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1. Introduction

In optical communication systems, the main source of performance degradation are the accumulated amplified spon-
taneous emission (ASE) noise, polarization-mode dispersion (PMD) and fiber dispersion and nonlinearity [1]. The
bit-error rate (BER) for systems containing all these impairments and their interactions with the signal can be cal-
culated using the standard Monte Carlo method. However, if the BER has to be computed several times, the overall
computational effort is so large that it becomes prohibitive for system optimization. In this case, the BER can be calcu-
lated very fast and accurate by using linearization techniques of the Nonlinear Schrödinger Equation (NLSE) together
with Karhunen-Loéve series expansion [2].

Even using these semi-analytical methods for calculating the BER, the optimization procedure can still be very
time-consuming if, for example, grid search algorithms areemployed. Several fast optimization methods have been
investigated, but all of them use simplified models for nonlinear signal propagation and, therefore, are only valid for
a certain range of parameters or modulation formats [3–6]. In this context, global optimization algorithms [7] can
be employed to guide the search over the large set of parameters in order to find the best solution in the minimum
simulation time. After the optimization procedure, simplified models [4] may be used to include PMD, which would
require a large computational effort at each iteration of the optimization algorithm.

In this paper, we use a global optimization algorithm [7] together with an extended Karhunen-Loéve method [2]
and the nonlinear phase-shift criterion [4] to find the maximum reach of single-channel DPSK and DQPSK systems
including PMD and nonlinear phase noise, induced by the interaction between the signal and ASE noise. We extend
the results presented in [7] and also show the impact of both effects on the maximum reach for data rates ranging from
5Gbit/s to 230Gbit/s.

2. System and Simulation Set-Up

TX SMF DCF RX
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√
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Fig. 1. System set-up and fiber parameters.

Fig. 1 shows a typical long-haul optical communication system comprisingN spans. The link is composed of a fiber
for pre-compensationDpre, standard single mode fiber (SMF) of lengthLSMF = 80 km, a dispersion compensating
fiber (DCF) for in-line dispersion compensation, a fiber for post-compensationDpos and optical amplifiers with equal
noise figureFn = 6 dB. PSMF andPDCF are the SMF and DCF fiber input powers, respectively. The nonlinearity
of the pre– and post–compensation fibers is neglected, but their attenuations are taken into account.Dpos is set such
that the accumulated dispersion at the receiver amounts toDacc. The optical filter was modeled as a second-order
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Gaussian filter and its bandwidth was optimized for each datarate in a back-to-back configuration. The electrical filter
was modeled as a fifth-order Bessel filter with a bandwidth of0.75 · Rs, whereRs is the symbol rate.

The performance of the system is measured in terms of the system reach. It is defined as the maximum num-
ber of spansN at which the BER is equal to or lower than10−4. The optimization problem is defined asN =
f(PSMF, PDCF,Dpre,Dres,Dacc), wheref(·) is the objective function and{PSMF, PDCF,Dpre,Dres,Dacc} the 5-
dimensional search space. For each data rateRb, the algorithm tries to find iteratively the set of input parameters which
maximizes the system reach, i.e.Nmax = f(P opt

SMF, P opt
DCF,Dopt

pre ,D
opt
res ,Dopt

acc ).
The global optimization algorithm starts by simulating the25 boundary points, then it divides the search space into

a set of simplexes. For each simplex, the variableN is modeled as a Gaussian stochastic process and its mean and
variance are used in order to find the next set of input parameters, which will most probably improve the currently
best solutionN∗

max. Based on the results of a previous work [7], the number of iterations was set toNi = 200,
which corresponds to approximately 0.01% simulations of anequivalent grid search. AfterNi iterations the global
optimization algorithm determinesNmax andSopt = {P opt

SMF, P opt
DCF,Dopt

pre ,D
opt
res ,Dopt

acc} for each data rateRb. The
boundaries of the search space are given byPSMF = [−3, 4] dBm,PDCF = [−10, −4] dBm, Dpre = [−450, 0] ps/nm,
Dres = [−40, 40] ps/nm andDacc = [−40, 40] ps/nm.

Simulations were carried out using non-return-to-zero (NRZ) pulse format and PRBS/PRQS sequences of length
45. The fibers were numerically simulated by solving the scalarNLSE (no PMD) or the coupled NLSE (with PMD) [8].
The coarse step method [9] was used to obtain the principal states of polarization (PSP) and the Maxwellian distribution
of the differential group delay (DGD). PMD emulation was performed by using 320 birefringent sections per span
and by dividing the signal equally between both principal states of polarization. In order to evaluate the average
performance at large DGDs, ten different system realizations were simulated at a DGD 2 times larger than the average
DGD, defined here as <DGD>, and another ten realizations weresimulated at a DGD 3 times larger than <DGD>.

3. Results and Discussion

Considering the system in Fig. 1, the BER can be exactly evaluated using the Karhunen-Loéve (KL) method [1] only
if the received optical noise is white and Gaussian. If fiber nonlinearities are of concern, linearization techniques ofthe
NLSE can be applied together with KL method for BER evaluation in the presence of nonlinear phase noise (NPN) [2].
This method will be called hereExtended KL method.

