
Natural logic and natural language inference

Bill MacCartney and Christopher D. Manning

Abstract We propose a model of natural language inference which identifies valid
inferences by their lexical and syntactic features, without full semantic interpreta-
tion. We extend past work in natural logic, which has focused on semantic contain-
ment and monotonicity, by incorporating both semantic exclusion and implicativity.
Our model decomposes an inference problem into a sequence of atomic edits linking
premise to hypothesis; predicts a lexical entailment relation for each edit; propagates
these relations upward through a semantic composition tree according to properties
of intermediate nodes; and joins the resulting entailment relations across the edit se-
quence. A computational implementation of the model achieves 70% accuracy and
89% precision on the FraCaS test suite. Moreover, including this model as a compo-
nent in an existing system yields significant performance gains on the Recognizing
Textual Entailment challenge.

1 Introduction

Natural language inference (NLI) is the problem of determining whether a natu-
ral language hypothesis h can reasonably be inferred from a given premise p. For
example:

(1) p: Every firm polled saw costs grow more than expected, even after adjusting
for inflation.

h: Every big company in the poll reported cost increases.

A capacity for open-domain NLI is clearly necessary for full natural language
understanding, and NLI can also enable more immediate applications, such as se-

Bill MacCartney
Stanford University, Stanford, California, e-mail: wcmac@cs.stanford.edu

Christopher D. Manning
Stanford University, Stanford, California, e-mail: manning@cs.stanford.edu

1

2 Bill MacCartney and Christopher D. Manning

mantic search and question answering. Consequently, NLI has been the focus of
intense research effort in recent years, centered around the annual Recognizing Tex-
tual Entailment (RTE) competition [6].

For a semanticist, the most obvious approach to NLI relies on full semantic in-
terpretation: first, translate p and h into some formal meaning representation, such
as first-order logic (FOL), and then apply automated reasoning tools to determine
inferential validity. While the formal approach can succeed in restricted domains, it
struggles with open-domain NLI tasks such as RTE. For example, the FOL-based
system of [1] was able to find a proof for less than 4% of the problems in the RTE1
test set. The difficulty is plain: truly natural language is fiendishly complex. The
formal approach faces countless thorny problems: idioms, ellipsis, paraphrase, am-
biguity, vagueness, lexical semantics, the impact of pragmatics, and so on. Consider
for a moment the difficulty of fully and accurately translating (1) to a formal mean-
ing representation.

Yet (1) also demonstrates that full semantic interpretation is often not necessary
to determining inferential validity. To date, the most successful NLI systems have
relied on surface representations and approximate measures of lexical and syntactic
similarity to ascertain whether p subsumes h [9, 13, 10]. However, these approaches
face a different problem: they lack the precision needed to properly handle such
commonplace phenomena as negation, antonymy, downward-monotone quantifiers,
non-factive contexts, and the like. For example, if every were replaced by some or
most throughout (1), the lexical and syntactic similarity of h to p would be unaf-
fected, yet the inference would be rendered invalid.

In this paper, we explore a middle way, by developing a model of what Lakoff
[11] called natural logic, which characterizes valid patterns of inference in terms
of syntactic forms which are as close as possible to surface forms. For example,
the natural logic approach might sanction (1) by observing that: in ordinary upward
monotone contexts, deleting modifiers preserves truth; in downward monotone con-
texts, inserting modifiers preserves truth; and every is downward monotone in its
restrictor NP. Natural logic thus achieves the semantic precision needed to handle
inferences like (1), while sidestepping the difficulties of full semantic interpretation.

The natural logic approach has a very long history,1 originating in the syllogisms
of Aristotle and continuing through the medieval scholastics and the work of Leib-
niz. It was revived in recent times by van Benthem [19, 20] and Sánchez Valencia
[17], whose monotonicity calculus explains inferences involving semantic contain-
ment and inversions of monotonicity, even when nested, as in Nobody can enter
without a valid passport |= Nobody can enter without a passport. However, because
the monotonicity calculus lacks any representation of semantic exclusion, it fails to
license many simple inferences, such as Stimpy is a cat |= Stimpy is not a poodle.

Another model which arguably belongs to the natural logic tradition (though not
presented as such) was developed by [15] to explain inferences involving implica-
tives and factives, even when negated or nested, as in Ed did not forget to force Dave
to leave |= Dave left. While the model bears some resemblance to the monotonic-

1 For a useful overview of the history of natural logic, see [21]. For recent work on theoretical
aspects of natural logic, see [7, 18, 23].

Natural logic and natural language inference 3

ity calculus, it does not incorporate semantic containment or explain interactions
between implicatives and monotonicity, and thus fails to license inferences such as
John refused to dance |= John didn’t tango.

In this paper, we propose a new model of natural logic which extends the mono-
tonicity calculus to incorporate semantic exclusion, and partly unifies it with Nairn
et al.’s account of implicatives. We first define an inventory of basic entailment rela-
tions which includes representations of both containment and exclusion (section 2).
We then describe a general method for establishing the entailment relation between
a premise p and a hypothesis h. Given a sequence of atomic edits which transforms
p into h, we determine the lexical entailment relation generated by each edit (sec-
tion 4); project each lexical entailment relation into an atomic entailment relation,
according to properties of the context in which the edit occurs (section 5); and join
atomic entailment relations across the edit sequence (section 3). We have previously
presented an implemented system based on this model [14]; here we offer a detailed
account of its theoretical foundations.

