・处理技术・

文章编号:1000-7210(2015)03-0451-09

# 低信噪比地震数据折射初至的判定与识别

安圣培\*① 梁向豪<sup>②</sup> 彭更新<sup>②</sup> 胡天跃<sup>①</sup>

(①北京大学地球与空间科学学院,北京 100871; ②中国石油塔里木油田公司,新疆库尔勒 841000)

安圣培,梁向豪,彭更新,胡天跃.低信噪比地震数据折射初至的判定与识别.石油地球物理勘探,2015,50(3): 451-459,468.

摘要 静校正是起伏地表条件下地震资料处理的关键技术,其精度依赖于初至拾取的准确性,但低信噪比往往 导致初至难以被准确地判别与拾取。折射波干涉法可以提高初至折射波的信噪比,本文在原干涉法的基础上 做了三点改进:通过引入反向互相关函数解决近道地震记录叠加次数低的问题;分析干涉法产生"假事件"的原 因,并针对互相关扭曲波形产生的"假事件",应用子波整形对其进行压制;在处理实际三维地震资料时,由于可 用于干涉法的炮检点组合数较少导致叠加次数较少,引入检波点域干涉法,增加所有道的叠加次数。合成地震 记录和实际地震资料处理结果均验证了本文方法的适用性。

关键词 低信噪比 初至 干涉法 反向互相关 同相轴保真 共检波点域
中图分类号:P631 文献标识码:A doi: 10.13810/j. cnki. issn. 1000-7210. 2015. 03. 010

# 1 引言

目前,中国油气勘探重点逐步向西部地区转移, 这些地区地表条件大部分比较复杂,静校正问题突 出,直接影响这些地区的地震勘探效果。常规的层 析静校正和折射静校正精度都依赖初至拾取的精 度,但复杂近地表条件会降低初至波的信噪比,尤其 是中远炮检距的初至折射波,由于球面扩散、近地表 吸收和背景噪声的影响,其信噪比往往很低,难以准 确识别,从而影响静校正的效果。干涉法为解决这 一问题提供了思路。

Claerbout<sup>[1]</sup>、Rickett 等<sup>[2]</sup>最早提出了"日光成 像"的概念,即对两道地震记录互相关得到以一点为 震源、以另一点为检波点的地震记录,该方法可用于 获得地下反射层位和震源分布信息<sup>[3]</sup>。Wapenaar 等<sup>[4]</sup>推导了描述地震干涉的声波和弹性波的格林函 数; Snieder<sup>[5]</sup>和 Wapenaar 等<sup>[6]</sup>进一步推导了内部 衰减介质中地震干涉的声波和弹性波的表示定理; Snieder 等<sup>[7]</sup>通过理论推导分析了产生干涉"假同相 轴"的原因(包括有限孔径导致"非驻点"的贡献不能 被忽略时产生"假同相轴",当炮点只分布在地表时 产生类似"层间多次波"的"假同相轴"); Thorbecke 等<sup>[8]</sup>针对不同复杂程度的模型,提出了两种压制"假 同相轴"的方法。

在干涉法的基础上,Bharadwai等<sup>[9]</sup>提出了超虚 折射波干涉法,即对每个炮点指定两个检波点记录 做互相关并叠加,将叠加互相关函数与原始记录褶 积并再次叠加得到高信噪比资料。理论上,折射波 信噪比提高了 $\sqrt{N}$  倍(N 为参与褶积运算的检波点 数)。Mallinson 等<sup>[10]</sup> 应用超虚折射波干涉法提高 了远炮检距折射波的信噪比; Alshuhail 等<sup>[11]</sup>应用 超虚折射波干涉法处理了沙特阿拉伯的实际资料; Nichols 等<sup>[12]</sup>应用虚折射法研究了 Boise 水文研究 基地的近地表情况取得了一定的效果。此外,Halliday 等<sup>[13]</sup>利用干涉法分离出面波,并使用最小平 方滤波法有效地去除了面波; van Wijk 等[14]利用 干涉法产生的"假同相轴"获取近地表信息,并用于 近地表成像和静校正; Henley<sup>[15]</sup>应用干涉法在共 角度域实现了基于射线一致性假设的剩余静校正; 吴世萍等[16]应用虚源法实现了复杂上覆地层下的 地震相干成像。

