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Abstract One sub-task underlying these applications is the

o ability to recognize semantic entailment; whether
We present a system for deciding whether  gne piece of text follows from another. In contrast
a given sentence can be inferred from 4 recent work which has successfully utilized logic-
text. Each sentence is represented as & paged abductive approaches to inference (Moldovan
directed graph (extracted from a depen- gt 51 2003; Raina et al., 2005b), we adopt a graph-
dency parser) in which the nodes represent  paseq representation of sentences, and use graph
words or phrases, and the links represent  aching approach to measure the semantic over-
syntactic and semantic relationships. We |55 of text. Graph matching techniques have proven
develop a learned graph matching model 15 e 4 useful approach for tractable approximate
to approximate entailment by the amount  aiching in other domains including computer vi-
of the sentence’s semantic content which  gi5n  |n the domain of language, graphs provide

is contained in the text. We present re- 5 nagyral way to express the dependencies between
sults on the Recognizing Textual Entail- words and phrases in a sentence.
ment dataset (Dagan et al., 2005), and

show that our approach outperforms Bag- 2 Task Definition and Data
Of-Words and TF-IDF models. In addi-
tion, we explore common sources of errors ~ We describe our approach in the context of the 2005
in our approach and how to remedy them. Recognizing Textual Entailment (RTE) Challenge
(Dagan et al., 2005), but note that our approach eas-
1 Introduction ily extends to other related inference tasks. The sys-
tem presented here was one component of our re-
A fundamental stumbling block for several NLP ap-gearch group’s RTE submission (Raina et al., 2005a)
plications is the lack of robust and accurate semary;nich was the top-ranking system according to one
tic inference. For instance, question answering syg;f the two evaluation metrics.
tems must be able to recognize, or infer, an answer |, the 2005 RTE domain, we are given a set of
which may be expressed differently from the QuUeNhairs, each consisting of two parts: 1) thest, a
Information extraction systems must also be ablg,4 passagk,and thehypothesis, a single sen-
recognize the variability of equivalent linguistic €X-tance. Our task is to decide if the hypothesis is “en-
pressions. Document summarization systems musfijaq- by the text. Here, “entails” does not mean
generate succinct sentences which express the sagpe+ logical implication, but roughly means that
content as the original document. In Machine Transg competent speaker with basic world-knowledge

lation evaluation, we must be able to recognize legitz, 1 be happy to conclude the hypothesis given
imate translations which structurally differ from our

reference translation. tUsually a single sentence, but occasionally longer.



S was established in 1979.

establish
In this example, it's important to try to match rela-
NP VED Np-company obj (Patient)  tionships as well as words. In particular, any answer

| \ Pl to the question should preserve the dependency be-

Bezos established D‘T N‘N tweenlsrael andestablished. However, in the pro-
a company posed answer, the expected dependency is missing

although all the words are present.

Figure 1. An example parse tree and the correspond- Qur approach is to view sentences as graphs be-

ing dependency graph. Each phrase of the parse thggeen words and phrases, where dependency rela-

is annotated with its head word, and the parenthetitonships are characterized by the path between ver-

cal edge labels in the dependency graph correspofides. (Lin and Pantel, 2001) have successfully used

to semantic roles. this representation to characterize semantic relation-
ships .

the text. Despite the informality of the criterion ~Given this representation, we judge entailment by

and the fact that the available world knowledge i§neasuring not only how many of tigpothesis ver-

left unspecified, human judges show extremely gooces are matched to thext but also how well the

agreement on this task — 3 human judges indepefflationships between vertices in the hypothesis are

dent of the organizers calculated agreement rat@éeserved in their textual counterparts. For the re-

with the released data set ranging from 91-96% (Davainder of the section we outline how we produce

gan et al., 2005). We believe that this in part reflectdr@phs from text, and in the next section we intro-

that the task is fairly natural to human beings. Fofluce our graph matching model.

a flavor of the nature (and difficulty) of the task, S€8 5 Erom Text To Graphs

Table 1. _ . _ .