2 An inventory of entailment relations

The simplest formulation of the NLI task is as a binary decision problem: the re-
lation between p and h is to be classified as either entailment (p |= h) or non-
entailment (p 6|= h). The three-way formulation refines this by dividing non-entailment
into contradiction (p |=¬h) and compatibility (p 6|= h∧ p 6|=¬h).2 The monotonicity
calculus carves things up differently: it interprets entailment as a semantic contain-
ment relation v analogous to the set containment relation ⊆, and thus permits us to
distinguish forward entailment (p v h) from reverse entailment (p w h). Moreover,
it defines v for expressions of every semantic type, including not only complete
sentences but also individual words and phrases. Unlike the three-way formulation,
however, it lacks any way to represent contradiction (semantic exclusion). For our
model, we want the best of both worlds: a comprehensive inventory of entailment
relations that includes representations of both semantic containment and semantic
exclusion.

Following Sánchez Valencia, we proceed by analogy with set relations. In a uni-
verse U , the set of ordered pairs 〈x,y〉 of subsets of U can be partitioned into 16
equivalence classes, according to whether each of the four sets x∩ y, x∩ y, x∩ y,
and x∩ y is empty or non-empty.3 Of these 16 classes, nine represent degenerate
cases in which either x or y is either empty or universal. Since expressions having
empty denotations (e.g., round square cupola) or universal denotations (e.g., exists)
fail to divide the world into meaningful categories, they can be regarded as seman-
tically vacuous. Contradictions and tautologies may be common in logic textbooks,

2 The first three RTE competitions used the binary formulation, while the three-way formulation
was adopted for RTE4. The three-way formulation was also employed in the FraCaS test suite [5]
and has been investigated in depth by [4].
3 We use x to denote the complement of set x in universe U ; thus x∩ x = /0 and x∪ x =U .

4 Bill MacCartney and Christopher D. Manning

but they are rare in everyday speech. Thus, in a practical model of informal natural
language inference, we will rarely go wrong by assuming the non-vacuity of the ex-
pressions we encounter.4 We therefore focus on the remaining seven classes, which
we designate as the set B of basic entailment relations, shown in Table 1.

Table 1 The set B of seven basic entailment relations

symbola name example set theoretic definitionb

x ≡ y
x @ y
x A y
x ∧ y
x | y
x ` y
x # y

equivalence
forward entailment
reverse entailment

negation
alternation

cover
independence

couch ≡ sofa
crow @ bird

European A French
human ∧ nonhuman

cat | dog
animal ` nonhuman
hungry # hippo

x = y
x⊂ y
x⊃ y

x∩ y = /0∧ x∪ y =U
x∩ y = /0∧ x∪ y 6=U
x∩ y 6= /0∧ x∪ y =U

(all other cases)

a Selecting an appropriate symbol to represent each relation is a vexed problem. We sought symbols
which (a) are easily approximated by a single ASCII character, (b) are graphically symmetric iff
the relations they represent are symmetric, and (c) do not excessively abuse accepted conventions.
The ∧ symbol was chosen to evoke the logically similar bitwise XOR operator of the C program-
ming language family; regrettably, it may also evoke the Boolean AND function. The | symbol was
chosen to evoke the Sheffer stroke commonly used to represent the logically similar Boolean NAND
function; regrettably, it may also evoke the Boolean OR function. The @ and A symbols were obvi-
ously chosen to resemble their set-theoretic analogs, but a potential confusion arises because some
logicians use the horseshoe ⊃ (with the opposite orientation) to represent material implication.
b Each relation in B obeys the additional constraints that /0 ⊂ x ⊂U and /0 ⊂ y ⊂U (i.e., x and y
are non-vacuous).

First, the semantic containment relations (v andw) of the monotonicity calculus
are preserved, but are factored into three mutually exclusive relations: equivalence
(≡), (strict) forward entailment (@), and (strict) reverse entailment (A). Next, we
have two relations expressing semantic exclusion: negation (∧), or exhaustive exclu-
sion, which is analogous to set complement; and alternation (|), or non-exhaustive
exclusion. The next relation is cover (`), or non-exclusive exhaustion. Though its
utility is not immediately obvious, it is the dual under negation of the alternation
relation.5 Finally, the independence relation (#) covers all other cases: it expresses
non-equivalence, non-containment, non-exclusion, and non-exhaustion. Note that #
is the least informative relation, in that it places the fewest constraints on its argu-
ments.6

4 Our model can easily be revised to accommodate vacuous expressions and relations between
them, but then becomes somewhat unwieldy. The assumption of non-vacuity is closely related
to the assumption of existential import in traditional logic. For a defense of existential import in
natural language semantics, see [2].
5 We describe relations R and S as duals under negation iff ∀x,y : 〈x,y〉 ∈ R⇔ 〈x,y〉 ∈ S. Thus @
and A are dual; | and ` are dual; and ≡, ∧, and # are self-dual. The significance of this duality will
become apparent in section 5.
6 Two sets selected uniformly at random from 2U are overwhelmingly likely to belong to # (for
large |U |).

Natural logic and natural language inference 5

Following Sánchez Valencia, we define the relations in B for all semantic types.
For semantic types which can be interpreted as characteristic functions of sets,7 the
set-theoretic definitions can be applied directly. The definitions can then be extended
to other types by interpreting each type as if it were a type of set. For example,
propositions can be understood (per Montague) as denoting sets of possible worlds.
Thus two propositions stand in the | relation iff there is no world where both hold
(but there is some world where neither holds). Likewise, names can be interpreted
as denoting singleton sets, with the result that two names stand in the ≡ relation iff
they refer to the same entity, or the | relation otherwise.

By design, the relations in B are mutually exclusive, so that we can define a func-
tion β (x,y) which maps every ordered pair of expressions8 to the unique relation in
B to which it belongs.

3 Joining entailment relations

If we know that entailment relation R holds between x and y, and that entailment
relation S holds between y and z, then what is the entailment relation between x and
z? The join of entailment relations R and S, which we denote R on S,9 is defined by:

R on S def
= {〈x,z〉 : ∃y (〈x,y〉 ∈ R∧〈y,z〉 ∈ S)}

Some joins are quite intuitive. For example, it is immediately clear that @ on @
= @, A on A = A, ∧ on ∧ = ≡, and for any R, (R on ≡) = (≡ on R) = R. Other joins
are less obvious, but still accessible to intuition. For example, | on ∧ = @. This can
be seen with the aid of Venn diagrams, or by considering simple examples: fish |
human and human ∧ nonhuman, thus fish @ nonhuman.