<sup>\*</sup> 北京市海淀区北京大学地球与空间科学学院,100871。Email:asppj@qq.com 本文于 2014 年 1 月 26 日收到,最终修改稿于 2015 年 3 月 3 日收到。

本文研究由国家科技部"973"计划(2013CB228602)和"863"计划(2013AA064202)资助。

基于以上研究,本文应用折射波干涉法提高低 信噪比资料中初至折射的信噪比,并做了三点改 进:①应用原干涉法时,由于近道记录的叠加次数 少于远道记录,提高信噪比的效果不明显,因此引 入反向互相关函数使所有道的叠加次数相同,明显 提高了近道记录的信噪比;②针对干涉法产生的 "假同相轴"造成初至同相轴失真的问题,应用子波 整形有效地压制了干涉法产生的"假同相轴";③针 对实际资料处理时覆盖次数不均衡的问题,引入了 检波点域干涉法,提高了所有道记录的叠加次数。 模型试验和实际资料测试结果均表明本文方法是 可行的。

# 2 折射波反向干涉

远炮检距初至一般是来自高速层顶的折射波。 图 1 为折射波互相关示意图。*x*<sub>1</sub> ~ *y* 的折射波记 录<sup>[10]</sup>在频率域的表达式为

$$u(x_1, y) = A(x_1, y) e^{i\omega(\tau_{x_1}y' + \tau_{y'y})}$$
(1)

式中:  $\tau_{x_1y'}$ 为 $x_1$ 与 $y'两点之间的走时; \tau_{yy}为y'与y$ 之间的走时;  $A(x_1,y)$ 为振幅值。



图 1 折射波互相关示意图 (a)、(b)、(c)分别表示不同炮点在两检波点的折射波记录 做互相关,得到相同的介质响应; ②是互相关符号,*x*<sub>1</sub>、*x*<sub>2</sub>、 *x*<sub>3</sub>为不同炮点,*y*、*z*为检波点,*y*为虚源

对 z、y 两点的折射波记录做互相关,得到折射 波介质响应,物理意义是以 y为地下虚拟震源,其折 射波在 z 点接收,其激发时间需提前 τ<sub>yy</sub>。互相关的 表达式为

$$\varphi(y,z)_{1} = u(x_{1},z)u(x_{1},y)^{*}$$

$$= |A(x_{1},z)| |A(x_{1},y)| e^{i\omega(\tau_{x_{1}y'}+\tau_{y'z}-\tau_{x_{1}y'}-\tau_{y'y})}$$

$$\approx |A(x_{1},y)|^{2} e^{i\omega(\tau_{y'z}-\tau_{y'y})}$$
(2)

式中:  $\varphi(y,z)$ 为第  $x_1$  炮在 y,z 两点的地震记录的

互相关; \* 为复共轭, 文中假设 $|A(x_1, y)| \approx$  $|A(x_1, z)|_{\circ}$ 

大于临界炮检距(即初至波由直达波变为折射 波所对应的炮检距)的不同炮点得到的 y,z 两点之 间的折射波介质响应相同。如图 1b、图 1c 所示,第  $x_2$ 、第  $x_3$ 炮在 y,z 两点的折射波记录做互相关得到 的折射波介质响应与第  $x_1$ 炮相同,互相关同相叠加 可得

$$\varphi(y,z) = \sum_{i=1}^{n} \varphi(y,z)_{i} \approx \sum_{i=1}^{n} |A(x_{1},y)|^{2} e^{i\omega(\tau_{y'z} - \tau_{y'y})}$$
(3)

