0. 002 0 0 0 0 0 0 0 0 0 0 0 0 0	am(0) 2 44. 63 1. 94 8. 38 0. 05 0 18. 55 0. 26 10. 01 11. 82 1. 88 1. 16 6 98. 68 23 6. 703 2 0. 219 1. 484 0. 006 2 0. 058 2. 272 0. 033	am(in) 45.69 2.19 6.96 0.01 0 19.28 0.91 10.09 11.82 0.83 1.4 99.18 23 6.816 0.246 1.224 0.001 0.262 2.144 0.115	bi 36. 51 5. 32 13. 85 0. 02 0 20. 67 0. 1 9. 96 0 0. 02 10. 81 97. 26 11 2. 776 0. 304 1. 242 0. 001 0 1. 314 0. 006
样品号 矿物 SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 Fe0 MnO MgO CaO Na2O K2O 总量 O Si Ti Al Cr Fe ³⁺⁺ Fe ²⁺ Mn Ma	gt 37. 68 0 22. 01 0 0 29. 11 5. 21 5. 59 0. 68 0. 08 0 100. 35 12 2. 967 0 2. 043 0 0. 035 1. 882 0. 347 0 656	opx 49. 15 0. 11 2. 3 0. 02 0 32. 14 1. 54 15. 01 0. 05 0 100. 37 6 1. 915 0. 003 0. 106 0. 001 0. 061 0. 986 0. 051 0. 872	LT11 ksp 63. 13 0 19. 31 0. 03 0 0. 02 0. 01 0 0. 08 1. 63 15. 22 99. 44 8 2. 939 0 1. 06 0. 001 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c c} 1.47 \\ \hline pl \\ 62.55 \\ 0 \\ 23.3 \\ 0 \\ 0 \\ 0.08 \\ 0.02 \\ 0 \\ 3.96 \\ 10.03 \\ 0.17 \\ 100.11 \\ 8 \\ 2.772 \\ 0 \\ 1.217 \\ 0 \\ 1.217 \\ 0 \\ 0.003 \\ 0 \\ 0.001 \\ 0 \end{array}$	cd 47. 43 0 32. 7 0. 02 0 8. 49 0. 36 8. 17 0 0. 17 0. 01 97. 35 18 4. 93 0 4. 007 0. 002 0. 148 0. 59 0. 032 1. 266	bi 35. 32 3. 92 17. 34 0. 08 0 19. 16 0. 12 10. 29 0 0. 09 10. 21 96. 53 11 2. 673 0. 223 1. 547 0. 005 0 1. 213 0. 007 1. 161	opx (c) opx 49.99 49.99 0.13 0.22 0.02 0 33.44 4 0.91 14.57 14.57 0.93 0 0.02 100.23 1 6 1.964 0.01 0 0.055 1.043 0.03 0.853	ppx(r) 50. 45 0. 22 0. 25 0. 02 0 33. 52 0. 9 14. 78 0. 78 0 0 00. 92 6 1. 967 0. 006 0. 011 0. 001 0. 041 1. 052 0. 03 0. 859	cpx 52 0. 11 0. 74 0 13. 49 0. 39 11. 16 22. 39 0. 42 0 100. 7 6 1. 962 0. 003 0. 033 0 0. 358 0. 012 0	LT12 ksp 66. 28 0. 01 15. 57 0 0 0. 01 0. 02 0 0. 04 0. 58 16. 81 99. 32 8 3. 092 0 0. 856 0 0. 001 0 0. 001 0 0. 001 0 0 0 0 0 0 0 0 0 0 0 0 0	2-02 pl 61. 62 0. 05 24. 23 0. 01 0 0. 06 0. 02 0. 01 5. 65 8. 58 0. 53 100. 76 8 2. 724 0. 002 1. 263 0 0. 002 0. 000 0. 002 0. 000 0. 002 0. 000 0. 000 00	am(0) 2 44. 63 1. 94 8. 38 0. 05 0 18. 55 0. 26 10. 01 11. 82 1. 88 1. 16 98. 68 23 6. 703 2. 0. 219 1. 484 0. 006 2. 0. 058 2. 272 0. 033 2. 241	am(in) 45.69 2.19 6.96 0.01 0 19.28 0.91 10.09 11.82 0.83 1.4 99.18 23 6.816 0.246 1.224 0.001 0.262 2.144 0.115 2.243	bi 36. 51 5. 32 13. 85 0. 02 0 20. 67 0. 1 9. 96 0 0. 02 10. 81 97. 26 11 2. 776 0. 304 1. 242 0. 001 0 1. 314 0. 006 1. 129
样品号 矿物 SiO2 TiO2 Al2O3 Cr2O3 Fe0 MnO MgO CaO Na2O K2O 总量 O Si Ti Al Cr Fe ³⁺ Fe ²⁺ Mn Mg Ca	$\begin{array}{r} gt \\ 37.\ 68 \\ 0 \\ 22.\ 01 \\ 0 \\ 0 \\ 29.\ 11 \\ 5.\ 21 \\ 5.\ 59 \\ 0.\ 68 \\ 0.\ 08 \\ 0 \\ 100.\ 35 \\ 12 \\ 2.\ 967 \\ 0 \\ 2.\ 043 \\ 0 \\ 0.\ 035 \\ 1.\ 882 \\ 0.\ 347 \\ 0.\ 656 \\ 0\ 057 \\ \end{array}$	opx 49. 15 0. 11 2. 3 0. 02 0 32. 14 1. 54 15. 01 0. 05 0. 05 0 100. 37 6 1. 915 0. 003 0. 106 0. 001 0. 061 0. 986 0. 051 0. 872 0. 002	LT11 ksp 63. 13 0 19. 31 0. 03 0 0. 02 0. 01 0 0. 08 1. 63 15. 22 99. 44 8 2. 939 0 1. 06 0. 001 0 0 0 0 0 0 0 0 0 0 0 0 0	I-47 pl 62.55 0 23.3 0 0.08 0.02 0 3.96 10.03 0.17 100.11 8 2.772 0 1.217 0 0.003 0 0.003 0 0.188	$\begin{array}{c} cd \\ 47.43 \\ 0 \\ 32.7 \\ 0.02 \\ 0 \\ 8.49 \\ 0.36 \\ 8.17 \\ 0 \\ 0.17 \\ 0.01 \\ 97.35 \\ 18 \\ 4.93 \\ 0 \\ 4.007 \\ 0.002 \\ 0.148 \\ 0.59 \\ 0.032 \\ 1.266 \\ 0 \end{array}$	bi 35. 32 3. 92 17. 34 0. 08 0 19. 16 0. 12 10. 29 0 0. 09 10. 21 96. 53 11 2. 673 0. 223 1. 547 0. 005 0 1. 213 0. 007 1. 161 0	opx (c) opx 49.99 49.99 0.13 0.22 0.02 0 33.44 4 0.91 14.57 14.57 0.93 0 0.02 100.23 1 6 1.964 0.01 0 0.055 1.043 0.03 0.853 0.039 0	ppx(r) 50.45 0.22 0.25 0.02 0 33.52 0.9 14.78 0.78 0	cpx 52 0. 11 0. 74 0 13. 49 0. 39 11. 16 22. 39 0. 42 0 100. 7 6 1. 962 0. 003 0. 033 0 0. 358 0. 012 0. 628 0 905	LT12 ksp 66. 28 0. 01 15. 57 0 0 0. 01 0. 02 0 0. 04 0. 58 16. 81 99. 32 8 3. 092 0 0. 856 0 0. 001 0 0. 001 0 0. 001 0 0. 001 0 0 0 0 0 0 0 0 0 0 0 0 0	2-02 pl 61. 62 0. 05 24. 23 0. 01 0 0. 06 0. 02 0. 01 5. 65 8. 58 0. 53 100. 76 8 2. 724 0. 002 1. 263 0 0. 002 0 0. 002 0 0. 002 0 0. 002 0 0 0 0 0 0 0 0 0 0 0 0 0	am(0) 44. 63 1. 94 8. 38 0. 05 0 18. 55 0. 26 10. 01 11. 82 1. 88 1. 16 98. 68 23 4. 6. 703 2. 219 5. 1. 484 0. 006 2. 272 0. 033 2. 241 1. 902	am(in) 45.69 2.19 6.96 0.01 0 19.28 0.91 10.09 11.82 0.83 1.4 99.18 23 6.816 0.246 1.224 0.001 0.262 2.144 0.115 2.243 1.89	bi 36. 51 5. 32 13. 85 0. 02 0 20. 67 0. 1 9. 96 0 0. 02 10. 81 97. 26 11 2. 776 0. 304 1. 242 0. 001 0 1. 314 0. 006 1. 129 0
样品号 矿物 SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O Ö Si Ti Al Cr Fe ³⁺ Fe ²⁺ Mn Mg Ca Na	$\begin{array}{c} gt \\ 37.\ 68 \\ 0 \\ 22.\ 01 \\ 0 \\ 0 \\ 29.\ 11 \\ 5.\ 21 \\ 5.\ 59 \\ 0.\ 68 \\ 0.\ 08 \\ 0 \\ 100.\ 35 \\ 12 \\ 2.\ 967 \\ 0 \\ 2.\ 043 \\ 0 \\ 0.\ 035 \\ 1.\ 882 \\ 0.\ 347 \\ 0.\ 656 \\ 0.\ 057 \\ 0 \ 012 \\ \end{array}$	opx 49. 15 0. 11 2. 3 0. 02 0 32. 14 1. 54 15. 01 0. 05 0. 05 0 100. 37 6 1. 915 0. 003 0. 106 0. 001 0. 061 0. 986 0. 051 0. 872 0. 002 0. 002 0. 004	LT11 ksp 63. 13 0 19. 31 0. 03 0 0. 02 0. 01 0 0. 08 1. 63 15. 22 99. 44 8 2. 939 0 1. 06 0. 001 0. 001 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c c} 1.47 \\ pl \\ \hline 62.55 \\ 0 \\ 23.3 \\ 0 \\ 0 \\ 0.08 \\ 0.02 \\ 0 \\ 0 \\ 3.96 \\ 10.03 \\ 0.17 \\ 100.11 \\ 8 \\ 2.772 \\ 0 \\ 1.217 \\ 0 \\ 1.217 \\ 0 \\ 0.003 \\ 0 \\ 0.001 \\ 0 \\ 0.188 \\ 0.862 \end{array}$	$\begin{array}{c} cd \\ 47. 43 \\ 0 \\ 32. 7 \\ 0. 02 \\ 0 \\ 8. 49 \\ 0. 36 \\ 8. 17 \\ 0 \\ 0. 17 \\ 0. 01 \\ 97. 35 \\ 18 \\ 4. 93 \\ 0 \\ 4. 007 \\ 0. 002 \\ 0. 148 \\ 0. 59 \\ 0. 032 \\ 1. 266 \\ 0 \\ 0 \\ 0. 034 \end{array}$	bi 35. 32 3. 92 17. 34 0. 08 0 19. 16 0. 12 10. 29 0 0. 09 10. 21 96. 53 11 2. 673 0. 223 1. 547 0. 005 0 1. 213 0. 007 1. 161 0 0 0. 013	opx (c) opx 49. 99 49. 99 0. 13 0. 22 0. 02 0 33. 44 4 0. 91 14. 57 14. 57 0. 93 0 0.02 100. 23 1 6 1. 964 0. 001 0 0. 055 1. 043 0. 03 0. 853 0. 