But we soon stumble upon an inconvenient truth: not every join yields a relation
in B. For example, if x | y and y | z, the relation between x and z is not determined.
They could be equivalent, or one might contain the other. They might be independent
or alternative. All we can say for sure is that they are not exhaustive (since both are
disjoint from y). Thus, the result of joining | and | is not a relation in B, but a union
of such relations, specifically

⋃
{≡,@,A, |,#}.10

7 That is, all functional types whose final output is a truth value. If we assume a type system whose
basic types are e (entities) and t (truth values), then this includes most of the functional types
encountered in semantic analysis: e�t (common nouns, adjectives, and intransitive verbs), e�e�t
(transitive verbs), (e � t)� (e � t) (adverbs), (e � t)� (e � t)� t (binary generalized quantifiers),
and so on.
8 Assuming the expressions are non-vacuous, and belong to the same semantic type.
9 In Tarskian relation algebra, this operation is known as relation composition, and is often repre-
sented by a semi-colon: R ; S. To avoid confusion with semantic composition (section 5), we prefer
to use the term join for this operation, by analogy to the database JOIN operation (also commonly
represented by on).
10 We use this notation as shorthand for the union ≡ ∪ @ ∪ A ∪ | ∪ #. To be precise, the result of
this join is not identical with this union, but is a subset of it, since the union contains some pairs

6 Bill MacCartney and Christopher D. Manning

We will refer to (non-trivial) unions of relations in B as union relations.11 Of
the 49 possible joins of relations in B, 32 yield a relation in B, while 17 yield a
union relation, with larger unions conveying less information. Union relations can be
further joined, and we can establish that the smallest set of relations which contains
B and is closed under joining contains just 16 relations.12 One of these is the total
relation, which contains all pairs of (non-vacuous) expressions. This relation, which
we denote •, is the black hole of entailment relations, in the sense that (a) it conveys
zero information about pairs of expressions which belong to it, and (b) joining a
chain of entailment relations will, if it contains any noise and is of sufficient length,
lead inescapably to •.13 This tendency of joining to devolve toward less-informative
entailment relations places an important limitation on the power of the inference
method described in section 7.

A complete join table for relations in B is shown in Table 2.14

Table 2 The join table for the basic entailment relations

on ≡ @ A ∧ | ` #
≡ ≡ @ A ∧ | ` #
@ @ @ ≡@A|# | | @∧|`# @|#
A A ≡@A`# A ` A∧|`# ` A`#
∧ ∧ ` | ≡ A @ #
| | @∧|`# | @ ≡@A|# @ @|#
` ` ` A∧|`# A A ≡@A`# A`#
@`# A|# # A|# @`# •

In an implemented model, the complexity introduced by union relations is eas-
ily tamed. Every union relation which results from joining relations in B contains
#, and thus can safely be approximated by #. After all, # is already the least infor-
mative relation in B—loosely speaking, it indicates ignorance of the relationship
between two expressions—and further joining will never serve to strengthen it. Our
implemented model therefore has no need to represent union relations.

of sets (e.g. 〈U \a,U \a〉, for any |a|= 1) which cannot participate in the | relation. However, the
approximation makes little practical difference.
11 Some union relations hold intrinsic interest. For example, in the three-way formulation of the
NLI task described in section 2, the three classes can be identified as

⋃
{≡,@},

⋃
{∧, |}, and

⋃
{A

,`,#}.
12 That is, the relations in B plus 9 union relations. Note that this closure fails to include most of
the 120 possible union relations. Perhaps surprisingly, the unions

⋃
{≡,@} and

⋃
{∧, |} mentioned

in footnote 11 do not appear.
13 In fact, computer experiments show that if relations are selected uniformly at random from B,
it requires on average just five joins to reach •.
14 For compactness, we omit the union notation here; thus @|# stands for

⋃
{@, |,#}.

Natural logic and natural language inference 7

4 Lexical entailment relations

Suppose x is a compound linguistic expression, and let e(x) be the result of applying
an atomic edit e (the deletion, insertion, or substitution of a subexpression) to x.
The entailment relation β (x,e(x)) will depend on (1) the lexical entailment relation
generated by e, which we label β (e), and (2) other properties of the context x in
which e is applied (to be discussed in section 5). For example, suppose x is red
car. If e is SUB(car, convertible), then β (e) is A (because convertible is a hyponym
of car). On the other hand, if e is DEL(red), then β (e) is @ (because red is an
intersective modifier). Crucially, β (e) depends solely on the lexical items involved
in e, independent of context.

How are lexical entailment relations determined? Ultimately, this is the province
of lexical semantics, which lies outside the scope of this work. However, the answers
are fairly intuitive in most cases, and we can make a number of useful observations.

Substitutions. The entailment relation generated by a substitution edit is simply the
relation between the substituted terms: β (SUB(x,y)) = β (x,y). For open-class terms
such as nouns, adjectives, and verbs, we can often determine the appropriate rela-
tion by consulting a lexical resource such as WordNet. Synonyms belong to the ≡
relation (sofa ≡ couch, forbid ≡ prohibit); hyponym-hypernym pairs belong to the
@ relation (crow @ bird, frigid @ cold, soar @ rise); and antonyms and coordinate
terms generally belong to the | relation (hot | cold, cat | dog).15 Proper nouns, which
denote individual entities or events, will stand in the ≡ relation if they denote the
same entity (USA ≡ United States), or the | relation otherwise (JFK | FDR). Pairs
which cannot reliably be assigned to another entailment relation will be assigned to
the # relation (hungry # hippo). Of course, there are many difficult cases, where the
most appropriate relation will depend on subjective judgments about word sense,
topical context, and so on—consider, for example, the pair system and approach.
And some judgments may depend on world knowledge not readily available to an
automatic system. For example, plausibly skiing | sleeping, but skiing # talking.