地震记录中除了折射波还有反射波和随机噪声 等。以反射波之间的互相关为例,如果炮检距远大 于检波点 y、z之间的距离(图 2a),则反射波走时差 约等于零;如果炮点 x2 恰好与检波点 y重合 (图 2b),则 y点接收到的是自激自收的反射波记 录,此时,反射波走时差不为零。因此,不同炮点得 到的反射波介质响应不同。同理,其他与反射波或 随机噪声有关的介质响应一般也不相同。所以,在 互相关函数叠加时,只有折射波介质响应是同相叠 加,其信号相对得到加强。



图 2 反射波互相关示意图

(a)炮检距远大于检波点间距时,反射波走时差约等于零;(b)炮点 x2 与检波点 y 重合时,反射波走时差不为零;x1、x2 为不同的炮点, y、z 为检波点,绿线、红线分别表示 y、z 的反射波路径。

进一步利用叠加互相关函数褶积原始地震记录 得到干涉法恢复的地震记录。褶积过程如图 3a 所 示,将  $S \sim R_1$  的原始地震记录与  $R_1 \sim R_4$  间的叠加 互相关函数进行褶积,得到  $S \sim R_4$  的地震记录。同 理,利用  $S \sim R_2$  和  $S \sim R_3$  的地震记录也能得到  $S \sim R_4$  的地震记录(图 3b、图 3c),再把  $R_4$  点的地震记 录叠加,可以进一步提高折射波信噪比。



图 3 褶积示意图 (a)、(b)、(c)分别表示利用 S~R<sub>1</sub>,S~R<sub>2</sub>,S~R<sub>3</sub>的原始地震 记录褶积相应的叠加互相关函数得到 S~R<sub>4</sub>的地震记录; \*为褶积符号,S 为炮点,R<sub>1</sub>~R<sub>4</sub> 为检波点,R'<sub>1</sub>~R'<sub>3</sub> 为虚源

原干涉法仅利用近道记录褶积叠加互相关函数 得到远道记录,使近道记录的叠加次数少于远道记 录的叠加次数,导致近道数据恢复效果较差。

为使所有道获得相同的叠加次数,本文引入反向互相关函数,即用 z、y两点的地震记录做互相关(图 4),得到 z、y两点之间的反向折射波介质响应, 其物理意义是 z处的虚拟震源产生的地震波沿实际射线路径的反方向传播到 y点,激发时间延迟了 $\tau_{zz'}$ ,互相关函数中时间为负的部分是物理可实现的。同样,不同炮点得到的两检波点之间的反向折射波介质响应是相同的(图 4b,图 4c),可以同相叠加。





引入了反向互相关函数,就可以利用远道记录 褶积反向互相关函数得到近道记录。图 5a 中原方 法只利用了  $S \sim R_1$  的地震记录得到  $S \sim R_2$  的地震 记录,现在可以利用  $S \sim R_3$ , $S \sim R_4$  的地震记录褶积 相应的反向互相关函数得到  $S \sim R_2$  的地震记录 (图 5b,图 5c)。如果存在 N 个检波点,每一个检波 点的地震记录都可以由另外的 N-1 个检波点的地 震记录得到,相当于每一道的叠加次数都是 N,这 样就实现了所有道叠加次数相同。



图 5 反向互相关后褶积示意图

# 3 同相轴保真

折射波干涉法在提高折射波信噪比的同时会 在地震记录上形成"假同相轴",难以准确地判定和 识别真实的同相轴。产生"假同相轴"主要有三个 原因。

(1)互相关扭曲波形,图 6 中两个完全相同的子 波做互相关,理论上应该得到零点处的脉冲函数,但 由于原子波中两侧的负向旁瓣具有很强的相似性, 互相关会产生两个额外的正向旁瓣,构成了真实同 相轴两侧的"假同相轴"。



图 6 两个相同子波互相关结果

(2)与反射波和随机噪声有关的介质响应在互 相关函数中无法同相叠加。理想情况下,高叠加次 数会使这部分信息相互抵消。但由于炮点数有限导 致叠加次数有限,这些信息不能完全抵消,褶积结果 中会出现与折射波无关的虚假信号。