039 0	ppx(r) 50.45 0.22 0.25 0.02 0 33.52 0.9 14.78 0.78 0 000.92 6 1.967 0.006 0.011 0.001 0.041 1.052 0.033 0	cpx 52 0. 11 0. 74 0 13. 49 0. 39 11. 16 22. 39 0. 42 0 100. 7 6 1. 962 0. 003 0. 033 0 0. 358 0. 012 0. 628 0. 905 0. 031	LT12 ksp 66. 28 0. 01 15. 57 0 0 0. 01 0. 02 0 0. 04 0. 58 16. 81 99. 32 8 3. 092 0 0. 856 0 0. 001 0 0. 001 0 0. 001 0 0. 0052 0 0 0 0 0 0 0 0 0 0 0 0 0	2-02 pl 61. 62 0. 05 24. 23 0. 01 0 0. 06 0. 02 0. 01 5. 65 8. 58 0. 53 100. 76 8 2. 724 0. 002 1. 263 0 0. 002 0 0. 002 0 0. 002 0 0. 002 0 0 0. 02 0 0 0 0 0 0 0 0 0 0 0 0 0	am(o) 44. 63 1. 94 8. 38 0. 05 0 18. 55 0. 26 10. 01 11. 82 1. 88 1. 16 6 98. 68 23 6. 703 2. 0. 219 5. 1. 484 0. 006 2. 0. 258 2. 272 0. 033 2. 241 1. 902 5. 0. 548	am(in) 45.69 2.19 6.96 0.01 0 19.28 0.91 10.09 11.82 0.83 1.4 99.18 23 6.816 0.246 1.224 0.001 0.262 2.144 0.115 2.243 1.89 0.24	bi 36. 51 5. 32 13. 85 0. 02 0 20. 67 0. 1 9. 96 0 0. 02 10. 81 97. 26 11 2. 776 0. 304 1. 242 0. 001 0 1. 314 0. 006 1. 129 0 0. 003
样品号 矿物 SiO2 TiO2 Al2O3 Cr2O3 Fe0 MnO MgO CaO Na2O K2O Ö Si Ti Al Cr Fe ³⁺ Fe ²⁺ Mn Mg Ca Na K	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	opx 49. 15 0. 11 2. 3 0. 02 0 32. 14 1. 54 15. 01 0. 05 0. 05 0 100. 37 6 1. 915 0. 003 0. 106 0. 001 0. 061 0. 986 0. 051 0. 872 0. 002 0. 004 0 0	LT11 ksp 63. 13 0 19. 31 0. 03 0 0. 02 0. 01 0 0. 08 1. 63 15. 22 99. 44 8 2. 939 0 1. 06 0. 001 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c c} 1.47 \\ \hline pl \\ 62.55 \\ 0 \\ 23.3 \\ 0 \\ 0 \\ 0.08 \\ 0.02 \\ 0 \\ 3.96 \\ 10.03 \\ 0.17 \\ 100.11 \\ 8 \\ 2.772 \\ 0 \\ 1.217 \\ 0 \\ 1.217 \\ 0 \\ 0.003 \\ 0 \\ 0.001 \\ 0 \\ 0.188 \\ 0.862 \\ 0.01 \\ \end{array}$	$\begin{array}{c} cd \\ 47. 43 \\ 0 \\ 32. 7 \\ 0. 02 \\ 0 \\ 8. 49 \\ 0. 36 \\ 8. 17 \\ 0 \\ 0. 17 \\ 0. 01 \\ 97. 35 \\ 18 \\ 4. 93 \\ 0 \\ 4. 007 \\ 0. 002 \\ 0. 148 \\ 0. 59 \\ 0. 032 \\ 1. 266 \\ 0 \\ 0. 034 \\ 0. 001 \\ \end{array}$	bi 35. 32 3. 92 17. 34 0. 08 0 19. 16 0. 12 10. 29 0 0. 09 10. 21 96. 53 11 2. 673 0. 223 1. 547 0. 005 0 1. 213 0. 007 1. 161 0 0. 013 0. 986	opx (c) opx 49. 99 3 0. 13 0. 22 0. 02 0 33. 44 3 0. 91 14. 57 14. 57 0. 93 0 0.02 100. 23 1 6 1. 964 0. 001 0 0. 0055 1. 043 0. 03 0. 853 0. 039 0 0 0.01	$\begin{array}{c} \overline{ppx(r)} \\ 50. 45 \\ 0. 22 \\ 0. 25 \\ 0. 02 \\ 0 \\ 33. 52 \\ 0. 9 \\ 14. 78 \\ 0. 78 \\ 0 \\ 0 \\ 000. 92 \\ 6 \\ 1. 967 \\ 0. 006 \\ 0. 011 \\ 0. 001 \\ 0. 001 \\ 0. 041 \\ 1. 052 \\ 0. 03 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	cpx 52 0. 11 0. 74 0 13. 49 0. 39 11. 16 22. 39 0. 42 0 100. 7 6 1. 962 0. 003 0. 033 0 0. 067 0. 358 0. 012 0. 628 0. 905 0. 031	LT12 ksp 66. 28 0. 01 15. 57 0 0 0. 01 0. 02 0 0. 04 0. 58 16. 81 99. 32 8 3. 092 0 0. 856 0 0. 001 0 0. 001 0 0. 001 0 0. 001 0 0. 001 0 0. 002 0 0. 001 0 0 0 0 0 0 0 0 0 0 0 0 0	2-02 pl 61. 62 0. 05 24. 23 0. 01 0 0. 06 0. 02 0. 01 5. 65 8. 58 0. 53 100. 76 8 2. 724 0. 002 1. 263 0 0. 002 0 0. 002 0 0. 002 0 0. 002 0 0. 002 0 0 0 0 0 0 0 0 0 0 0 0 0	am(0) 44. 63 1. 94 8. 38 0. 05 0 18. 55 0. 26 10. 01 11. 82 1. 88 1. 16 6 98. 68 23 6. 703 2. 0. 219 5. 1. 484 0. 006 2. 0. 258 2. 272 0. 033 2. 241 1. 902 5. 0. 548 0. 222	am(in) 45.69 2.19 6.96 0.01 0 19.28 0.91 10.09 11.82 0.83 1.4 99.18 23 6.816 0.246 1.224 0.001 0.262 2.144 0.115 2.243 1.89 0.24 0.246	bi 36. 51 5. 32 13. 85 0. 02 0 20. 67 0. 1 9. 96 0 0. 02 10. 81 97. 26 11 2. 776 0. 304 1. 242 0. 001 0 1. 314 0. 006 1. 129 0 0. 003 1. 049
样品号 矿物 SiO2 TiO2 Al2O3 Cr2O3 Fe0 MnO MgO CaO Na2O K2O Ö Si Ti Al Cr Fe ²⁺ Mn Mg Ca Na K Tatal	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	opx 49. 15 0. 11 2. 3 0. 02 0 32. 14 1. 54 15. 01 0. 05 0. 05 0 100. 37 6 1. 915 0. 003 0. 106 0. 001 0. 061 0. 986 0. 051 0. 872 0. 002 0. 004 0 4	LT11 ksp 63. 13 0 19. 31 0. 03 0 0. 02 0. 01 0 0. 08 1. 63 15. 22 99. 44 8 2. 939 0 1. 06 0. 001 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c c} 1.47 \\ pl \\ \hline 62.55 \\ 0 \\ 23.3 \\ 0 \\ 0 \\ 0.08 \\ 0.02 \\ 0 \\ 3.96 \\ 10.03 \\ 0.17 \\ 100.11 \\ 8 \\ 2.772 \\ 0 \\ 1.217 \\ 0 \\ 1.217 \\ 0 \\ 0.003 \\ 0 \\ 0.001 \\ 0 \\ 0.001 \\ 0 \\ 0.188 \\ 0.862 \\ 0.01 \\ 5 \\ 0.53 \\ \end{array}$	$\begin{array}{c} cd \\ 47.43 \\ 0 \\ 32.7 \\ 0.02 \\ 0 \\ 8.49 \\ 0.36 \\ 8.17 \\ 0 \\ 0.17 \\ 0.01 \\ 97.35 \\ 18 \\ 4.93 \\ 0 \\ 4.007 \\ 0.002 \\ 0.148 \\ 0.59 \\ 0.032 \\ 1.266 \\ 0 \\ 0.034 \\ 0.001 \\ 11.01 \end{array}$	bi 35. 32 3. 92 17. 34 0. 08 0 19. 16 0. 12 10. 29 0 0. 09 10. 21 96. 53 11 2. 673 0. 223 1. 547 0. 005 0 1. 213 0. 007 1. 161 0 0. 013 0. 986 7 828	$\begin{array}{c} 0px(c) & c \\ 49, 99 & c \\ 0, 13 \\ 0, 22 \\ 0, 02 \\ 0 \\ 33, 44 \\ 0, 91 \\ 14, 57 \\ 0, 93 \\ 0 \\ 0, 02 \\ 100, 23 \\ 100, 20 \\$	$\begin{array}{c} \overline{ppx(r)} \\ 50. 45 \\ 0. 22 \\ 0. 25 \\ 0. 02 \\ 0 \\ 33. 52 \\ 0. 9 \\ 14. 78 \\ 0. 78 \\ 0 \\ 0 \\ 000. 92 \\ 6 \\ 1. 967 \\ 0. 006 \\ 0. 011 \\ 0. 001 \\ 0. 001 \\ 1. 052 \\ 0. 03 \\ 0 \\ 0 \\ 359 \\ 0 \\ 0 \\ 4 \\ \end{array}$	cpx 52 0. 11 0. 74 0 13. 49 0. 39 11. 16 22. 39 0. 42 0 100. 7 6 1. 962 0. 003 0. 033 0 0. 067 0. 358 0. 012 0. 628 0. 905 0. 031 0	LT12 ksp 66. 28 0. 01 15. 57 0 0 0. 01 0. 02 0 0. 04 0. 58 16. 81 99. 32 8 3. 092 0 0. 856 0 0. 001 0 0. 001 0 0. 001 0 0. 001 0 0. 001 0 0. 002 0 0. 001 0 0 0. 02 0 0 0 0 0 0 0 0 0 0 0 0 0	2-02 pl 61. 62 0. 05 24. 23 0. 01 0 0. 06 0. 02 0. 01 5. 65 8. 58 0. 53 100. 76 8 2. 724 0. 002 1. 263 0 0. 002 0 0. 002 0 0. 002 0 0. 002 0 0. 002 0 0 0. 002 0 0 0 0 0 0 0 0 0 0 0 0 0	am(o) 44. 63 1. 94 8. 38 0. 05 0 18. 55 0. 26 10. 01 11. 82 1. 88 1. 16 6 98. 68 23 6. 703 2. 0. 219 1. 484 0. 006 2. 0. 219 5. 1. 484 0. 006 2. 272 0. 033 2. 241 1. 902 5. 0. 548 0. 222 5. 708	am(in) 45.69 2.19 6.96 0.01 0 19.28 0.91 10.09 11.82 0.83 1.4 99.18 23 6.816 0.246 1.224 0.001 0.262 2.144 0.115 2.243 1.89 0.24 0.266	bi 36. 51 5. 32 13. 85 0. 02 0 20. 67 0. 1 9. 96 0 0. 02 10. 81 97. 26 11 2. 776 0. 304 1. 242 0. 001 0 1. 314 0. 006 1. 129 0 0. 003 1. 049 7. 825