Closed-class terms may require special handling. Substitutions involving gener-
alized quantifiers generate a rich variety of entailment relations: all ≡ every, every
@ some, some ∧ no, no | every, at least four ` at most six, and most # ten or more.16

Two pronouns, or a pronoun and a noun, should ideally be assigned to the≡ relation
if it can determined from context that they refer to the same entity, though this may
be difficult for an automatic system to establish reliably. Prepositions are somewhat
problematic. Some pairs of prepositions can be interpreted as antonyms, and thus
assigned to the | relation (above | below), but many prepositions are used so flexibly
in natural language that they are best assigned to the ≡ relation (on [a plane] ≡ in
[a plane] ≡ by [plane]).

15 Note that most antonym pairs do not belong to the ∧ relation, since they typically do not exclude
the middle.
16 Some of these assertions assume the non-vacuity (section 2) of the predicates to which the
quantifiers are applied.

8 Bill MacCartney and Christopher D. Manning

Generic deletions and insertions. For deletion edits, the default behavior is to
generate the @ relation (thus red car @ car). Insertion edits are symmetric: by de-
fault, they generate the A relation (sing A sing off-key). This heuristic can safely be
applied whenever the affected phrase is an intersective modifier, and can usefully be
applied to phrases much longer than a single word (car which has been parked out-
side since last week @ car). Indeed, this principle underlies most current approaches
the RTE task, in which the premise p often contains much extraneous content not
found in the hypothesis h. Most RTE systems try to determine whether p subsumes
h: they penalize new content inserted into h, but do not penalize content deleted
from p.

Special deletions and insertions. However, some lexical items exhibit special be-
havior upon deletion or insertion. The most obvious example is negation, which
generates the ∧ relation (didn’t sleep ∧ did sleep). Implicatives and factives (such
as refuse to and admit that) constitute another important class of exceptions, but
we postpone discussion of them to section 6. Then there are non-intersective ad-
jectives such as former and alleged. These have various behavior: deleting former
seems to generate the | relation (former student | student), while deleting alleged
seems to generate the # relation (alleged spy # spy). We lack a complete typology of
such cases, but consider this an interesting problem for lexical semantics. Finally,
for pragmatic reasons, we typically assume that auxiliary verbs and punctuation
marks are semantically vacuous, and thus generate the ≡ relation upon deletion or
insertion. When combined with the assumption that morphology matters little in in-
ference,17 this allows us to establish, e.g., that is sleeping ≡ sleeps and did sleep ≡
slept.

5 Entailment relations and semantic composition

How are entailment relations affected by semantic composition? In other words,
how do the entailment relations between compound expressions depend on the en-
tailment relations between their parts? Say we have established the value of β (x,y),
and let f be an expression which can take x or y as an argument. What is the value
of β (f (x), f (y)), and how does it depend on the properties of f ?

The monotonicity calculus of Sánchez Valencia provides a partial answer. It ex-
plains the impact of semantic composition on entailment relations ≡, @, A, and #
by assigning semantic functions to one of three monotonicity classes: UP, DOWN,
and NON. If f has monotonicity UP (the default), then the entailment relation be-
tween x and y is projected through f without change: β (f (x), f (y)) = β (x,y). Thus
some parrots talk @ some birds talk. If f has monotonicity DOWN, then @ and A
are swapped. Thus no carp talk A no fish talk. Finally, if f has monotonicity NON,
then @ and A are projected as #. Thus most humans talk # most animals talk.

17 Indeed, the official definition of the RTE task explicitly specifies that tense be ignored.

Natural logic and natural language inference 9

The monotonicity calculus also provides an algorithm for computing the ef-
fect on entailment relations of multiple levels of semantic composition. Although
Sánchez Valencia’s presentation of this algorithm uses a complex scheme for anno-
tating nodes in a categorial grammar parse, the central idea can be recast in simple
terms: propagate a lexical entailment relation upward through a semantic compo-
sition tree, from leaf to root, while respecting the monotonicity properties of each
node along the path. Consider the sentence Nobody can enter without pants. A plau-
sible semantic composition tree for this sentence could be rendered as (nobody (can
((without pants) enter))). Now consider replacing pants with clothes. We begin with
the lexical entailment relation: pants @ clothes. The semantic function without has
monotonicity DOWN, so without pants A without clothes. Continuing up the seman-
tic composition tree, can has monotonicity UP, but nobody has monotonicity DOWN,
so we get another reversal, and find that nobody can enter without pants @ nobody
can enter without clothes.

While the monotonicity calculus elegantly explains the impact of semantic com-
position on the containment relations (chiefly, @ and A), it lacks any account of the
exclusion relations (∧ and |, and, indirectly, `). To remedy this lack, we propose to
generalize the concept of monotonicity to a concept of projectivity. We categorize
semantic functions into a number of projectivity signatures, which can be seen as
generalizations of both the three monotonicity classes of Sánchez Valencia and the
nine implication signatures of Nairn et al. (see section 6). Each projectivity signa-
ture is defined by a map B 7→ B which specifies how each entailment relation is
projected by the function. (Binary functions can have different signatures for each
argument.) In principle, there are up to 77 possible signatures; in practice, probably
no more than a handful are realized by natural language expressions. Though we
lack a complete inventory of projectivity signatures, we can describe a few impor-
tant cases.

Negation. We begin with simple negation (not). Like most functions, it projects ≡
and # without change (not happy ≡ not glad and isn’t swimming # isn’t hungry). As
a downward monotone function, it swaps @ and A (didn’t kiss A didn’t touch). But
we can also establish that it projects ∧ without change (not human ∧ not nonhuman)
and swaps | and ` (not French ` not German and not more than 4 | not less than
6). Its projectivity signature is therefore {≡:≡,@:A,A:@,∧ :∧, | :`,`: |,#:#}.