The global optimization algorithm was first applied to a system without PMD and NPN. In this case, the BER was
evaluated using the KL method and it does not exceed10−4 afterNmax spans, as shown in Fig. 2(a). However, if the
BER is evaluated using the Monte Carlo and Extended KL methods, then it changes considerably for symbol rates
lower than40Gsym/s. For symbol rates greater than40Gsym/s, the penalty due to NPN is rather small because the
linear phase noise and intra-channel effects dominate overNPN.

In Fig. 2(b), the global optimization algorithm was appliedto a system with NPN, but without PMD. The results
show that NPN limits the reach for symbol rates smaller than40Gsym/s. Fig. 2(c) shows the performance in terms
of the bandwidth-distance product. In the presence of NPN, both modulation schemes have the same performance,
while the performance can be quite different if NPN is neglected. Moreover, Fig. 2(c) shows that a quadratic fitting of
Rb · Nmax can be used to predict the system reach with high accuracy.
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Fig. 2. Impact of NPN on the BER (a), maximum reach (b) and bandwidth-distance product (c) for DPSK and DQPSK
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At each iteration of the global optimization algorithm, theevaluation of the system reach in the presence of PMD
is a very time-consuming task, because the PSPs [9] have to becalculated for different number of spansN until the
maximum reach is found. However, if we consider the effect ofPMD as a small perturbation on the optimum set of
parametersSNPN

opt , then the nonlinear phase-shift criterion [4] can be used todetermine the impact of PMD onNNPN
max .

The nonlinear phase-shift is defined asφNL = N ·PSMF·
(

γSMF · LSMF
eff + η · γDCF · LDCF

eff

)

, whereη = PDCF/PSMF,
LSMF

eff andLDCF
eff are the effective lengths of the respective fibers. Our simulations confirmed that the BER remains

constant, ifφopt
NL , ηopt, Dopt

pre andDopt
acc are constant andN andDres are varied according to the straight-line rule [5,6],

as shown in Fig. 3(a). For high data rates, dispersion slope accumulation induces a small penalty, which does not
interact with PMD. Therefore, the maximum reach in the presence of PMD and NPN was determined for each data
rate by reducing the number of spansN from NNPN

max until the BER was equal to or lower than10−4. In Fig. 3(b), we
observed that for symbol rates lower than40Gsym/s, PMD has a small impact on the maximum reachNmax, while
for symbol rates above40Gsym/s, PMD limits the system performance. In Fig. 3(c), the OSNR penalty is defined
as the difference between the accumulated OSNR afterNmax spans (BER ≤ 10−4) and the required back-to-back
OSNR (BER ≤ 10−4). Small penalties were found between 30 and50Gsym/s, which indicates an optimum range
of symbol rates. Figs. 3(b) and 3(c) reveal that DQPSK is moretolerant to PMD. In fact, this occurs because the
maximum reach of DQPSK is approximately two times lower thanthat of DPSK, which implies a smaller <DGD>.

Nmax Nmax − 2 Nmax − 4 Nmax − 6 Nmax − 8
−6

−5

−4

Number of spans N

lo
g

1
0
(B

E
R

)

Nonlinear Phase−Shift criterion for DQPSK

 

 

40 Gbps 120 Gbps 170 Gbps 210 Gbps 220 Gbps 230 Gbps

Dashed Line: DQPSK with slope matched DCF
Solid Line: DQPSK with DCF from Fig. 1

(a)

5 15 25 35 45 55 65 75 85 95 105 115
0

500

1000

1500

2000

2500

3000

Symbol Rate Rs [Gsym/s]

R
b
⋅ 
N

m
a

x

 

 

Global Optimization with PMD and NPN

DPSK without PMD
DPSK with PMD: Samples at 2⋅<DGD>
DPSK with PMD: Samples at 3⋅<DGD>
DQPSK without PMD
DQPSK with PMD:  Samples at 2⋅<DGD>
DQPSK with PMD: Samples at 3⋅<DGD>

(b)

5 15 25 35 45 55 65 75 85 95 105 115
1.5

2

3

4

5

6
7
8
9

10
11
12

Symbol Rate Rs [Gsym/s]

Global Optimization with PMD and NPN

 

 

O
S

N
R

 P
e

n
a

lt
y
 (

B
E

R
 =

 1
e

−
4

) 
[d

B
]

DPSK without PMD
DPSK with PMD: Samples at 2⋅<DGD>
DPSK with PMD: Samples at 3⋅<DGD>
DQPSK without PMD
DQPSK with PMD: Samples at 2⋅<DGD>
DQPSK with PMD: Samples at 3⋅<DGD>

(c)

Fig. 3. BER with constantφNL (a), impact of PMD on the bandwidth-distance product (b) and OSNR penalty (c) for DPSK and DQPSK

4. Conclusions

Using a global optimization algorithm, the maximum reach ofsingle-channel DPSK and DQPSK optical communica-
tion systems was determined in the presence of PMD and NPN. A detailed investigation into the impact of both effects
was carried out and an optimum range of symbol rates around40Gsym/s was identified. In fact, the effect of NPN
was dominant for symbol rates below40Gsym/s, while PMD limits the system performance for symbol rates above
40Gsym/s. Moreover, in the absence of PMD we observed that DPSK and DQPSK have similar performance.
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