注:矿物的离子数是利用 AX 程序计算的(Holland and Powell, 1998; November, 2003 升级).gt(c)-石榴石核部;gt(r)-石榴石边部;opx(c)-斜方 辉石核部;opx(r)-斜方辉石边部;cpx-单斜辉石;ksp-钾长石;pl-斜长石;cd-堇青石;bi-黑云母;sp-尖晶石;am(o)-基质中的角闪石;am(in)-斜方 辉石中包裹的角闪石 $Grs_{2.3}Sps_{12.13}$,说明受退变质阶段成分再平衡影响,故不显成 分环带。堇青石的 Mg^{*} 值为 68 左右,斜长石 An 变化范围为 0.1~0.2。黑云母的 $X_{Mg} = 0.3 \sim 0.4$, TiO₂含量为 3.3% ~ 4.0%。斜方辉石的 Al_2O_3 含量较低,为 2.3% ~ 2.6%,核部 到边部 X_{Mg} 几乎无变化,约为 0.3~0.4。

样品 LT12-35 中,石榴石主要是铁铝榴石-镁铝榴石的固溶体,从核部向边部成分变化为 Alm_{67-70} Pyr₂₁₋₂₆ Grs₃₋₁ Sps₉₋₆, 显微弱的成分环带。堇青石的 Mg[#]值为 53 左右,斜长石中 X_{An}约为 0.3。黑云母的 X_{Mg} 值约为 0.5, TiO₂ 含量为 3.2%~3.7%。

样品 LT12-36 中,石榴石主要是铁铝榴石-镁铝榴石-锰 铝榴石的固溶体,从核部向边部成分几乎无变化,为 $Alm_{66.67}$ Pyr₂₀₋₁₇Grs₂₋₃Sps₁₂₋₁₄。董青石的 Mg^{*}值变化范围为 64~67,基 质中斜长石中 X_{An} 约为 0.3,以包裹体形式存在于石榴石中 的斜长石 X_{An} 较高,可达 0.4~0.5。黑云母的 X_{Mg} 值约为 0.5,TiO₂含量约为 3.9%。少量的斜方辉石主要为顽火辉石 和铁辉石,以贫铝为特征, Al_2O_3 含量变化于 0.2%~1.4%之 间,发育有堇青石冠状体的尖晶石, X_{Mg} 约为 0.2,包裹于石榴 石中的尖晶石, X_{Mg} 较高,可达 0.4 左右。

样品 LT12-02 中,单斜辉石主要为普通辉石,其端元组 分为 $Wo_{29-44} En_{31-34} Fs_{24-36}$,斜方辉石主要为顽火辉石和铁辉 石, $Fe^{2+}/(Ca + Fe^{2+} + Mg)$ 比值约为 0.5,从核部到边部几乎 无变化, Al_2O_3 含量为 2.2% ~ 2.5%。基质中的角闪石主要 为钙镁闪石,而斜方辉石中包裹的角闪石多为铁阳起石和透 闪石,氟氯含量低, TiO_2 含量较高(~2.19%),(Na + Ca)_{M4} = ~1.0。斜长石中钙长石牌号较低, X_{An} 为 0.2~0.3。黑云母 的 X_{Mg} 变化范围为 0.4~0.5。

5 P-T 计算及相平衡模拟

根据矿物岩相学分期以及矿物化学数据,我们首先使用 传统的矿物温压计对不同变质阶段的变质作用 P-T 条件进 行计算。

泥质和镁铁质麻粒岩中往往保留了多个阶段的矿物组合,经过大量的岩石学相平衡实验,人们已经标定了许多适用于这两大类岩石的温压计,因此我们在本文中首先采用了传统地质温压计进行 *P-T* 计算。传统的温压计方法由于计算方便容易操作,故得到广泛的应用,但是却存在误差较大和应用局限等问题。一些地质学家提出基于内部一致性热力学数据库的多相平衡矿物温压计,如利用 Thermocalc 计算独立变质反应(Powell and Holland, 1994)。因此,我们除了采用传统温压计计算之外,还基于热力学数据库 tc-ds 55s (Holland and Powell, 1998; November, 2003 升级),采用THERMOCALC 平均温压方法作为补充。

变质相图方法主要是利用内治性热力学数据库和有关的计算机软件 Thermocale 等定量计算一系列相图(Holland and Powell, 1998)。P-T 视剖面图表示对特定全岩成分的相

平衡关系,表明了某一特定成分的岩石在 P-T 空间内的不同 矿物组合的稳定范围(Holland and Powell, 1998)。借助变质 相图模拟,我们可以确定天然矿物组合的 P-T 条件,解释矿 物包裹体和反应关系等,在 P-T 视剖面图上,可以定量计算 出各种矿物成分、摩尔含量,从而对岩石的 P-T 条件和 P-T 演化轨迹给出更好的限定。