Intersective modification. Intersective modification has monotonicity UP, but
projects both ∧ and | as | (living human | living nonhuman and French wine | Span-
ish wine), and projects ` as # (metallic pipe # nonferrous pipe). It therefore has
signature {≡:≡,@:@,A:A,∧ : |, | : |,`:#,#:#}.18

Quantifiers. While semanticists are well acquainted with the monotonicity prop-
erties of common quantifiers, how they project the exclusion relations may be less

18 At least for practical purposes. The projection of ∧ and | as | depends on the assumption of non-
vacuity, and ` is actually projected as

⋃
{≡,@,A, |,#}, which we approximate by #, as described

in section 3.

10 Bill MacCartney and Christopher D. Manning

familiar. Table 3 summarizes the projectivity signatures of the most common binary
generalized quantifiers for each argument position.

Table 3 Projectivity signatures for various quantifiers

projectivity for 1st argument projectivity for 2nd argument
quantifier ≡ @ A ∧ | ` # ≡ @ A ∧ | ` #
some ≡ @ A `† # `† # ≡ @ A `† # `† #
no ≡ A @ | † # | † # ≡ A @ | † # | † #
every ≡ A @ | ‡ # | ‡ # ≡ @ A | † | † # #
not every ≡ @ A `‡ # `‡ # ≡ A @ `† `† # #

A few observations:

• All quantifiers (like most other semantic functions) project ≡ and # without
change.

• The table confirms well-known monotonicity properties: no is downward-
monotone in both arguments, every in its first argument, and not every in its
second argument.

• Relation | is frequently “blocked” by quantifiers (i.e., projected as #). Thus no
fish talk # no birds talk and someone was early # someone was late. A notable
exception is every in its second argument, where | is preserved: everyone was
early | everyone was late. (Note the similarity to intersective modification.)

• Because no is the negation of some, its projectivity signature can be found by
projecting the signature of some through the signature of not. Likewise for not
every and every.

• Some results depend on assuming the non-vacuity of the other argument to the
quantifier: those marked with † assume it to be non-empty, while those marked
with ‡ assume it to be non-universal. Without these assumptions, # is projected.

Verbs. Verbs (and verb-like constructions) exhibit diverse behavior. Most verbs are
upward-monotone (though not all—see section 6), and many verbs project ∧, |, and
` as # (eats humans # eats nonhumans, eats cats # eats dogs, and eats mammals #
eats nonhumans). However, verbs which encode functional relations seem to exhibit
the same projectivity as intersective modifiers, projecting ∧ and | as |, and ` as #.19

Categorizing verbs according to projectivity is an interesting problem for lexical
semantics, which may involve codifying some amount of world knowledge.

19 Consider the verbal construct is married to: is married to a German | is married to a non-
German, is married to a German | is married to an Italian, is married to a European # is married
to a non-German. The AUCONTRAIRE system [16] includes an intriguing approach to identifying
such functional phrases automatically.

Natural logic and natural language inference 11

6 Implicatives and factives

[15] offer an elegant account of inferences involving implicatives and factives20 such
as manage to, refuse to, and admit that. Their model classifies such operators into
nine implication signatures, according to their implications—positive (+), negative
(–), or null (◦)—in both positive and negative contexts. Thus refuse to has impli-
cation signature –/◦, because it carries a negative implication in a positive context
(refused to dance implies didn’t dance), and no implication in a negative context
(didn’t refuse to dance implies neither danced nor didn’t dance).

Most of the phenomena observed by Nairn et al. can be explained within our
framework by specifying, for each implication signature, the relation generated
when an operator of that signature is deleted from (or inserted into) a compound
expression, as shown in Table 4.

Table 4 Implicatives and factives

signature β (DEL(·)) β (INS(·)) example

implicatives
(UP)

+/–
+/◦
◦/–

≡
@
A

≡
A
@

he managed to escape ≡ he escaped
he was forced to sell @ he sold

he was permitted to live A he lived

implicatives
(DOWN)

–/+
–/◦
◦/+

∧

|
`

∧

|
`

he forgot to pay ∧ he paid
he refused to fight | he fought

he hesitated to ask ` he asked

factives
(NON)

+/+
–/–
◦/◦

@
|
#

A
|
#

he admitted that he knew @ he knew
he pretended he was sick | he was sick

he wanted to fly # he flew

This table invites several observations. First, as the examples make clear, there
is room for variation regarding the appearance of infinitive arguments, complemen-
tizers, passivization, and morphology. An implemented model must tolerate such
diversity.

Second, some of the examples may seem more intuitive when one considers their
negations. For example, deleting signature ◦/– generates A; under negation, this is
projected as @ (he wasn’t permitted to live @ he didn’t live). Likewise, deleting
signature ◦/+ generates `; under negation, this is projected as | (he didn’t hesitate
to ask | he didn’t ask).

Third, a fully satisfactory treatment of the factives (signatures +/+, –/–, and ◦/◦)
would require an extension to our present theory. For example, deleting signature
+/+ generates @; yet under negation, this is projected not as A, but as | (he didn’t
admit that he knew | he didn’t know). The problem arises because the implication

20 We use “factives” as an umbrella term embracing counterfactives and nonfactives along with
factives proper.

12 Bill MacCartney and Christopher D. Manning

carried by a factive is not an entailment, but a presupposition.21 As is well known,
the projection behavior of presuppositions differs from that of entailments [22]. It
seems likely that our model could be elaborated to account for projection of presup-
positions as well as entailments, but we leave this for future work.