(3)理论上干涉法得到真实介质脉冲响应的假 设前提是在一个由炮点组成的闭合曲面内进行积 分,要求炮点连续分布以及时间连续采样。但实际

<sup>(</sup>a) $S \sim R_1$ 的记录褶积  $R_1 \sim R_2$ 之间的互相关函数得到  $S \sim R_2$ 的记录; (b) $S \sim R_3$ 的记录褶积  $R_3 \sim R_2$ 之间的反向互相关函数 得到  $S \sim R_2$  的记录; (c) $S \sim R_4$ 的记录褶积  $R_4 \sim R_2$ 之间的反向 互相关函数得到  $S \sim R_2$  的记录;  $R'_1 \land R'_3 \land R'_4$ 为虚源

情况中,用于干涉法的炮点并不构成闭合曲面,且炮 点离散分布,时间离散采样,假设条件不满足,因此 会产生"假同相轴"。

本文针对"假同相轴"产生的前两个原因,通过 子波整形的方法压制"假同相轴",实现同相轴保真。

首先区分叠加互相关函数中不同子波对应的介 质响应。其中折射波介质响应对应的子波峰值(因 同相叠加)一般远大于其他介质响应对应的子波峰 值,所以峰值较大的子波一般对应折射波介质响应 (包括初至折射波和深层折射波),峰值较小的子波 一般是反射波或随机噪声。实际资料处理中只保留 峰值较大的子波,峰值较小的子波直接归零。

然后选取合适的时窗,对保留下来的子波进行 整形。一般的矩形窗在边缘处会直接截断波形,产 生尖锐的突变,形成虚假的脉冲信号,所以在矩形窗 两侧加上具有平滑衰减效果的 Kaiser 窗作为本文 使用的整形窗。时窗尺寸的选取对子波整形的效果 有直接影响,时窗过大,无法压制子波中负向旁瓣, 时窗过小会扭曲原有的主瓣波形,改变相位信息。 所以需要确定既能有效压制旁瓣且尽可能多地保留 主瓣宽度的时窗。本文对比了不同宽度时窗截取子 波后的互相关结果(图 7)。其中,使用两个相同的 子波做互相关,子波表达式为

$$R(t) = \left\lceil 1 - (\pi f t)^2 \right\rceil e^{-(\pi f t)^2}$$
(5)

式中:主频 f 为 50Hz;时间范围从一0.15s~+0.15s。 由图 7 可以看到随着时窗宽度的减小,正向旁瓣的 峰值随之减小,当时窗宽度为 0.023s 时(图 7c),正 向旁瓣完全消失,既达到了理想的压制效果又可保 持主瓣的峰值信息基本没有改变。

最后分析不同频率的子波对应的最佳时窗宽度 (最佳时窗宽度定义为使旁瓣峰值与主瓣峰值的比 值<0.01的临界时窗宽度)。假设地震子波是雷克 子波,则子波的主瓣宽度与主频的关系为

$$L_{\rm m} = \sqrt{2} / (\pi f) \tag{6}$$

通过数值模拟研究不同主瓣宽度下使用不同截取时 窗宽度压制旁瓣的效果。图 8 为不同频率旁瓣峰值 与整形时窗宽度的关系曲线。可以看到,随着时窗 宽度减小,旁瓣峰值先稍稍增大,之后急剧地减小, 当到达最佳时窗宽度时,正向旁瓣可以被完全压制。

图 9 为主瓣宽度与最佳时窗宽度的关系曲线。 可以看到,最佳时窗宽度与主瓣宽度的比值随着主 瓣宽度增加而增大,且数值逐渐趋于稳定。依据这 条曲线,可以根据子波主瓣宽度选取时窗的宽度。









实际资料中的子波与雷克子波相比较对称性较差,为了保证压制效果,截取时窗宽度为1.1倍的主 瓣宽度。从实际地震记录中提取初至子波(图10a), 并从相应的叠加互相关函数中提取峰值最大的子波 (图10b),直接褶积的结果中有明显的正向旁瓣 (图 10c)。对互相关函数中的子波进行整形 (图 10e),可以看到褶积结果中正向旁瓣得到很好 的压制,同时主瓣信息没有明显改变(图 10f)。