Wang et al. (2009b)对阿勒泰市附近的泥质麻粒岩在简 单的 KFMASH 体系下进行了相平衡模拟,虽限定了峰期变 质条件为 780~800℃/5~6kbar,但并没有得到一条确切的 P-T 轨迹,后来对夕线石片岩进行了 NCKFMASHTO 体系下 的相平衡模拟(Wang et al., 2014),但是变质峰期温度较低, 未达到麻粒岩相,所以本文对于不含超高温矿物组合的泥质 麻粒岩样品 LT12-35 进行了视剖面图模拟,以期得到一条合 理的麻粒岩相变质作用的 P-T 轨迹。已有学者对该区超高 温泥质麻粒岩进行了相平衡研究(Li et al., 2014; Tong et al., 2014b),但是具有类似矿物组合和反应结构,但是不含 夕线石的泥质高温麻粒岩并没有进行深入研究,所以本文挑 选了含有 Sp + Opx + Grt + Crd + Pl + Bi + Q 的泥质麻粒岩样 品 LT12-36 进行了视剖面图模拟。

5.1 矿物温压计计算

对于样品 LT11-47,我们采用采用了石榴石-斜方辉石的 Fe-Mg-Al 交换温压计(Pattison *et al.*, 2003)计算得到的峰期 条件为 794℃、4.8kbar;采用斜方辉石-黑云母温度计(吴春 明等, 1999)在 4kbar 时计算得到的温度为 791℃;采用石榴 石-斜方辉石-斜长石-石英压力计(Newton and Perkins, 1982; Perkins and Chipera, 1985)在 790℃时计算得到的压力为4.4 ~5.2kbar 范围内,吻合性较好,可能代表了峰期的变质条 件。采用石榴石-黑云母温度计(Perchuk and Lavrentpeva, 1983)在 5kbar 计算得到的温度为 705℃,可能代表了退变质 条件,通过石榴石-黑云母-斜长石-石英(GBPQ)地质温压计 (Wu *et al.*, 2004)计算得到的退变质条件为 719℃、5.0kbar, 应代表退变质阶段的 *P-T*条件。

对于样品 LT12-35,峰期矿物组合为石榴石+ 堇青石+ 斜长石+钾长石+黑云母+石英,通过石榴石-黑云母-斜长 石-石英地质温压计(Wu *et al.*, 2004)计算得到的退变质条 件为573℃,2.2kbar,应代表退变质过程中的某个阶段的 *P-T* 条件。对于 LT12-36,峰期矿物组合为石榴石+斜方辉石+ 堇青石+斜长石+钾长石+石英,通过石榴石-黑云母-斜长 石-石英地质温压计(Wu *et al.*, 2004)计算得到的退变质条 件为670℃,3.2kbar,同样代表退变质阶段的 *P-T*条件。

对于镁铁质麻粒岩样品 LT12-02,基性麻粒岩组合不同 于以往对该地区镁铁质麻粒岩的报道,矿物组合中出现了钾 长石,斜方辉石中有定向排列的角闪石和钛铁矿出溶。我们 对相邻的斜方辉石和单斜辉石矿物对的核部成分采用二辉 石温度计(Wood and Banno, 1973; Wells, 1977; Brey and Köhler, 1990),计算的峰期变质温度除了 Brey and Köhler (1990)计算结果较低外,其余的计算结果均为810~865℃, 比厉子龙等(2004)所得的峰期温度要高,明显达到了麻粒岩 相,而对于边部成分采用二辉石温度计所得计算结果为800 ~845℃(Wood and Banno, 1973; Wells, 1977)。对于镁铁质 麻粒岩变质峰期的压力条件尚无法精确限定, 厉子龙等 (2004)根据前人对全球麻粒岩的统计资料认为阿尔泰镁铁 质麻粒岩的压力大概为6~7kbar,但是对于接触变质作用, 其压力可显著低于 6~7kbar, 斜方辉石 + 单斜辉石 + 斜长石 +石英被认为是典型的中低压麻粒岩矿物组合,结合本区镁 铁质麻粒岩的产出环境,我们认为镁铁质麻粒岩的峰期条件 很可能落在中低压麻粒岩相范围。我们采用角闪石单矿物 地质温压计对退变质阶段的 P-T 条件进行了计算,得到的温 压条件为 588℃、1.7~2.8kbar(Gerya et al., 1997; Hollister et al., 1987; Johnson and Rutherford, 1989; Anderson and Smith, 1995), 与厉子龙等(2004) 所得到的角闪岩相退变质 条件接近。

5.2 变质相图模拟

本文的 P-T 视剖面图模拟采用了 Thermocale 3.33 程序 (Powell and Holland, 1998)和 ds-55s数据库(Powell and Holland, 1998; November, 2003 升级)。利用经典的 KFMASH 体系可以模拟麻粒岩相泥质岩基本的的相平衡关 系(Wei et al., 2004),加入 Na₂O和 CaO 后可以引入斜长石 和一个更加符合实际的硅酸盐熔体模型(White et al., 2007),所以本文在 NCKFMASH 体系下对 LT12-35 样品进行 了相平衡模拟。但是对于样品 LT12-36,出现了尖晶石以及 钛铁矿等不透明矿物,需要考虑 Fe³⁺和 Ti 的影响,因此对该 样品所采用的模式体系为 NCKFMASHTO 体系。

样品 LT12-35 视剖面图计算所采用的矿物活度模型分 别为石榴石(g; White et al., 2007)、斜方辉石(opx; Powell and Holland, 1999)、董青石(cd; Holland and Powell, 1998)、 黑云母(bi; White et al., 2007)、斜长石和钾长石(pl, ksp; Holland and Powell, 2003)、硅酸盐熔体(liq; White et al., 2007),水、石英、铝硅酸盐矿物为纯相。LT12-36 视剖面图计 算所采用的矿物活度模型为斜方辉石(opx; White et al., 2002)、尖晶石(sp; White et al., 2002)、钛铁矿(ilm; White et al., 2000)、磁铁矿(mt; White et al., 2000),其余与样品 LT12-36 所采用的矿物活度模型一致。

全岩成分主要基于全岩主量测试,并参考了 T-X(H₂O) 和 T-X(O)视剖面图而确定。图 3a 为样品 LT12-35 在 NCKFMASH 体系下的 P-T 视剖面图,所采用的全岩成分为 H₂O = 5mol%, SiO₂ = 62. 02mol%, Al₂O₃ = 11. 71mol%, CaO = 0.58mol%, MgO = 8. 78mol%, FeO = 7. 68mol%, K₂O = 3. 07mol%, Na₂O = 1. 68mol%。样品中观测的峰期矿物组合 g + cd + bi + ksp + pl + liq + q 占据了相图左侧一个狭窄的区 域,约束的峰期条件为 770 ~ 820℃, 4. 8 ~ 7. 8kbar, 所测石榴 子石核部 x(g) = Fe/(Fe + Mg) = 0. 72, 落在g + cd + bi + pl +

图 3 阿尔泰泥质麻粒岩的 P-T 视剖面图

(a) LT12-35 在 NCKFMASH(+ksp)体系下的视剖面图,峰期矿物组合g+cd+bi+ksp+pl+liq+q占据了相图左侧一个狭窄的区域,约束的峰期条件为770~820℃、4.8~7.8kbar. 虚线代表摩尔分数等值线x(g)=Fe²⁺/(Fe²⁺+Mg),能够给出一个更好地约束;(b) LT12-36 在 NCKFMASHTO(+cd+ksp+pl+liq +ilm)体系下的视剖面图,峰期矿物组合大致落在靠近相图中心的位置,温压范围为790~850℃、3.0~3.5kbar

Fig. 3 *P-T* pseudosections calculated for the Altay metapelitic granulite

(a) the *P*-*T* pseudosection for the metapelitic granulite LT12-35 in the NCKFMASH (+ ksp in excess) system. The peak metamorphic assemblage, g + cd + bi + ksp + pl + liq + q occupies a narrow field to the left of center of the diagram, constraining peak metamorphism to 770 ~ 820°C and 4. 8 ~ 7. 8kbar. The x(g) = Fe²⁺/(Fe²⁺ + Mg) mineral composition isopleths, shown as dashed lines in the figure, constrains peak metamorphism further; (b) the *P*-*T* pseudosection for the metapelitic granulite LT12-36 in the NCKFMASHTO (+ cd + ksp + pl + liq + ilm in excess) system. The peak metamorphic assemblage, g + opx + cd + bi + ksp + pl + liq + q + mt + ilm approximately occupies a narrow field next to the center of the diagram, constraining peak metamorphism to 790 ~ 840°C and 3. 0 ~ 3. 5kbar

ksp + liq + q 三变区间的低压部分,能很好限定温度在760 ~ 780℃范围内,但是却不能很好地限制出一个压力条件,因此我们采用了Thermocalc平均温压计算方法求解其平均压力(Powell and Holland, 1994),在该温度范围内对其求解压力为5.1 ~ 5.2kbar,置信度95%范围内计算的平均压力落在这个范围内,其平均压力为5.1kbar,代表了近似峰期的条件。

图 3b 为 LT12-36 在 NCKFMASHTO 体系下的 *P-T* 视剖 面图,所采用的全岩成分为 H_2 O = 3.5mol%, SiO₂ = 64.46mol%, Al_2 O₃ = 13.87mol%, CaO = 2.13mol%, MgO = 3.30mol%, FeO = 5.94mol%, Na₂ O = 3.64mol%, K₂ O = 1.85mol%, TiO₂ = 0.60mol%, O = 0.16mol%。所观测到的 g + opx + cd + pl + liq + q + mt + ilm 矿物组合, 在视剖面图中 落在一个狭窄的四变度区间, 峰期 *P-T* 条件为 790 ~ 840°C、 3.0 ~ 3.5kbar, 而该区域中的石榴石成分等值线与实际测量 的矿物成分等值线不能很好匹配, 说明在退变质过程中受到 了 Fe-Mg 再平衡的影响。