We can further cement implicatives and factives within our model by specifying
the monotonicity class for each implication signature: signatures +/–, +/◦, and ◦/–
have monotonicity UP (force to tango @ force to dance); signatures –/+, –/◦, and ◦/+
have monotonicity DOWN (refuse to tango A refuse to dance); and signatures +/+,
–/–, and ◦/◦ (the propositional attitudes) have monotonicity NON (think tangoing is
fun # think dancing is fun). We are not yet able to specify the complete projectivity
signature corresponding to each implication signature, but we can describe a few
specific cases. For example, implication signature –/◦ seems to project ∧ as | (refuse
to stay | refuse to go) and both | and ` as # (refuse to tango # refuse to waltz).

7 Putting it all together

We now have the building blocks of a general method to establish the entailment
relation between a premise p and a hypothesis h. The steps are as follows:

1. Find a sequence of atomic edits 〈e1, . . . ,en〉 which transforms p into h: thus h =
(en ◦ . . .◦e1)(p). For convenience, let us define x0 = p, xn = h, and xi = ei(xi−1)
for i ∈ [1,n].

2. For each atomic edit ei:
a. Determine the lexical entailment relation β (ei), as in section 4.
b. Project β (ei) upward through the semantic composition tree of expression

xi−1 to find an atomic entailment relation β (xi−1,ei) = β (xi−1,xi), as in
section 5.

3. Join atomic entailment relations across the sequence of edits, as in section 3:
β (p,h) = β (x0,xn) = β (x0,e1)on . . .on β (xi−1,ei)on . . .on β (xn−1,en)

However, this inference method has several important limitations, including the
need to find an appropriate edit sequence connecting p and h;22 the tendency of
the join operation toward less informative entailment relations, as described in sec-
tion 3; and the lack of a general mechanism for combining information from multi-

21 Of course, the implicatives may carry presuppositions as well (he managed to escape � it was
hard to escape), but these implications are not activated by a simple deletion, as with the factives.
22 The order of edits can be significant, if one edit affects the projectivity properties of the context
for another edit. In practice, we typically find that different edit orders lead to the same final result
(albeit via different intermediate steps), or at worst to a result which is compatible with, though less
informative than, the desired result. But in principle, edit sequences involving lexical items with
unusual properties—not exhibited, so far as we are aware, by any natural language expressions—
could lead to incompatible results. Thus we lack any formal guarantee of soundness.

Natural logic and natural language inference 13

ple premises.23 Consequently, the method has less deductive power than first-order
logic, and fails to sanction some fairly simple inferences, including de Morgan’s
laws for quantifiers. But the method neatly explains many inferences not handled by
the monotonicity calculus.

For example, while the monotonicity calculus notably fails to explain even the
simplest inferences involving semantic exclusion, such examples are easily accom-
modated in our framework. We encountered an example of such an inference in
section 1: Stimpy is a cat |= Stimpy is not a poodle. Clearly, this is a valid natural
language inference. To establish this using our inference method, we must begin by
selecting a sequence of atomic edits which transforms the premise p into the hypoth-
esis h. While there are several possibilities, one obvious choice is first to replace cat
with dog, then to insert not, and finally to replace dog with poodle. An analysis of
this edit sequence is shown in Table 5. In this representation (of which we will see
several more examples in the following pages), we show three entailment relations
associated with each edit ei, namely:

• β (ei), the lexical entailment relation generated by ei,
• β (xi−1,ei), the atomic entailment relation which holds across ei, and
• β (x0,xi), the cumulative join of all atomic entailment relations up through ei.

This can be calculated in the table as β (x0,xi−1)on β (xi−1,ei).

Table 5 An example inference involving semantic exclusion

i xi ei β (ei) β (xi−1,ei) β (x0,xi)

0 Stimpy is a cat
1 Stimpy is a dog SUB(cat, dog) | | |
2 Stimpy is not a dog INS(not) ∧ ∧ @
3 Stimpy is not a poodle SUB(dog, poodle) A @ @

In Table 5, x0 is transformed into x3 by a sequence of three edits. First, replacing
cat with its coordinate term dog generates |. Next, inserting not generates ∧, and |
joined with ∧ yields @. Finally, replacing dog with its hyponym poodle generates A.
Because of the downward-monotone context created by not, this is projected as @,
and @ joined with @ yields @. Therefore, x0 entails x3.

For an example involving an implicative, consider the inference in Table 6.
Again, x0 is transformed into x3 by a sequence of three edits.24 First, deleting per-
mitted to generates A, according to its implication signature; but because not is
downward-monotone, this is projected as @. Next, deleting not generates ∧, and
@ joined with ∧ yields |. Finally, inserting Cuban cigars restricts the meaning of
smoked, generating A, and | joined with A yields |. So x3 contradicts x0.

23 However, some inferences can be enabled by auxiliary premises encoded as lexical entailment
relations. For example, men @ mortal can enable the classic syllogism Socrates is a man @ Socrates
is mortal.
24 We neglect edits involving auxiliaries and morphology, which simply yield the ≡ relation.

14 Bill MacCartney and Christopher D. Manning

Table 6 An example inference involving an implicative

i xi ei β (ei) β (xi−1,ei) β (x0,xi)

0 We were not permitted to smoke
1 We did not smoke DEL(permitted to) A @ @
2 We smoked DEL(not) ∧ ∧ |
3 We smoked Cuban cigars INS(Cuban cigars) A A |

Let’s now look at a more complex example (first presented in [14]) that demon-
strates the interaction of a number of aspects of the model we’ve presented. The
inference is:

p: Jimmy Dean refused to move without blue jeans.
h: James Dean didn’t dance without pants.

Of course, the example is quite contrived, but it has the advantage that it compactly
exhibits several phenomena of interest: semantic containment (between move and
dance, and between pants and jeans); semantic exclusion (in the form of negation);
an implicative (namely, refuse to); and nested inversions of monotonicity (created
by refuse to and without). In this example, the premise p can be transformed into
the hypothesis h by a sequence of seven edits, as shown in Table 7. This time we
include even “light” edits yielding ≡ for the sake of completeness.