<sup>(</sup>a)、(d)为原始数据中的初至子波;(b)叠加互相关函数中 提取的子波;(c)未做子波整形的褶积结果;(e)对(b)所示 的子波整形;(f)子波整形后的褶积结果

# 4 检波点域干涉法

干涉法提高信噪比的效果主要取决于叠加次数,而叠加次数取决于可用于干涉法的炮检点数量。 实际三维地震资料能够产生共折射波路径的炮检点 组合较少,应用折射波干涉法时会出现叠加次数低 导致信噪比低的情况。为此本文将干涉法扩展到了 检波点域。

原干涉法在炮点域进行,叠加互相关函数反映的是两个检波点之间的介质响应。根据地震波的可 逆性,在检波点域也可以实现干涉法:对两个炮点在 同一检波点的地震记录做互相关,得到两个炮点之 间的介质响应(图 11),将不同检波点对应的炮点之 间的互相关函数叠加再褶积,就得到干涉法恢复的 地震记录,将这部分结果与炮点域干涉法的结果叠 加,得到最后恢复的地震记录。



图 11 检波点域干涉法示意图

(a) $x_1 \sim y$ 的记录与 $x_2 \sim y$ 的记录做互相关得到 $x_1 \sim x_2$ 之间的互相关函数; (b) $x_2 \sim y$ 的记录褶积 $x_1 \sim x_2$ 的互相关函数得到 $x_1 \sim y$ 的记录

对 *M* 个炮点和 *N* 个检波点的地震记录,炮点 域干涉法褶积后的叠加次数为 *N*,检波点域干涉法 的叠加次数为 *M*,所以联合炮点域和检波点域干涉 法的最终叠加次数增加到 *M*+*N*。

## 5 合成数据实例

为了比较原干涉法和改进干涉法的效果,建立 水平层状模型(图 12a)。网格数为 200×80,网格尺 寸为 5m×5m。共两层介质,上层为低速层,P 波速 度为 700m/s,厚度为 75m,下层为高速层,P 波速度 为 1500m/s,厚度为 225m,共 30 个炮点和 70 个检 波点,炮距和道距均为 5m,时间采样间隔为0.001s, 记录时长为 1.2s,震源为雷克子波,主频为 20Hz。 利用空间 4 阶精度、时间 2 阶精度的有限差分法实 现弹性波正演模拟。

为了应用折射波干涉法提高远炮检距道集的初至信噪比,截取合成数据中的远炮检距道集(图 12b)。 为模拟低信噪比情况,在合成数据中加入了高斯随 机噪声(图 12c),可以看到初至的信噪比降低,难以 准确分辨。先应用原干涉法对该资料进行处理 (图 12d),可以看到,随机噪声得到了压制,远道的 初至也得到了很好的恢复,但近道记录由于叠加次 数低,恢复效果很差。再应用加入反向互相关的干 涉法处理(图 12e),由于所有道集的叠加次数相同, 近道初至的信噪比明显提高,但"假同相轴"很明显, 初至同相轴失真。最后应用加入反向互相关和子波 整形的干涉法处理(图 12f),可以看到"假同相轴" 得到明显压制,可以有效地判定和识别真实的初至 同相轴,实现了同相轴保真。

为了进一步检验该方法在复杂地表情况下的适用性,建立垂直断层的模型(图 13a)。在 *x*=600m 处存在一个垂直断层,断层左侧的低速层厚度为 150m,右侧的低速层厚度为 75m,其他的物理参数 与图 12a 中的水平层状模型相同。

同样截取垂直断层模型的合成记录中远炮检距 道集(图 13b),可以看到垂直断层的存在增加了数 据的复杂性,初至波不再呈现线性同相轴的特点。 在合成数据中加入高斯随机噪声(图 13c),可以看 到由于信噪比低,炮检距大于 570m 的初至已经完 全无法分辨。分别应用原干涉法(图 13d),加入反 向互相关的干涉法(图13e)和加入反向互相关及子