We give results on the data provided for the RTE@ing with raw English text, we use a version of
task which consists of 567 development pairs an{'® Parser described in (Klein and Manning, 2003),
800 test pairs. In both sets the pairs are divided inf{9 ©Ptain a parse tree. Then, we derive a dependency
7 tasks — each containing roughly the same numbHf€ representation of the sentence using a slightly
of entailed and not-entailed instances — which wergdified version of Collins” head propagation rules

used as both motivation and means for obtaining arf&©lins, 1999), which make main verbs not auxil-

constructing the data items. We will use the followJ2ries the head of sentences. Edges in the depen-

ing toy example to illustrate our representation and€NCY graph are labeled by a set of hand-created
matching technique: t gr ep expressions. These labels represent “sur-

Text: In 1994, Amazon.com was founded by Jeff Bezos. face” syntax relgtlonshlps S_U_Ch a_s b_J for subject
Hypothesis: Bezos established a company,. a_mdarmd_fqr adjef:tlve modifier, similar to the rela-
tions inMinipar (Lin and Pantel, 2001). The depen-

3 Semantic Representation dency graph is the basis for our graphical represen-
tation, but it is enhanced in the following ways:

/\
NP-Bezos VP-established
| T Subj (Agent)

3.1 The Need for Dependencies . N
1. Collapse Collocations and Named-Entities: We

“collapse” dependency nodes which represent
named entities (e.gJeff Bezos in Figure fig-
example) and also collocations listed in Word-
Net, including verbs and their adjacent particles
(e.g. ,blow_off in He blew off hiswork) .

Perhaps the most common representation of text for
assessing content is “Bag-Of-Words” or “Bag-of-N-

Grams” (Papineni et al., 2002). However, such rep-
resentations lose syntactic information which can
be essential to determining entailment. Consider a
Question Answer system searching for an answer
to When was Israel established? A representation 2. Dependency Folding: As in (Lin and Pan-

which did not utilize syntax would probably enthusi- tel, 2001), we found it useful to fold cer-

astically return an answer from (the 2005 RTE text):  tain dependencies (such as modifying preposi-
The National Institute for Psychobiology in Israel tions) so that modifiers became labels connect-



Task Text Hypothesis Entailed
Question Prince Charles was previously married|t®rince Charles and Princess Di- False
Answer Princess Diana, who died in a car crash iana got married in August 1997,
(QA) Paris in August 1997.
Machine Sultan Al-Shawi, a.k.a the Attorney, saidThe Attorney, said at the funerdl, True
Translation | during a funeral held for the victimg,"They were all Iraqis killed dur
(MT) "They were all children of Iraq killed durt ing the brutal shelling.”.

ing the savage bombing.”.
Comparable| Napster, which started as an unauthorizeldapster illegally offers musi¢ False
Documents | song-swapping Web site, has transformedownloads.
(CD) into a legal service offering music down-

loads for a monthly fee.
Paraphrase | Kerry hit Bush hard on his conduct on theKerry shot Bush. False
Recognition| war in Iraq.
(PP)
Information | The country’s largest private employerWal-Mart sued for sexual dig- True
Retrieval Wal-Mart Stores Inc., is being sued bycrimination.
(IR) a number of its female employees who

claim they were kept out of jobs in man-

agement because they are women.

the text asl” and hypothesis a#l, and will speak

Table 1: Some Textual Entailment examples. The last threedstrate some of the harder instances.

ing the modifier's governor and dependent di4 Entailment by Graph Matching

rectly. For instance, in the text graph in Figure

2, we have changeith from a word into a rela- We take the view that a hypothesis is entailed from

tion between its head verb and the head of ithe text when the cost of matching the hypothesis

NP complement. graph to the text graph is low. For the remainder of
this section, we outline a general model for assign-

. Semantic Role Labeling: We also augmening a match cost to graphs.

the graph representation with Probank-style gqr hypothesis graphd, and text graphl’, a
semantic roles via the system described iPnatching M is a mapping from the vertices &f to
(Toutanova et al., 2005). Each predicate addgose of7". For vertexv in H, we will use M (v) to
an arc labeled with the appropriate semangenote its “match” irif". As is common in statistical
tic role to the head of the argument phrasemachine translation, we allow nodesfiito map to
This helps to create links between words whichictitious NULL vertices inT' if necessary. Suppose
share a deep semantic relation not evident ithe cost of matching/ is CostM). If M is the set

the surface syntax. Additionally, modifying of such matchings, we define the cost of matching
phrases are labeled with their semantic typegr +o 7 to be