Table 7 Analysis of a more complex inference

i xi ei β (ei) β (xi−1,ei) β (x0,xi)

Jimmy Dean refused to move without blue jeans
1 SUB(Jimmy, James) ≡ ≡ ≡

James Dean refused to move without blue jeans
2 DEL(refused to) | | |

James Dean moved without blue jeans
3 INS(did) ≡ ≡ |

James Dean did move without blue jeans
4 INS(n’t) ∧ ∧ @

James Dean didn’t move without blue jeans
5 SUB(move, dance) A @ @

James Dean didn’t dance without blue jeans
6 DEL(blue) @ @ @

James Dean didn’t dance without jeans
7 SUB(jeans, pants) @ @ @

James Dean didn’t dance without pants

We analyze these edits as follows. The first edit simply substitutes one variant of
a name for another; since both substituends denote the same entity, the edit generates
the ≡ relation. The second edit deletes an implicative (refuse to) with implication
signature –/◦. As described in section 6, deletions of this signature generate the |

Natural logic and natural language inference 15

relation, and ≡ joined with | yields |. The third edit inserts an auxiliary verb (did);
since auxiliaries are more or less semantically vacuous, this generates the≡ relation,
and | joined with ≡ yields | again. The fourth edit inserts a negation, generating the
∧ relation. Here we encounter the first interesting join: as explained in section 3,
| joined with ∧ yields @. The fifth edit substitutes move with its hyponym dance,
generating the A relation. However, because the edit occurs within the scope of
the newly-introduced negation, A is projected as @, and @ joined with @ yields
@. The sixth edit deletes a generic modifier (blue), which generates the @ relation
by default. This time the edit occurs within the scope of two downward-monotone
operators (without and negation), so we have two inversions of monotonocity, and
@ is projected as @. Again, @ joined with @ yields @. Finally, the seventh edit
substitutes jeans with its hypernym pants, generating the @ relation. Again, the edit
occurs within the scope of two downward-monotone operators, so @ is projected as
@, and @ joined with @ yields @. Thus p entails h.

Table 8 Analysis of a more complex inference, second try

i ei xi = ei(xi−1) β (ei) β (xi−1,ei) β (x0,xi)

Jimmy Dean refused to move without blue jeans
1 INS(did) ≡ ≡ ≡

Jimmy Dean did refuse to move without blue jeans
2 INS(n’t) ∧ ∧ ∧

Jimmy Dean didn’t refuse to move without blue jeans
3 DEL(blue) @ A |

Jimmy Dean didn’t refuse to move without jeans
4 SUB(jeans, pants) @ A |

Jimmy Dean didn’t refuse to move without pants
5 SUB(move, dance) A A |

Jimmy Dean didn’t refuse to dance without pants
6 DEL(refuse to) | ` @

Jimmy Dean didn’t dance without pants
7 SUB(Jimmy, James) ≡ ≡ @

James Dean didn’t dance without pants

Of course, the edit sequence shown is not the only sequence which can transform
p into h. A different edit sequence might yield a different sequence of intermedi-
ate steps, but the same final result. Consider, for example, the edit sequence shown
in Table 8. Note that the lexical entailment relation β (ei) generated by each edit
is the same as before. But because the edits involving downward-monotone oper-
ators (namely, INS(n’t) and DEL(refused to)) now occur at different points in the
edit sequence, many of the atomic entailment relations β (xi−1,ei) have changed,
and thus the sequence of joins has changed as well. In particular, edits 3 and 4 oc-
cur within the scope of three downward-monotone operators (negation, refuse, and
without), with the consequence that the @ relation generated by each of these lexical
edits is projected as A. Likewise, edit 5 occurs within the scope of two downward-
monotone operators (negation and refuse), and edit 6 occurs within the scope of one

16 Bill MacCartney and Christopher D. Manning

downward-monotone operator (negation), so that | is projected as `. Nevertheless,
the ultimate result is still @.

8 Implementation and evaluation

The model of natural logic described here has been implemented in software as
the NatLog system. In previous work [14], we have presented a description and
evaluation of NatLog; this section summarizes the main results. Natlog faces three
primary challenges:

1. Finding an appropriate sequence of atomic edits connecting premise and hy-
pothesis. NatLog does not address this problem directly, but relies instead on
edit sequences from other sources. We have investigated this problem separately
in [12].

2. Determining the lexical entailment relation for each edit. NatLog learns to pre-
dict lexical entailment relations by using machine learning techniques and ex-
ploiting a variety of manually and automatically constructed sources of infor-
mation on lexical relations.

3. Computing the projection of each lexical entailment relation. NatLog identifies
expressions with non-default projectivity and computes the likely extent of their
arguments in a syntactic parse using hand-crafted tree patterns.

We have evaluated NatLog on two different test suites. The first is the FraCaS
test suite [5], which contains 346 NLI problems, divided into nine sections, each
focused on a specific category of semantic phenomena. The goal is three-way en-
tailment classification, as described in section 2. On this task, NatLog achieves an
average accuracy of 70%.25 In the section concerning quantifiers, which is both the
largest and the most amenable to natural logic, the system answers all problems but
one correctly. Unsurprisingly, performance is mediocre in four sections concerning
semantic phenomena (e.g., ellipsis) not relevant to natural logic and not modeled by
the system. But in the other five sections (representing about 60% of the problems),
NatLog achieves accuracy of 87%. What’s more, precision is uniformly high, av-
eraging 89% over all sections. Thus, even outside its areas of expertise, the system
rarely predicts entailment when none exists.