6 讨论

6.1 变质作用的 P-T 轨迹及其构造背景

本文通过详细的岩相学观察,大量的矿物温压计计算以 及视剖面图模拟,对新疆富蕴县乌恰沟地区具有不同矿物组 合的高温泥质和镁铁质麻粒岩进行了深入研究,确定了一系 列具有不同变质峰期的泥质和镁铁质麻粒岩(图4)。

本文对泥质麻粒岩样品 LT11-47 计算得到的峰期条件 为791~794℃、4.4~5.2kbar,退变质条件为719℃、5.0kbar, 说明其在变质峰期后经历了近等压冷却(IBC)的 *P-T* 轨迹。 样品 LT12-35, *P-T* 估算结果表明其峰期变质条件为~ 5.1kbar和760~770℃。样品 LT12-36 中的斜方辉石 Al₂O₃ 为0.2%~1.4%,明显不同于超高温泥质麻粒岩中斜方辉石 的高铝成分(8.7%~9.8%)(全来喜等,2013; Li *et al.*, 2010,2014),其温压计算和相平衡模拟结果也表明本样品 峰期为3.0~3.5kbar和790~840℃,未达到超高温条件。

镁铁质麻粒岩样品 LT12-02, 矿物组合为斜方辉石+单 斜辉石+黑云母+斜长石+石英+磁铁矿, 利用二辉石温度 计计算的峰期条件为 800 ~ 860℃, 变质时代为 270Ma(全来 喜, 未发表资料), 与之前报道的泥质和镁铁质麻粒岩以及泥 质超高温麻粒岩的年龄一致(陈汉林等, 2006; Wang *et al.*, 2009b; 全来喜等, 2013; Li *et al.*, 2014), 故代表同期变质 事件。退变质阶段的 *P-T* 条件为 588℃、1.7~2.8kbar, 与厉 子龙等(2004)所得到的角闪岩相退变质条件接近。

如图 4 所示,我们得到乌恰沟地区高温泥质和镁铁质麻 粒岩峰期后的两类 P-T 轨迹,样品 LT11-47 和样品 LT12-36 反映了峰期后近等压冷却(IBC)的一段 P-T 演化轨迹,而样 品 LT12-35 和样品 LT12-02 反映了峰期后减压冷却的一段 P-T 演化轨迹。虽然峰期前的 P-T 轨迹尚无法精确限定,但 是本文仍通过对泥质麻粒岩的研究得到两条峰期后近等温

图 4 阿尔泰泥质及镁铁质麻粒岩的 P-T 轨迹 根据视剖面图模拟以及温压计计算所得到的阿尔泰高温麻粒岩 的 P-T 轨迹,并与 Tong et al. (2014b)和 Li et al. (2014)通过对 超高温泥质麻粒岩研究所所得到的 P-T 轨迹进行对比

Fig. 4 *P-T* paths of the Altay metapelitic and mafic granulites

P-T diagram showing P-T paths of the Altay granulites based on the pseudosections and thermobarometers. The previous results from Tong *et al.* (2014b) and Li *et al.* (2014) are shown for comparison

降压(IBC)的 P-T 演化过程,阿勒泰大喀拉苏以及乌恰沟地 区超高温泥质麻粒岩也在峰期后经历了一段近等压冷却 (IBC)的 P-T 演化历史(Tong et al., 2014a, b; Li et al., 2014),而这种 IBC 过程通常与逆时针 P-T 演化轨迹相对应。 LT12-35 和 LT12-02 峰期后减压冷却过程可能是由于高温泥 质和镁铁质麻粒岩未充分冷却便开始折返,导致峰期后的近 等压冷却(IBC)过程未能有效记录。结合之前关于阿尔泰超 高温麻粒岩的报道和研究(全来喜等, 2013; Tong et al., 2014a, b; Li et al., 2014),反映了阿尔泰二叠纪变质事件整 体上发生于一个伸展的大地构造背景之下,而此伸展背景或 与二叠纪地幔柱活动有关(全来喜等, 2011, 2013; Tong et al., 2014a, b; Wang et al., 2014)。

6.2 阿尔泰晚古生代变质事件与塔里木地幔柱活动的成因 联系

本区中-低压高温泥质和镁铁质麻粒岩以及片麻岩的变 质年龄与该造山带超高温麻粒岩变质作用的时间基本一致, 应为同期变质事件。对该区域麻粒岩和片岩、片麻岩的锆石 以及独居石定年结果支持高温变质事件发生于二叠纪,时间 为270~293Ma之间(郑常青等,2005;胡霭琴等,2006; Zheng *et al.*,2007; Wang *et al.*,2009b; 仝来喜等,2013)。 但是关于二叠纪变质事件的成因尚存在不同认识,如阿尔泰 造山带在二叠纪发生洋壳的俯冲和板块碰撞,从而导致麻粒 岩高温或超高温变质作用(Li et al., 2004; Chen et al., 2006),或二叠纪麻粒岩相变质作用的发生与造山后的拆沉 及软流圈上涌有关(Li et al., 2014),或存在二叠纪地幔柱事 件(Pirajno et al., 2008; Zhang et al., 2010, 2012; Wang et al., 2014; 仝来喜等, 2013; Tong et al., 2014a, b)。

阿尔泰造山带大量的年代学数据表明该区在二叠纪经 历了一次重要的高级构造变质热事件(肖文交等,2006; Xiao et al.,2008)。岩浆作用的产物,包括二叠纪玄武岩、基 性-超基性侵入体和A型花岗岩,在阿尔泰造山带广泛分布 (Zhang et al.,2010)。在阿尔泰造山带发育大量的钙碱性 和碱性花岗岩,为典型的后造山类型,时代为二叠纪(Han et al.,1999;王涛等,2005)。阿尔泰南缘发育很多岩脉(Tang et al.,2012;沈晓明等,2013),例如富蕴以西酸性岩脉群的 年龄为277~286Ma(宫红良等,2007)。此外,乌恰沟地区发 育有大量的镁铁质侵入岩(岩脉或小岩体),形成于257Ma (陈立辉和韩宝福,2006),喀拉通克含Cu-Ni-PGE硫化物基 性-超基性杂岩的年龄为287Ma(Han et al.,2004),阿勒泰辉 长岩的年龄为281Ma(童英等,2006)。这些年代学上的耦 合性表明阿尔泰造山带在晚古生代经历的不止是一期变质 事件,同时也是一期重要的岩浆事件。

该构造岩浆热事件与新疆二叠纪塔里木地幔柱活动的 时间(~275Ma)高度一致(Zhang et al., 2010),该区中-低压 高温泥质和镁铁质麻粒岩以及超高温泥质麻粒岩均位于岩 浆侵入体附近,而微量元素研究表明乌恰沟地区的基性侵入 体具有幔源特征(陈立辉和韩宝福, 2006),因此,阿尔泰超 高温变质事件可能与二叠纪塔里木地幔柱活动引起的岩浆 底侵和下地壳伸展加热密切相关(全来喜等, 2013; Tong et al., 2014a, b),并且通过对已有的一些超高温变质事件的 认识,Guo et al. (2012)提出对于特定全岩成分的岩石,在靠 近高温侵入体的位置可以发生超高温变质作用。结合其峰 期后近等压冷却(IBC)的 P-T 演化轨迹,野外产状以及温压 计算,我们认为幔源岩浆底垫加热和后造山的伸展导致的同 时代侵入体提供了阿尔泰南缘高温-超高温变质作用所需的 热源。

通过对阿勒泰大喀拉苏地区超高温麻粒岩和中-低压高 温麻粒岩详细的野外观察,Tong et al. (2014a)认为超高温变 泥质麻粒岩可能通过后期剪切构造作用就位于中-低压高温 泥质麻粒岩之中,本文的温压计算结果支持这一推测,本文 报道的泥质和镁铁质麻粒岩压力明显低于此前报道的泥质 超高温麻粒岩(全来喜等,2013; Li et al., 2014)。此外,本 文所选用的样品以及之前报道的乌恰沟和阿勒泰大喀拉苏 附近的超高温麻粒岩均采自额尔齐斯断裂带附近,一般把该 断裂带视为早-中古生代的俯冲带位置(Xiao et al., 2004; Han et al., 2010; Zhang et al., 2012),但在晚古生代(290~ 280Ma),该带经历了大范围左旋变形(Laurent-Charvet et al., 2003; Zhang et al., 2012),该构造事件极有可能和基性及酸性岩浆的侵入以及高温-超高温变质作用的发生有着一定的联系。

所以,我们认为在晚古生代塔里木地幔柱流沿着塔里木 边缘的构造薄弱带(额尔齐斯断裂带)迁移,导致深源岩浆的 侵入以及地幔岩石圈的减薄,并提供重要热源导致上覆地壳 的快速加热,从而形成同时期大量的A型花岗岩侵入体和岩 脉,同时作为热源导致该区高温-超高温麻粒岩相变质作用 的发生,并与该区域内广泛出现的片岩、片麻岩和斜长角闪 岩有密切的成因联系。高温泥质和镁铁质麻粒岩以及超高 温泥质麻粒岩的变质年龄、大量基性和酸性侵入体的形成年 龄与塔里木地幔柱活动的时代高度吻合,高温-超高温麻粒 岩均位于额尔齐斯断裂带附近并靠近幔源基性侵入体,该区 域内广泛出现多个热穹窿,高温-超高温麻粒岩相变质作用 峰期变质条件以及 P-T轨迹,均支持这一结论。