(e.g.,in 1991 is linked by aTemporal edge in
the text graph of Figure 2), which should be .
useful in Question Answering tasks. MatchCostH, T) = min Cos(M) (1)
For the remainder of the paper, we will refer to

Suppose we have a model, VertexGuh\ (v)),

of them in graph terminology. In addition we will which gives us a cost if0, 1], for substituting ver-
use Hy and Hg to denote the vertices and edgestex v in H for M (v) in T. One natural cost model

respectively, ofH.

is to use the normalized cost for each of the vertex



establish
(vBD)

substitutions inM:
1 Subj (Agent) Obj (Patient)
VertexCostM) = — > w(v)VertexSulfv, M (v)) S
et
(2) (person)
Here, w(v) represents the weight or relative i eex !
. Match H .
portance for vertex, andZ = 3 .y, w(v) is Cost: 00 | Subl (Agen
a normalization constant. In our implementatio In (Temporal)

the weight of each vertex was based on the part- o
speech tag of the word or the type of named enti G2

§ Hyponym

Obj (Patient) i Match
i Cost: 0.0

|f' a'ppllca'ble. However, there are sgveral other p Vertex Cost (0.0 + 0.2 + 0.4)3 =02
sibilities including using TF-IDF weights for words Relation Cost0 (Graphs Isomorphic)
and phrases Match Cost0.55 (0.2) + (.45) 0.0 = 0.11

Notice that when Co¢d/) takes the form of Figure 2: Example graph matching & 0.55) for
(2), computing MatchCost, T') is equivalent to example pair. Dashed lines represent optimal match-
finding the minimal cost bipartite graph-matching,ing.
which can be efficiently computed using linear pro-
gramming.

We would like our cost-model to incorporate
some measure of how relationships kh are pre-

served inT under M. ldeally, a matching should . Noltllcehthgt n_nmmgfmg CO@? 'Sb com([j)ulta—
preserve all local relationships; i.eqif— o' € H, tonally hard since if our PathSub model as-

then M(v) — M(s') € Tz, When this condition signs_ zero cost onI_y for pregervi_ng_ edges, _then
holds for all edges i, H is isomorphic to a sub- RelationCosth) = 0ifand only if H is isomorphic
graph of T’ to a subgraph of". Since subgraph isomophism is

What we would like is arapproximate notion of an NP-complete problem, we cannot hope to have an

. : . . . ?fficient exact procedure for minimizing the graph
isomorphism, where we penalize the distortion or. tchin ¢ As an roximation. w N of
each edge relation i/. Consider an edge = atehing cost. As an approximation, we can et-

ficiently find the matchingd/* which minimizes
"Ye H I h h from\/ )
t(sjj\zzj) inEfand etga(c) be the path from\/ (v) VertexCost-); we then perform local greedy hill-

. climbing search, beginning from/{*, to approxi-
Again, suppose we have a model, L . .
. . ) mate the minimal matching. The allowed operations
PathSuke, ¢a(e)) for assessing the “cost’ of are change the assignment of any hypothesis vertex
substituting a direct relation € Hpg for its coun- 9 9 y hyp

. . xt on n void ri llow swappin
terpart, o,/ (e), under the matching. This leads totO a text one, and, to avoid ridges, allow swapping

. . ) two hypothesis assignments
a formulation similar to (2), where we consider the yp g

normalized cost of substituting each edge relatiog Node and Edge Substitution Models
in H with a path in7"

the vertex and relational match costs: Go$) =
aVertexCostM) + (1 — a)RelationCostM).