<sup>(</sup>a)垂直断层模型;(b)远炮检距原始单炮记录;(c)加入高斯随机噪声;(d)原干涉法处理结果;(e)加入反向互相关的干涉法处理结果;(f)加入反向互相关和子波整形的干涉法处理结果

波整形的干涉法(图 13f)处理数据。从图 13f 的结 果中看到初至的信噪比明显提高,相比图 13e 的结 果,"假同相轴"也得到了一定程度的压制。说明该 方法在处理具有一定复杂性的近地表资料时也能取 得较好的效果。

# 6 起伏地表应用实例

选取塔里木盆地的实际地震资料进行处理,工 区位于和田地区西昆仑山山前甫沙构造带,由于经 历了多期构造运动,形成了复杂的构造特征,断裂发 育。工区总体呈南高北低的趋势,地表起伏较大,海 拔高程为1760~3200m,高差为1440m(图14)。微 测井及小折射数据测得工区低降速带厚度(最厚可 达到400m)横向变化大,单炮记录信噪比极低,面 波、多次折射波、异常干扰等干扰波发育,静校正问 题严重。



图 14 工区高程图

工区自南向北从山区逐渐过渡到山前带地区。 图 15 展示了 A 测线的炮点分布,可控震源只在相 对平缓的地区使用。根据地形以及所使用的震源将 数据分为三类:山区数据(使用炸药震源),山下炸药 震源数据和山下可控震源数据,每类数据的典型单 炮记录如图 16 所示。

山区单炮记录(图 16a)的初至信噪比较高,但 由于地表起伏剧烈,多次折射、反射和侧面波等异常 干扰发育。山下地区仍存在较大的高程差,但地势 趋于平缓,逐渐向平坦的戈壁地区过渡,这部分地区 的地表上覆盖着一层较薄的黄土。山前带炸药震源 单炮记录如图 16b 所示,靠近平坦戈壁地区的道集 初至信噪比很低,主要因为薄黄土层严重吸收有效 信号,接收到的有效反射能量弱,较强的背景噪声降低了资料的信噪比。工区最北段的山下可控震源单炮记录如图 16c 所示,在远炮检距处的初至信噪比极低,难以分辨。



图 16 工区三种典型单炮记录 (a)山区炸药震源单炮记录;(b)山下炸药震源单炮记录; (c)山下可控震源单炮记录

常规的三维观测系统中炮线与检波点线一般 是正交或斜交分布,与检波点测线共线的炮点数较 少,而且沿检波点测线方向相邻炮点的间距很大, 所以能够产生共折射波路径的炮点数很少,使干涉 法的叠加次数较低,影响最后的效果。另外,由于 工区北段使用了炸药震源和可控震源,两种不同震 源产生的地震数据的相位、频率和信噪比都存在差 异,所以分别对这两类震源记录使用干涉法。每条 测线上使用的可控震源记录为16炮,数量较少,导 致对可控震源记录应用干涉法的可用炮检点数很 少。联合使用炮点域干涉法和检波点域干涉法增 加叠加次数。

## 6.1 山下炸药震源记录处理效果

选取一组山下炸药震源记录中的共检波点道 集,通过两个单炮记录验证改进干涉法的效果。实 例1的原始数据如图17a所示,可以看出,整个道集 的背景噪声较强,且中间的部分道集存在严重的规 则干扰(椭圆内)。应用改进干涉法(图17b)后,背 景噪声和规则干扰都得到了有效压制,信噪比明显 提高,初至同相轴清晰可辨。

实例2的原始数据如图18a所示,背景噪声非 常强,资料信噪比极低,炮检距大于4800m的道集 完全无法分辨出初至同相轴(椭圆内)。应用改进后 的干涉法后(图18b),背景噪声水平降低,初至波的