7 结论

本文通过对中国阿尔泰造山带南缘的富蕴县乌恰沟地 区的泥质和镁铁质麻粒岩进行详细的岩相学观察,采用传统 温压计和平均温压计算方法,结合变质相平衡模拟,确定了 其高温变质作用的峰期条件,并建立了峰期后的 P-T 演化轨 迹。综合已有的变质年代学资料以及该区超高温泥质麻粒 岩的研究结果,我们得到以下认识:

(1)本文确定了具有不同矿物组合的泥质和镁铁质麻粒 岩的峰期(770~865℃、3.0~5.1kbar)以及退变质条件,得 到了两条峰期后近等压冷却的*P-T*轨迹,与对阿勒泰大喀拉 苏超高温泥质麻粒岩的研究结果相一致(全来喜等,2013; Tong *et al.*,2014a,b)。这种峰期后近等压冷却(IBC)的*P-T*轨迹通常与伸展的大地构造背景相对应。

(2)阿尔泰造山带在晚古生代发生了一次重要的构造岩 浆热事件,时代为二叠纪。该区的超高温-高温麻粒岩以及 广泛出现的片麻岩年龄(270~280Ma)与塔里木地幔柱活动 导致的后造山幔源侵入体的时间高度吻合,暗示塔里木地幔 柱活动引起的幔源岩浆底垫,加热和后造山的伸展导致的同 时代侵入体提供了阿尔泰南缘二叠纪变质作用发生所需要 的热源。

致谢 电子探针分析得到广州地化所同位素地球化学国 家重点实验室电子探针实验室陈林丽工程师的帮助;审稿人 给出了非常有益的建设性修改意见;作者在此一并表示诚挚 的感谢。

References

Anderson LJ and Smith RD. 1995. The effects of temperature and f_{0_2} on the Al-in-hornblende barometer. American Mineralogist, 80 (5 – 6): 549 - 559

- Bindu RS. 1997. Granulite facies spine-cordierite assemblages from the Kerala Khondalite Belt, Southern India. Gondwana Research, 1 (1): 121 – 128
- Brey GP and Köhler TP. 1990. Geothermobarometry in four-phase lherzolites: II. New thermobarometers and practical assessment of existing thermobarometers. Journal of Petrology, 31 (6): 1353 -1378
- Briggs SM, Yin A, Manning CE, Chen ZL, Wang XF and Grove M. 2007. Late Paleozoic tectonic evolution history of the Ertix Fault in the Chinese Altay and its implications for the development of the Central Asian Orogenic System. Geological Society of America Bulletin, 119(7-8): 944-960
- Chen H, Li Z, Yang S, Dong C, Xiao W and Tainosho Y. 2006. Mineralogical and geochemical study of a newly discovered mafic granulite, Northwest China: Implications for tectonic evolution of the Altay orogenic belt. Island Arc, 15(1): 210 – 222
- Chen HL, Yang SF, Li ZL, Yu X, Xiao WJ, Yuan C, Lin XB and Li JL. 2006. Zircon SHRIMP U-Pb chronology of the Fuyun basic granulite and its tectonic significance in the Altaid orogenic belt. Acta Petrologica Sinica, 22 (5): 1351 – 1358 (in Chinese with English abstract)
- Chen LH and Han BF. 2006. Geochronology, geochemistry and Sr-Nd-Pb isotopic composition of mafic intrusive rocks in Wuqiagou area, North Xinjiang; Constraints for mantle sources and deep processes. Acta Petrologica Sinica, 22(5): 1201 – 1214 (in Chinese with English abstract)
- Gerya TV, Perchuk LL, Triboulet C, Audren C and Sez'ko AI. 1997. Petrology of the Tumanshet zonal metamorphic complex, eastern Sayan. Petrology, 5(6): 503 - 533
- Gong HL, Chen ZL, Hu YQ, Li L, Lai XR, Ma QY, Li YY, Hu B and Zhang WG. 2007. Geochemical characteristics of acidic dike swarm from the eastern segment of the Ertix tectonic belt, Altai orogen and its geological implications. Acta Petrologica Sinica, 23(5): 889 – 899 (in Chinese with English abstract)
- Guo JH, Peng P, Chen Y, Jiao SJ and Windley BF. 2012. UHT sapphirine granulite metamorphism at 1. 93 ~ 1. 92Ga caused by gabbronorite intrusions: Implications for tectonic evolution of the northern margin of the North China Craton. Precambrian Research, 222 - 223: 124 - 142
- Han BF, He GQ and Wang SG. 1999. Postcollisional mantle-derived magmatism, underplating and implications for basement of the Junggar Basin. Science in China (Series D), 42(2): 113 – 119
- Han BF, Ji JQ, Song B, Chen LH and Li ZH. 2004. SHRIMP zircon U-Pb ages of Kalatongke No. 1 and Huangshandong Cu-Ni bearing mafic-ultramafic complexes, North Xinjiang, and geological implications. Chinese Science Bulletin, 49(22): 2424 – 2429
- Han BF, Guo ZJ, Zhang ZC, Zhang L, Chen JF and Song B. 2010. Age, geochemistry, and tectonic implications of a Late Paleozoic stitching pluton in the North Tian Shan suture zone, western China. Geological Society of America Bulletin, 122(3-4); 627-640
- Harley SL. 1989. The origins of granulites: A metamorphic perspective. Geological Magazine, 126(3): 215 – 247
- Holland TJB and Powell R. 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16(3): 309 – 343
- Holland TJB and Powell R. 2003. Activity-composition relations for phases in petrological calculations: An asymmetric multi-component formulation. Contributions to Mineralogy and Petrology, 145 (4): 492-501
- Hollister LS, Grissom GC, Peters EK, Stowell HH and Sisson VB. 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist, 72(3-4): 231-239
- Hu AQ, Jahn BM, Zhang GX, Chen YB and Zhang QF. 2000. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd-Sr isotopic evidence. Part I: Isotopic characterization of basement rocks. Tectonophysics, 328(1-2): 15-51

- Hu AQ, Zhang GX, Zhang QF, Li TD and Zhang JB. 2002. A review on ages of precambrian metamorphic rocks from Altai orogeny in Xinjiang, NW China. Chinese Journal of Geology, 37(2): 129 – 142 (in Chinese with English abstract)
- Hu AQ, Wei GJ, Deng WF and Chen LL. 2006. SHRIMP zircon U-Pb dating and its significance for gneisses from the southwest area to Qinghe County in the Altai, China. Acta Petrologica Sinica, 22 (1): 1-10 (in Chinese with English abstract)
- Jahn BM. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. In: Malpas J, Fletcher CJN, Ali JR and Aitchison JC (eds.). Aspects of the Tectonic Evolution of China. Geological Society London, Special Publications, 226 (1): 73 – 100
- Jiang YD, Sun M, Zhao GC, Yuan C, Xiao WJ, Xia XP, Long XP and Wu FY. 2010. The ~ 390Ma high-T metamorphic event in the Chinese Altai: A consequence of ridge-subduction? American Journal of Science, 310(10): 1421-1452
- Johnson MC and Rutherford MJ. 1989. Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology, 17(9): 837 – 841
- Laurent-Charvet S, Charvet J, Monié P and Shu L. 2003. Late Paleozoic strike-slip shear zones in eastern central Asia (NW China): New structural and geochronological data. Tectonics, 22(2): 237 – 241
- Li HJ, He GQ, Wu TR and Wu B. 2006. Confirmation of Altai-Mongolia microcontinent and its implications. Acta Petrologica Sinica, 22 (5): 1369 – 1379 (in Chinese with English abstract)
- Li JH, Xiao WJ, Wang K, Sun G and Gao L. 2003. Tectonic and metallogenic evolution of the Altay Shan, Northern Xinjiang Uygur Autonomous Region, northwestern China. In: Goldfarb RJ, Mao JW, Hart C, Wang D, Anderson E, Wang Z (eds.). Tectonic Evolution and Metallogeny of the Chinese Altay and Tianshan. Beijing: CERCAMS, 31 – 74
- Li TD, Qi ZM, Wu BQ, Xiao SL, Zhao CL, Poliyangsiji BH *et al.* 1996. New improvement of comparative study of geology and mineralization of Altay between China and Kazakhstan. In: Chinese Geological Society (ed.). Thesis Volume of the Symposium of the 8th Five-year Plan of Geoscience for Contribution to 30th IGC. Beijing: Metallurgical Industrial Publishing House, 256 – 259 (in Chinese)
- Li ZL, Chen HL, Yang SF, Dong CW and Xiao WJ. 2004. Petrology, geochemistry and geodynamics of basic granulite from the Altay area, North Xinjiang, China. Journal of Zhejiang University Science, 5 (8): 979-984
- Li ZL, Chen HL, Yang SF, Xiao WJ and Tainosho Y. 2004. Discovery of the basic granulite from the Altai area: Evidence from mineralogy. Acta Petrologica Sinica, 20(6): 1445 - 1455 (in Chinese with English abstract)
- Li ZL, Li YQ, Chen HL, Santosh M, Xiao WJ and Wang HH. 2010. SHRIMP U-Pb zircon chronology of ultrahigh-temperature spinelorthopyroxene-garnet granulite from south Altay orogenic belt, northwestern China. Island Arc, 19(3): 506 - 516
- Li ZL, Yang XQ, Li YQ, Santosh M, Chen HL and Xiao WJ. 2014. Late Paleozoic tectono-metamorphic evolution of the Altai segment of the Central Asian Orogenic Belt: Constraints from metamorphic *P-T* pseudosection and zircon U-Pb dating of ultra-high-temperature granulite. Lithos, 204: 83 – 96
- Long XP, Sun M, Yuan C, Xiao WJ, Lin SF, Wu FY, Xia XP and Cai KD. 2007. Detrital zircon age and Hf isotopic studies for metasedimentary rocks from the Chinese Altai: Implications for the early Paleozoic tectonic evolution of the Central Asian Orogenic Belt. Tectonics, 26(5): TC5015, doi:10.1029/2007TC002128
- Long XP, Yuan C, Sun M, Xiao WJ, Lin SF, Wang YJ and Cai KD. 2008. Geochemiscal characteristics and sedimentary environments of Devonina low metamorphic clastic sedimentary rocks in the southern margin of the Chinese Altai, North Xinjiang. Acta Petrologica Sinica, 24(4): 718 – 732 (in Chinese with English abstract)