In the previous section we described our graph
1 matching model in terms of our VertexSub model,
; _ 4 which gives a cost for substituting one graph vertex
RelationCosti) GEXH:E wie)PathSuke, ar(e)) for another, and PathSub, which gives a cost for sub-
(3) stituting the path relationship between two paths in
where Z = .., w(e) is a normalization con- one graph for that in another. We now outline these
stant. As in the vertex case, we have weightsodels.
for each hypothesis edgey(e), based upon the o
edge’s label; typically subject and object relations+1 Vertex substitution cost model
are more important to match than others. Our fi©Our VertexSulpw, M (v)) model is based upon a
nal matching cost is given by a convex mixture okliding scale, where progressively higher costs are



given based upon the following conditions: e Kinked Match: M (v) and M (v") share a com-
mon parent or ancestor iR. We use an exponen-
tially increasing cost based on the maximum of
the node’s distances to their least common ances-
torinT.

e Exact Match: v and M (v) are identical words/
phrases.

e Stem Match: v and M (v)’s stems match or one
is a derivational form of the other; e.g., matching

coaches to coach. These conditions capture many of the common

« Synonym Match: v and M (v) are synonyms ac- ways in which relationships between entities are dis-
ynony ' yhony torted in semantically related sentences. For in-

cording toWbrdNet (Fellbaum, 1998). In particu- . . .
stance, in our system, a partial match will occur

lar we use the top 3 senses of both words to deter- . . . .
) whenever an edge type differs in detail, for instance
mine synsets.

_ use of the prepositiotowards in one case antb in

o Hypernym Match: M(v) is a hypernym ob %, the other. An ancestor match will occur whenever an
as determined by\ordNet. Note that this feature ingirect relation leads to the insertion of an interven-
IS asymmetric. ing node in the dependency graph, such as matching

e WordNet Similarity: v andM (v) are similar ac- John is studying French farming vs. John is studying

cording towrdNet: : Sim larity (Peder- Frenchfarming practices.

sen etal., 2004). In particular, we use the measure ) _

described in (Resnik, 1995). We found it usefuP-3 ~L€aming Weights

to only use similarities above a fixed threshold tds it possible to learn weights for the relative impor-

ensure precision. tance of the conditions in the VertexSub and PathSub

LSA Match: v and M(v) are distributionally models? Consider the case where match costs are

similar according to a freely available Latent Se9iven only by equation (2) and vertices are weighted

mantic Indexing package,or for verbs similar Uniformly (w(v) = 1). Suppose thab (v, M(v))

according toVerbOcean (Chklovski and Pantel, is a vector of featurésindicating the cost accord-
2004). ing to each of the conditions listed for matching

to M(v). Also letw be weights for each element
of ®(v, M(v)). First we can model the substitution

cost for a given matching as:
Although the above conditions often produce rea- T
exp (w” (v, M(v)))

sonable matchings between text and hypothesis, WeertexSulgv, M (v)) = =
found the recall of these lexical resources to be far 1+ exp (w! @(v, M(v)))

from adequate. More robust lexical resources wouldetting s(-) be the 1-sigmoid function used in the
almost certainly boost performance. right hand side of the equation above, our final

o matching cost as a function af is given by
5.2 Path substitution cost model

Our PathSupy — o/, M(v) — M(v')) model is  c¢(H,T;w) = AI}“Q&|H—1V| Y s(w"®(v, M(v)))
(4)

also based upon a sliding scale cost based upon the veH
Suppose we have a set of text/hypothesis pairs,

following conditions:
e Exact Match: M(v) — M(v') is an en edge in {®, 7MY, .. (7M™, HM)}, with labels y®)

e POS Match: v and M (v) have the same part of
speech.

T with the same label. which arel if H® is entailed by and0 other-
e Partial Match: M (v) — M(v') is an en edge in wise. Then we would like to choose to minimize
T, not necessarily with the same label. costs for entailed examples and maximize it for non-

e Ancestor Match: M (v) is an ancestor af/(v/). ~ €ntailed pairs:
We use an exponentially increasing cost for longer  p(y) = Z log c(HD, T w) +
distance relationships. iy =1

2y is “kind of” M (v) “In the case of our “match” conditions, these features will
3pAvailable atht t p: / /i nf onap. st anf or d. edu be binary.