The RTE3 test suite [8] differs from FraCaS in several important ways: the goal
is binary entailment classification; the problems have much longer premises and
are more “natural”; and the problems employ a diversity of types of inference—
including paraphrase, temporal reasoning, and relation extraction—which NatLog
is not designed to address. Consequently, the NatLog system by itself achieves
mediocre accuracy (59%) on RTE3 problems. However, its precision is compara-
tively high, which suggests a strategy of hybridizing with a broad-coverage RTE

25 Our evaluation excluded multi-premise problems, which constitute about 44% of the test suite.

Natural logic and natural language inference 17

system. We were able to show that adding NatLog as a component in the Stanford
RTE system [3] led to accuracy gains of 4%.

9 Conclusion

The model of natural logic presented here is by no means a universal solution to the
problem of natural language inference. Many NLI problems hinge on types of in-
ference not addressed by natural logic, and the inference method we describe faces
a number of limitations on its deductive power (discussed in section 7). Moreover,
there is further work to be done in fleshing out our account, particularly in estab-
lishing the proper projectivity signatures for a broader range of quantifiers, verbal
constructs, implicatives and factives, logical connectives, and other semantic func-
tions.

Nevertheless, we believe our model of natural logic fills an important niche.
While approximate methods based on lexical and syntactic similarity can handle
many NLI problems, they are easily confounded by inferences involving nega-
tion, antonymy, quantifiers, implicatives, and many other phenomena. Our model
achieves the logical precision needed to handle such inferences without resorting to
full semantic interpretation, which is in any case rarely possible. The practical value
of the model is demonstrated by its success in evaluations on the FraCaS and RTE3
test suites.

References

1. J. Bos and K. Markert. Recognising textual entailment with logical inference. In Proceedings
of EMNLP-05, 2005.

2. M. Böttner. A note on existential import. Studia Logica, 47(1):35–40, 1988.
3. N. Chambers, D. Cer, T. Grenager, D. Hall, C. Kiddon, B. MacCartney, M. C. de Marneffe,

D. Ramage, E. Yeh, and C. D. Manning. Learning Alignments and Leveraging Natural Logic.
In Proceedings of the ACL-07 Workshop on Textual Entailment and Paraphrasing, 2007.

4. C. Condoravdi, D. Crouch, V. de Paiva, R. Stolle, and D.G. Bobrow. Entailment, Intensionality
and Text Understanding. In Proceedings of the HLT-NAACL 2003 Workshop on Text Meaning,
Morristown, NJ, USA, 2003.

5. R. Cooper et al. Using the framework. Technical Report LRE 62-051 D-16, The FraCaS
Consortium, 1996.

6. I. Dagan, O. Glickman, and B. Magnini. The PASCAL Recognising Textual Entailment Chal-
lenge. In Proceedings of the PASCAL Challenges Workshop on Recognising Textual Entail-
ment, 2005.

7. Y. Fyodorov, Y. Winter, and N. Francez. A Natural Logic Inference System. In Proceedings
of the 2nd Workshop on Inference in Computational Semantics (ICoS-2), 2000.

8. D. Giampiccolo, B. Magnini, I. Dagan, and B. Dolan. The Third PASCAL Recognizing Tex-
tual Entailment Challenge. In Proceedings of the ACL-07 Workshop on Textual Entailment
and Paraphrasing, 2007.

9. O. Glickman, I. Dagan, and M. Koppel. Web based probabilistic textual entailment. In Pro-
ceedings of the PASCAL Challenges Workshop on Recognizing Textual Entailment, 2005.

18 Bill MacCartney and Christopher D. Manning

10. A. Hickl, J. Williams, J. Bensley, K. Roberts, B. Rink, and Y. Shi. Recognizing Textual Entail-
ment with LCC’s GROUNDHOG System. In Proceedings of the Second PASCAL Challenges
Workshop on Recognizing Textual Entailment, 2006.

11. G. Lakoff. Linguistics and natural logic. Synthese, 22:151–271, 1970.
12. B. MacCartney, M. Galley, and C. D. Manning. A phrase-based alignment model for natural

language inference. In Proceedings of EMNLP-08, Honolulu, HI, 2008.
13. B. MacCartney, T. Grenager, M. C. de Marneffe, D. Cer, and C. D. Manning. Learning to

Recognize Features of Valid Textual Entailments. In Proceedings of NAACL-06, New York,
2006.

14. B. MacCartney and C. D. Manning. Modeling semantic containment and exclusion in natural
language inference. In Proceedings of Coling-08, Manchester, UK, 2008.

15. R. Nairn, C. Condoravdi, and L. Karttunen. Computing relative polarity for textual inference.
In Proceedings of ICoS-5, Buxton, UK, 2006.

16. A. Ritter, D. Downey, S. Soderland, and O. Etzioni. It’s a Contradiction—No, it’s Not: A Case
Study using Functional Relations. In Proceedings of EMNLP-08, 2008.

17. V. Sánchez Valencia. Studies on Natural Logic and Categorial Grammar. PhD thesis, Univ.
Amsterdam, 1991.

18. J. Sukkarieh. Quasi-NL Knowledge Representation for Structurally-Based Inferences. In
Proceedings of the 3rd Workshop on Inference in Computational Semantics (ICoS-3), 2001.

19. J. van Benthem. The semantics of variety in categorial grammars. In W. Buszkowski, W. Mar-
ciszewski, and J. van Benthem, editors, Categorial grammar, pages 33–55. John Benjamins,
Amsterdam, 1988.

20. J. van Benthem. Language in Action: categories, lambdas and dynamic logic, volume 130 of
Studies in Logic. North-Holland, Amsterdam, 1991.

21. J. van Benthem. A brief history of natural logic. Technical Report PP-2008-05, Institute for
Logic, Language & Computation, 2008.

22. R. A. van der Sandt. Presupposition projection as anaphora resolution. Journal of Semantics,
9(4), 1992.

23. J. van Eijck. Natural logic for natural language.
http://homepages.cwi.nl/˜jve/papers/05/nlnl/NLNL.pdf, 2005.