Newton R and Perkins D. 1982. Thermodynamic calibration of

geobarometers based on the assemblages garnet-plagioclaseorthopyroxene (clinopyroxene)-quartz. American Mineralogist, 67(3-4); 203-222

- Pattison DRM, Chacko T, Farquhar J and McFarlane CRM. 2003. Temperatures of granulite-facies metamorphism: Constraints from experimental phase equilibria and thermobarometry corrected for retrograde exchange. Journal of Petrology, 44(5): 867-900
- Perchuk LL and Lavrentpeva IV. 1983. Experimental investigation of exchange equilibria in the system cordierite-garnet-biotite. In: Saxena SK (ed.). Kinetics and Equilibrium in Mineral Reactions. New York, Berlin, Heidelberg: Springer-Verlag, 199 – 239
- Perkins D III and Chipera SJ. 1985. Garnet-orthopyroxene-plagioclasequartz barometry: Refinement and application to the English River subprovince and the Minnesota River valley. Contributions to Mineralogy and Petrology, 89(1): 69-80
- Pirajno F, Mao JW, Zhang ZC, Zhang ZH and Chai FM. 2008. The association of mafic-ultramafic intrusions and A-type magmatism in the Tian Shan and Altay orogens, NW China: Implications for geodynamic evolution and potential for the discovery of new ore deposits. Journal of Asian Earth Sciences, 32(2-4): 165-183
- Powell R and Holland T. 1994. Optimal geothermometry and geobarometry. American Mineralogist, 79(1-2): 120-133
- Powell R, Holland TJB and Worley B. 1998. Calculating phase diagram involving solid solutions via no-linear equations, with examples using THERMOCALC. Journal of Metamorphic Geology, 16 (4): 577 - 586
- Powell R and Holland T. 1999. Relating formulations of the thermodynamics of mineral solid solutions: Activity modeling of pyroxenes, amphiboles, and micas. American Mineralogist, 84(1-2): 1-14
- Şengör AMC, Natal' in BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299 – 307
- Shen XM, Zhang HX and Ma L. 2013. LA-ICP-MS zircon U-Pb dating for Jieerkuduke acidic dykes in the southern Altay range. Xinjiang Geology, 31(3): 157 – 161 (in Chinese with English abstract)
- Sun M, Long XP, Cai KD, Jiang YD, Wang BY, Yuan C, Zhao GC, Xiao WJ and Wu FY. 2009. Early Palaeozoic ridge subduction in the Chinese Altai: Insight from the abrupt change in zircon Hf isotopic compositions. Science in China (Series D), 39(7): 935 – 948 (in Chinese)
- Tang GJ, Wang Q, Wyman DA, Li ZX, Zhao ZH and Yang YH. 2012. Late Carboniferous high $\varepsilon_{\text{Nd}}(t) - \varepsilon_{\text{Hf}}(t)$ granitoids, enclaves and dikes in western Junggar, NW China: Ridge-subduction-related magmatism and crustal growth. Lithos, 140(5): 86 – 102
- Tong LX, Chen YB, Xu YG and Liu WP. 2011. Occurrence of bearing Opx + Sil high-temperature pelitic granulite and its geological significance. Xi' an: Abstract of 2011's National Symposium on Petrology and Geodynamics, 214 (in Chinese)
- Tong LX, Chen YB, Xu YG, Zhou X and Liu Z. 2013. Zircon U-Pb ages of the ultrahigh-temperature metapelitic granulite from the Altai orogen, NW China, and geological implications. Acta Petrologica Sinica, 29(10): 3435 – 3445 (in Chinese with English abstract)
- Tong L, Chen Y and Chen L. 2014a. Confirmation of ultrahightemperature metapelitic granulite in the Altay orogen and its geological significance. Chinese Science Bulletin, 59 (27): 3441 - 3448
- Tong L, Xu YG, Cawood PA, Zhou X, Chen YB and Liu Z. 2014b. Anticlockwise *P-T* evolution at ~ 280Ma recorded from Opx-Silbearing metapelitic granulite in the Chinese Altai orogen, possible link with the Tarim mantle plume? Journal of Asian Earth Sciences, 94: 1-11
- Tong Y, Wang T, Hong DW and Han BF. 2006. Pb isotopic composition of granitoids from the Altay orogen (China): Evidence for Mantlederived origin and continental growth. Acta Geologica Sinica, 80 (4): 517 - 528 (in Chinese with English abstract)
- Wang T, Hong DW, Tong Y, Han BF and Shi YR. 2005. Zircon U-Pb SHRIMP age and origin of post-orogenic Lamazhao granitic pluton

from Altai orogen: Its implications for vertical continental growth. Acta Petrologica Sinica, 21(3): 640 - 650 (in Chinese with English abstract)

- Wang T, Hong DW, Jahn BM, Tong Y, Wang YB, Han BF and Wang XX. 2006. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai Mountains, Northwest China: Implications for the tectonic evolution of an accretionary orogen. Journal of Geology, 114(6): 735 - 751
- Wang T, Jahn BM, Kovach VP, Tong Y, Hong DW and Han BF. 2009a. Nd-Sr isotopic mapping of the Chinese Altai and implications for continental growth in the central Asian orogenic Belt. Lithos, 110 (1-4): 359-372
- Wang W, Wei CJ, Wang T, Lou YX and Chu H. 2009b. Confirmation of pelitic granulite in the Altai orogen and its geological significance. Chinese Science Bulletin, 54(14): 2543 – 2548
- Wang W, Wei CJ, Zhang YH, Chu H, Zhao Y and Liu XC. 2014. Age and origin of sillimanite schist from the Chinese Altai metamorphic belt: Implications for Late Palaeozoic tectonic evolution of the Central Asian Orogenic Belt. International Geology Review, 56 (2): 224 -236
- Wei CJ, Powell R and Clarke GL. 2004. Calculated phase equilibria for low- and medium-pressure metapelites in the KFMASH and KMnFMASH systems. Journal of Metamorphic Geology, 22(5): 495 - 508
- Wei CJ, Clarke G, Tian W and Qiu L. 2007. Transition of metamorphic series from the kyanite- to andalusite-types in the Altai orogen, Xinjiang, China: Evidence from petrography and calculated KMnFMASH and KFMASH phase relations. Lithos, 96(3-4): 353 - 374
- Wells PRA. 1977. Pyroxene thermometry in the simple and complex systems. Contributions to Mineralogy and Petrology, 62 (2): 129 -139
- White RW, Powell R, Holland TJB and Worley BA. 2000. The effect of TiO₂ and Fe₂ O₃ on metapelitic assemblages at greenschist and amphibolite facies conditions: Mineral equilibria calculations in the system K₂ O-FeO-MgO-Al₂ O₃-SiO₂-H₂ O-TiO₂-Fe₂ O₃. Journal of Metamorphic Geology, 18(5): 497 – 511
- White RW, Powell R and Clarke GL. 2002. The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: Constraints from mineral equilibria calculations in the system K₂ O-FeO-MgO-Al₂ O₃-SiO₂-H₂ O-TiO₂-Fe₂ O₃. Journal of Metamorphic Geology, 20(1): 41-55
- White RW, Powell R and Holland TJB. 2007. Progress relating to calculation of partial melting equilibria for metapelites. Journal of Metamorphic Geology, 25(5): 511-527
- Windley BF, Kröner A, Guo JH, Qu GS, Li YY and Zhang C. 2002. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: New zircon age data and tectonic evolution. Journal of Geology, 110 (6): 719-737
- Wood BJ and Banno S. 1973. Garnet-orthopyoxene and orthopyroxeneclinopyroxene relationship in simple and complex system. Contrib. Mineral. Petrol. 42(2): 109 – 124
- Wu CM, Pan YS and Wang KY. 1999. Refinement of the biotiteorthopyroxene geothermometer with applications. Acta Petrologica Sinica, 15(3): 463 – 468 (in Chinese with English abstract)
- Wu CM, Zhang J and Ren LD. 2004. Empirical garnet-biotite-plagiocl as e-quartz (GBPQ) geobarometry in medium- to high-grade metapelites. Journal of Petrology, 45(9): 1907 – 1921
- Xiao W, Windley BF, Badarch G, Sun S, Li J, Qin K and Wang Z. 2004. Palaeozoic accretion and convergent tectonics of the southern Altaids: Implications for the growth of Central Asia. Journal of the Geological Society, 161(3): 339 – 342
- Xiao WJ, Han CM, Yuan C, Chen HL, Sun M, Lin SF, Li ZL and Mao QG. 2006. Unique Carboniferous-Permian tectonic-metallogenic framework of northern Xinjiang (NW China): Constraints for the tectonics of the southern Paleoasian domain. Acta Petrologica Sinica, 22(5): 1062 – 1076 (in Chinese with English abstract)
- Xiao WJ, Han CM, Yuan C, Sun M, Lin SF, Chen HL, Li ZL, Li JL

and Sun S. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia. Journal of Asian Earth Sciences, 32(2-4); 102-117