> log(1 — e(HD, T w)) by other recent abductive approaches (Moldovan et

iy (D=0 al., 2003), does not hold for several classes of exam-

ples. Our formalism does not at present provide a

Unfortunately,/(w) is not a convex function. No- general solution to this issue, but we include special

tice that the cost of each matching/, implicitly  case handling of the most common types of cases,
depends on the current setting of the weightslt  \yhich we outline below. These checks are done af-

can be shown that since eactH, T’;w) involves  ter graph matching and assume we have stored the
minimizing M € M, which depends om, itis not  minimal cost matching.

convex. Therefore, we can't hope to globally opti-
mize our cost functions over and must settle for Negation Check

angpproxmatlohn: ¢ dinat t oy Text: Clinton’s book is not a bestseller
NEe approach IS 1o Use coordinate ascen er Hypothesis: Clinton’s book is a bestseller

andw. Suppose that we begin with arbitrary weights To catch such examples, we check that each hy-

and given these weights choog¢!”) to minimize pothesis verb is not matched to a text word which
eachc(H®, T("); w). Then we use a relaxed form of ; 4 (unless th b pai q
the cost function where we use the matchings founla negated (unless the verb pairs are antonyms) an

in the last step: Vice versa. In this instance, thgin H, denoted by

In the last step: isyg, is matched tdsy which has a negation modifier,

s 2r(@) ) 1 . i notr, absent foiisy;. So the negation check fails.
(H™, T w) = |Hy| > s, MY(w))  Factive Check

H
ve Text: Clonaid claims to have cloned 13 babies worldwide.

Then we maximizav with respect to/(w) with Hypothesis: Clonaid has cloned 13 babies.
eachc(-) replaced with the cost-functiof(-). This ~ Non-factive verbsdaim, think, charged, etc.) in
step involves only logistic regression. We repeat thigontrast to factive verbskgow, regret, etc.) have
procedure until our weights converge. sentential complements which do not represent true
To test the effectiveness of the above proceduf@opositions. We detect such cases, by checking that
we compared performance against baseline settin§dch verb ind that is matched ifl" does not have a
using a random split on the development set. Pickingon-factive verb for a parent.
each weight uniformly at random resulted in 53% )
accuracy. Setting all weights identically to an arbi-SUperIat'Ve Check
trary value gave 54%. The procedure above, whemext: The Osaka World Trade Center is the tallest building in
the weights are initialized to the same value, resultedestern Japan.
in an accuracy of 57%. However, we believe therelypothesis: The Osaka World Trade Center is the tallestibuil
is still room for improvement since carefully-handing in Japan.
chosen weights results in comparable performance In general, superlative modifiersn¢st, biggest,
to the learned weights on the final test set. We beetc.) invert the typical monotonicity of entailment
lieve this setting of learning under matchings is and must be handled as special cases. For any
rather general one and could be beneficial to oth@ounn with a superlative modifier (part-of-speech
domains such as Machine Translation. In the futurelJS) inH#, we must ensure that all modifier relations
we hope to find better approximation techniques foof M (n) are preserved iff. In this examplebuild-

this problem. ingg has a superlative modifiéallest;;, so we must
ensure that each modifier relationJapan;, a noun
6 Checks dependent obuildingr, has aestern modifier not

One systematic source of error coming from our ba"" H. SO its Tails th? superlative Ch?Ck'

sic approach is the implicit assumption of upwards Additionally, during error analysis on the devel-
monotonicity of entailment; i.e., i’ entailsH then OPMent set, we spotted the following cases where
adding mqre word_s toT ShOUId also _give Us asen-  spjthe examples are actual, or slightly altered, RTE exam-
tence which entailg?. This assumption, also madeples.



Method Accuracy | CWS Task| GM-General GM-ByTask

Random 50.0% | 0.500 Accuracy | CWS | Accuracy| CWS
Bag-Of-Words 49.5% 0.548 CD 72.02/0 0.742 76.02/0 0.771
TE-IDE 51.8% | 0.560 IE 55.9% | 0.583| 55.8% | 0.595

IR 52.2% | 0.564| 51.1% | 0.572
MT 50.0% | 0.497| 43.3% | 0.489
PP 58.0% | 0.741| 58.0% | 0.746

Table 2. Accuracy and confidence weighted score QA 53.8% | 0.537| 55.4% | 0.556
(CWS) for test set using various techniques. RC 52.1% | 0.539| 52.9% | 0.523