信噪比明显提高,可以很好地识别炮检距大于 4800m 的道集的初至同相轴。

## 6.2 山下可控震源记录处理效果

图 19a 是截取的可控震源记录,由于表层黄土 的影响,原始记录中存在强烈的背景噪声,资料的信



图 18 山下炸药震源记录应用改进干涉法处理结果(二) (a)原始记录;(b)应用改进干涉法得到的结果



图 19 山下可控震源记录应用改进干涉法处理结果 (a)原始记录;(b)应用改进干涉法得到的结果

噪比极低。由于可控震源数量少,最终用于干涉法 的单炮记录只有 14 炮。联合使用炮点域和检波点 域干涉法的结果如图 19b 所示,可以看出,背景噪声 得到有效压制,可以有效识别原始数据中远炮检距 道集中的初至同相轴。

## 6.3 山区数据处理效果分析

图 20a 是截取的山区单炮记录,由于地表起伏 剧烈,初至同相轴的形状很不规则,且部分道集资料 信噪比很低,难以识别初至。图 20b 是应用改进干 涉法处理的结果,可以看到初至同相轴相比原始资 料更加清晰,背景噪声得到有效压制,提高了初至同 相轴的识别度。通过对山区数据的分析,说明改进 的干涉法在处理地表剧烈起伏的地震数据时同样有 效,拓宽了该方法的应用范围。



## 7 结论

本文针对低信噪比叠前资料中无法准确判定和 识别初至的问题,利用折射波干涉法提高初至折射 波的信噪比,并对原干涉法做了改进,合成记录和实 际资料处理结果均验证了该法的可行性和适用性, 并得出如下结论:

(1)反向互相关函数可以解决近道地震记录叠加次数低的问题,使所有地震道的叠加次数都为 N(N 为使用的检波点数);

(2)针对互相关扭曲波形产生的"假同相轴",对 叠加互相关函数中的子波做整形可以压制旁瓣的影 响,并得到最佳整形时窗与子波主瓣宽度的关系曲 线,为选取合适的整形时窗提供了依据;

(3)检波点域干涉法可以进一步增加所有道的 叠加次数,使叠加次数提高了 M+N次(M和N分 别为使用的炮点数和检波点数);

(4)本文方法与原干涉法相比,不仅提高了水平 层状模型合成地震记录的信噪比(包括初至同相轴 信噪比),而且提高了垂直断层模型的合成地震记录 的信噪比(包括初至同相轴信噪比),验证了该方法 处理复杂近地表条件地震资料的适用性;

(5)通过对塔里木盆地实际三维地震资料中三 种不同类型的地震记录(山下炸药震源记录、山下可 控震源记录和山区数据)分别应用改进干涉法,有效 地压制了原始数据中的强背景噪声,原本无法识别 的初至同相轴变得清晰可见,使低信噪比资料的初 至自动拾取成为可能。

#### 参考文献

- Claerbout J F. Synthesis of a layered medium from its acoustic transmission response. Geophysics, 1968, 33(2): 264-269.
- [2] Rickett J and Claerbout J. Passive seismic imaging applied to synthetic data. Stanford Exporation Project, 1997, 87-94.
- [3] Schuster G T. Theory of daylight / interferometric imaging: tutorial. 63rd annual EAGE Meeting Expanded Abstracts, 2001, A-32.
- [4] Wapenaar K and Fokkema J. Green's function representations for seismic interferometry. Geophysics, 2006, 71(4): SI33-SI46.
- [5] Snieder R. Extracting the Green's function of attenuating heterogeneous media from uncorrelated waves. Journal Acoustical Society America, 2007, 121(5): 2637-2643.
- [6] Wapenaar K, Slob E, and Snieder R. Seismic and electromagnetic controlled-source interferometry in dissipative media. Geophysical Prospecting, 2008, 56(3): 419-434.
- [7] Snieder R, Wapenaar K and Larner K. Spurious multiples in seismic interferometry of primaries. Geophysics, 2006, 71(4): SI111-SI124.
- [8] Thorbecke J and Wapenaar K. Analysis of spurious events in seismic interferometry. SEG Technical Program Expanded Abstracts, 2008, 27:1415-1420.
- [9] Bharadwaj P, Schuster G T and Mallinson I. Supervirtual refraction interferometry: theory. SEG Technical Program Expanded Abstracts, 2011, 30:3809-3812.