- Xu XC, Zheng CQ and Zhao QY. 2005. Metamorphic types and crustal evolution of Hercynian orogenic belt in Altai region, Xinjiang. Journal of Jilin University (Earth Science Edition), 35(1): 7-11 (in Chinese with English abstract)
- Zhai MG and Liu WJ. 2001. The formation of granulite and its contribution to evolution of the continental crust. Acta Petrologica Sinica, 17(1): 28-38 (in Chinese with English abstract)
- Zhang CG, Wei CJ and Qiu L. 2004. Evolution of metamorphism and its geologic significance in Altaids, Xinjiang. Xinjiang Geology, 22 (1): 16-23 (in Chinese with English abstract)
- Zhang CL, Li ZX, Li XH, Xu YG, Zhou G and Ye HM. 2010. A Permian large igneous province in Tarim and Central Aisian orogenic belt, NW China: Results of a ca. 275Ma mantle plume? Geological Society of America Bulletin, 122(11-12): 2020-2040
- Zhang CL, Santosh M, Zou HB, Xu YG, Zhou G, Dong YG, Ding RF and Wang HY. 2012. Revisiting the "Irtish tectonic belt": Implications for the Palaeozoic tectonic evolution of the Altai orogen. Journal of Asian Earth Science, 52: 117-133
- Zheng CQ, Xu XC, Enami M and Kato T. 2005. Monazite ages and geological implications of andalusite-sillimanite type metamorphic belt in Aletai, Xinjiang. Global Geology, 24(3): 236 – 242 (in Chinese with English abstract)
- Zheng CQ, Kato T, Enami M and Xu XC. 2007. CHIME monazite ages of metasediments from the Altai orogen in northwestern China: Devonian and Permian ages of metamorphism and their significance. Island Arc, 16(4): 598 – 604
- Zheng CQ, Xu XC, Kato T and Enami M. 2007. Permian CHIME ages of monazites for the kyanite-sillimanite type metamorphic belt in Chonghuer area, Altai, Xinjiang and their geological implications. Geological Journal of China University, 13 (3): 566 - 573 (in Chinese with English abstract)
- Zhuang YX. 1994. The PTSt evolution of metamorphism and development mechanism of the thermal-structural-gneiss domes in the Chinese Altaides. Acta Geologica Sinica, 68(1): 35 - 47 (in Chinese with English abstract)
- Zou TR, Cao HZ and Wu BQ. 1988. Orogenic and anorogenic granitoids of the Altay Mountains, Xinjiang and their discrimination criteria. Acta Geologica Sinica, 62(3): 228 – 243 (in Chinese with English abstract)

附中文参考文献

- 陈汉林,杨树锋,厉子龙,余兴,肖文交,袁超,林秀斌,李继亮. 2006. 阿尔泰造山带富蕴基性麻粒岩锆石 SHRIMP U-Pb 年代学 及其构造意义.岩石学报,22(5):1351-1358
- 陈立辉,韩宝福. 2006. 新疆北部乌恰沟地区镁铁质侵入岩的年代 学地球化学和同位素组成:对地幔源区特征和深部过程的约 束. 岩石学报,22(5):1201-1214
- 宫红良,陈正乐,胡远清,李丽,赖新荣,马庆佑,李玉英,胡博,张 文贵. 2007. 阿尔泰额尔齐斯带东段酸性岩墙群地球化学特征 及其地质意义. 岩石学报,23(5):889-899
- 胡霭琴,张国新,张前锋,李天德,张积斌. 2002. 阿尔泰造山带变 质岩系时代问题的讨论. 地质科学, 37(2): 129-142
- 胡霭琴, 韦刚健, 邓文峰, 陈林丽. 2006. 阿尔泰地区青河县西南片 麻岩中锆石 SHRIMP U-Pb 定年及其地质意义. 岩石学报, 22 (1):1-10
- 李会军,何国琦,吴泰然,吴波. 2006. 阿尔泰-蒙古微大陆的确定及 其意义. 岩石学报, 22(5):1369-1379

- 李天德, 祁志明, 吴柏青, 肖世禄, 赵昌龙, 别斯帕耶夫 XA, 波利杨 斯基 HB, 季亚契科夫 BA, 甘任科 ГД, 叶夫图申科 HП, 叶夫图 申科 ОП. 1996. 中国和哈萨克斯坦阿尔泰地质及成矿研究的新 进展. 见:中国地质学会编. 献给三十届国际地质大会"八五" 地质科技重要成果学术交流会议论文选集. 北京: 冶金工业出 版社, 256-259
- 厉子龙,陈汉林,杨树锋,肖文交,Tainosho Y. 2004. 阿尔泰基性麻 粒岩的发现:来自矿物学的证据. 岩石学报,20(6):1445 -1455
- 龙晓平,袁超,孙敏,肖文交,林寿发,王毓靖,蔡克大. 2008. 北疆 阿尔泰南缘泥盆系浅变质碎屑沉积岩地球化学特征及其形成环 境.岩石学报,24(4):718-732
- 沈晓明,张海祥,马林. 2013. 阿尔泰南缘杰尔库都克酸性岩脉 LA-ICP-MS 锆石 U-Pb 测年. 新疆地质, 31(3): 157-161
- 孙敏,龙晓平,蔡克大,蒋映德,王步云,袁超,赵国春,肖文交,吴 福元. 2009. 阿尔泰早古生代末期洋中脊俯冲: 锆石 Hf 同位素 组成突变的启示.中国科学(D辑),39(7):935-948
- 仝来喜,陈义兵,徐义刚,刘文平. 2011. 阿尔泰造山带含 Opx + Sil 高温变泥质麻粒岩的产出及其地质意义. 西安: 2011 年全国岩 石学与地球动力学研讨会论文摘要(上册),214
- 仝来喜,陈义兵,徐义刚,周信,刘兆. 2013. 阿尔泰超高温变泥质 麻粒岩的锆石 U-Pb 年龄及其地质意义. 岩石学报,29(10): 3435-3445
- 童英,王涛,洪大卫,韩宝福.2006.中国阿尔泰造山带花岗岩 Pb 同位素组成特征:幔源成因佐证及陆壳生长意义.地质学报, 80(4):517-528
- 王涛,洪大伟,童英,韩宝福,石玉若.2005. 中国阿尔泰造山带后 造山喇嘛昭花岗岩体锆石 SHRIMP 年龄-成因及陆壳垂向生长 意义. 岩石学报,21(3):640-650
- 吴春明,潘裕生,王凯怡. 1999. 黑云母-斜方辉石温度计的重新标 度及其应用. 岩石学报,15(3):463-468
- 肖文交,韩春明,袁超,陈汉林,孙敏,林寿发,厉子龙,毛启贵,张 继恩,孙枢,李继亮.2006.新疆北部石炭纪-二叠纪独特的构 造成矿作用:对古亚洲洋构造域南部大地构造演化的制约.岩 石学报,22(5):1062-1076
- 徐学纯,郑常青,赵庆英.2005. 阿尔泰海西造山带区域变质作用类 型与地壳演化.吉林大学学报(地球科学版),35(1):7-11
- 翟明国,刘文军. 2001. 麻粒岩的形成及其对大陆地壳演化的贡献.岩石学报,17(1):28-38
- 张翠光,魏春景,邱林. 2004. 新疆阿尔泰造山带变质作用演化及其 地质意义. 新疆地质, 22(1):16-23
- 郑常青,徐学纯, Enami M, Kato T. 2005. 新疆阿尔泰红柱石-夕线 石型变质带的独居石年龄及其地质意义. 世界地质,24(3): 236-242
- 郑常青,徐学纯,Kato T, Enami M. 2007.新疆阿尔泰冲乎尔地区蓝 晶石-夕线石型变质带独居石 CHIME 二叠纪年龄及其地质意 义. 高校地质学报,13(3):566-573
- 庄育勋. 1994. 中国阿尔泰造山带变质作用 PTSt 演化和热-构造-片 麻岩穹窿形成机制. 地质学报, 68(1): 35-47
- 邹天人,曹惠志,吴柏青. 1988.新疆阿尔泰造山花岗岩和非造山花 岗岩及其判别标志.地质学报,62(3):228-243