GM-General 56.8% | 0.614
GM-ByTask 56.7% | 0.631

Table 3: Accuracy and confidence weighted score

our VertexSub function erroneously labeled vertice§CWS) split by task on the RTE test set.
as similar, and required special case consideration:

e Antonym Check: We consistently found thatthe  Qur results are summarized in Table 2. As the re-
WordNet : : Simlarity modules gave high- sylt indicates, the task is particularly hard; all RTE
similarity to antonym$. We explicitly check participants scored between 50% and 60% in terms
whether a matching involved antonyms and rejedf overall accuracy (Dagan et al., 2005). Nevever-
unless one of the vertices had a negation modifietheless, both GM systems perform better than either

e Numeric Mismatch: Since numeric expressions Bag-Of-Words or TF-IDF. CWS refers to Confi-
typically have the same part-of-speech tag (CDYJence Weighted Score (also known as average pre-
they were typically matched when exact matchesision). This measure is perhaps a more insightful
could not be found. However, mismatching nuimeasure, since it allows the inclusion of a ranking
merical tokens usually indicated that was not of answers by confidence and assesses whether you
entailed, and so pairs with a numerical mismatchre correct on the pairs that you are most confident

were rejected. that you know the answer to. To assess CWS, our
n answers are sorted in decreasing order by the con-
7 Experiments and Results fidence we return, and then for eagtwe calculate

a;, OUr accuracy on ourmost confident predictions.
For our experiments we used the devolpement anghen CWS= 1 5" | a,.
test sets from the Recognizing Textual Entailment \ye giso present results on a per-task basis in Ta-

challenge (Dagan et al., 2005). We give results fosje 3. |nterestingly, there is a large variation in per-
our system as well as for the following systems:  formance depending on the task.

e Bag-Of-Words: We tokenize the text and hypoth-
esis and strip the function words, and stem the ré& Conclusion

sulting words. The cost is given by the fraction of _
the hypothesis not matched in the text. We have presented a learned graph matching ap-

o roach to approximating textual entailment which
e TF-IDF: Similar to Bag-Of-Words except thatp PP J

i ) i idf weiaht ted with h h outperforms models which only match at the word
ere 1s a fLidt weight associated with €ach Npa e - and is competitive with recent weighed ab-

ppthe5|s vyord so that mpre “important” words areduction models (Moldovan et al., 2003). In addition,
higher weight for matching.

we explore problematic cases of nonmonotonicity in
We also present results for two graph matchingntailment, which are not naturally handled by ei-
(GM) systems. The GM-General system fits a sinther subgraph matching or the so-called “logic form”
gle global threshold from the development set. Thiaference of (Moldovan et al., 2003) and have pro-
GM-ByTask system fits a different threshold forposed a way to capture common cases of this phe-
each of the tasks. nomenon. We believe that the methods employed
mecessaﬂly incorrect, but is simply not suitabl in this work show much potential for improving the
for textual inference. state-of-the-art in computational semantic inference.



that it has closed the acquisitig

nD technologies.

of Datel, Inc.

Text Hypothesis True Answer| Our answer| Conf | Comments

A Filipino hostage in Iraq was re- A Filipino hostage True True 0.84 | Verb rewrite is handled. Phrasal

leased. was freed in Iraq. ordering does not affect cost.

The government announced 1asOil prices drop. False False 0.95 | High cost given for substituting

week that it plans to raise ol word for its antonym.

prices.

Shrek 2 rang up $92 million. Shrek 2 earned $92 True False 0.59 | Collocation “rang up” is not
million. known to be similar to “earned”|

Sonia Gandhi can be defeated |irbonia Gandhi is der False True 0.77 | “can be” does not indicate the

the next elections in India by BJP.feated by BJP. complement event occurs.

Fighters loyal to Mogtada al- Fighters loyal to False True 0.67 | Should recognize non-Location

Sadr shot down a U.S. helicoptgiMoqgtada al-Sadr shat cannot be substituted for Loca

Thursday in the holy city of Najafl, down Najaf. tion.

C and D Technologies announcedatel Acquired C and False True 0.64 | Failed to penalize switch in se

mantic role structure enough

Table 4: Analysis of results on some RTE examples along witlgaesses and confidence probabilities
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