(下转第468页)

tion. Journal of Applied Geophysics, 2003, 54(3): 369-389.

- [32] Hokstad K. Multicomponent Kirchhoff migration. Geophysics, 2000, 65(3): 861-873.
- [33] 岳玉波.复杂介质高斯束偏移成像方法研究[博士学 位论文].青岛:中国石油大学(华东),2011.

[34] 黄建平,袁茂林,李振春等.双复杂条件下弹性波非倾斜叠加精确束偏移方法研究.石油物探,2015,54(1): 56-63.
Huang Jianping, Yuan Maolin, Li Zhenchun et al. An accurate elastic beam migration method without slant stack for complex surface and subsurface geo-

- logical conditions. GPP, 2015, 54(1): 56-63. [35] Hill N R. Gaussian beam migration. Geophysics, 1990, 55(11):1416-1428.
- [36] Hill N R. Prestack Gaussian-beam depth migration. Geophysics, 2001, 66(4):1240-1250.

(本文编辑:金文昱)

### (上接第459页)

- [10] Mallinson I and Bharadwaj P. Enhanced refractor imaging by supervirtual interferometry. The Leading Edge, 2011, 30(5): 546-549.
- [11] Alshuhail A, Aldawood A and Hanafy S. Application of super-virtual seismic refraction interferometry to enhance first arrivals: a case study from Saudi Arabia. The Leading Edge, 2012, 31(1): 34-39.
- [12] Nichols J, Mikesell D and van Wijk K. Application of the virtual refraction to near-surface characterization at the Boise Hydrogeophysical Research Site. Geophysical Prospecting, 2010, 58(6), 1011-1021.
- [13] Halliday D F, Curtis A, Robertson J A et al. Interferometric surface-wave isolation and removal. Geophysics, 2007, 72(5): A69-A73.
- [14] van Wijk K, Calvert A, Haney M et al. The critical angel in seismic interferometry. SEG Technical Program Expanded Abstracts, 2008, 27: 2737-2740.
- [15] Henley D C. Interferometric application of static corrections. Geophysics, 2012, 77(1): Q1-Q13.

## 作者简介



黄建平 博士,博士生导师,1982 年生;1999年进入中国科技大学地球物 理专业学习,2008年获该校理学博士; 2009年至今在中国石油大学(华东)地球 科学与技术学院物探教研室工作。2012 年入选中国石油大学骨干教师人才建 设工程,2012年首届"青年科技奖"获得

者;2014年获得教育部霍英东青年教师奖,国家自然科学基 金评审专家,山东省自然科学基金评审专家。长期从事复杂 介质地震波正演模拟、绕射波分离成像、高斯束偏移及最小 二乘偏移方法研究。近年来在国内外著名杂志及专业会议 上发表论文 80 余篇。主持国家自然科学基金 2 项、"973"课题 2 项、山东省自然科学基金 1 项,国家油气重大专项课题 3 项。申请国家发明专利 4 项,授权软件著作权 18 项。

[16] 吴世萍,彭更新,黄录忠等.基于虚源估计的复杂上 覆地层下的地震相干成像.地球物理学报,2011, 54(7):1874-1882.

> Wu Shiping, Peng Genxin, Huang Luzhong et al. Seismic interferometry imaging based on virtual source estimation with complex overburden. Chinese Journal of Geophysics, 2011, 54(7): 1874-1882.

> > (本文编辑:金文昱)

## 作者简介



安圣培 博士研究生,1990年生; 2013年本科毕业于北京大学地球与空 间科学学院地球物理系,现为北京大 学固体地球物理学专业博士研究生, 主要从事静校正和叠前资料去噪方面 的研究。