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1 Introduction

Future secure communications relies on the advancement of quantum key distribution (QKD) systems based
on single-photon communication. The original BB84 protocol, [1], as well as its weak-laser, [2], or decoy-
state, [3], implementations all fall into this category. The inevitable loss in optical channels, however, not only
results in low key generation rates, but also, in conjunction with detector deficiencies, limit the range within
which a secure key can be exchanged between two parties. Long-distance secure communication is then a
challenging problem especially if there are no trusted intermediate nodes between the two parties through
which a secure key can be established. Fortunately, there is an alternative solution to QKD that uses entangled
states [4]. Entanglement—although may rely on single-photon communication for initial distribution over
short distances—is extensible to arbitrarily long distances by using entanglement swapping techniques within
quantum repeater setups [5]. For reliable and effective performance, quantum repeaters require a large number
of quantum memories that interact efficiently with light and demonstrate long coherence times. In this paper,
we look at the Duan, Lukin, Cirac, and Zoller (termed DLCZ, hereafter) proposal for quantum repeaters,
which is a probabilistic scheme that uses ensembles of neutral atoms as quantum memories [6]. Recently,
coherence times in excess of 5 ms are demonstrated for such memories [7]. This is, in principle, sufficient
to cover distances up to 1000 km, provided that a large number of logical memories can be employed in
parallel [8]. Atomic ensembles can potentially be used as multiple logical memories by applying/collecting
light at/from different directions. In this paper, we find the optimum driving power that maximizes the key
generation rate in the DLCZ QKD protocol with and without a repeater node. We also find the cross-over
distance at which the DLCZ repeater outperforms its direct entanglement distribution counterpart.

2 System Description

The DLCZ scheme for entanglement distribution works as follows; see Fig. 1(a). Ensembles A and B, at
distance L, consisting of atoms with Λ-level configuration, are coherently pumped in order to drive off-
resonant Raman transitions that create anti-Stokes photons. The probability of one such transition, pc, is
commonly kept much below one to avoid multiple excitations. The resulting photons are routed down towards
a 50-50 beam splitter located halfway between A and B. The beam splitter erases any which-way information
so that if, ideally, only one photon has been created at the ensembles, one of the two detectors D1 and D2,
and at most only one of them, clicks. In that case, A and B are heralded to be entangled.

The fundamental source of error in the DLCZ scheme is the multiple excitation effect, where more than
one anti-Stokes photon is created in the above process. Multiple photons passed through a lossy channel
can reproduce an erroneous heralding event. This effect can be alleviated, to some extent, by using photon-
number resolving detectors (PNRDs), rather than non-resolving photodetectors (NRPDs). In our work, we
consider both detectors and compare the system performance in the two cases.

The 50-50 beam splitter together with the single photon detectors in Fig. 1(a) effectively perform a partial
Bell-sate measurement (BSM) on the incoming photons. The DLCZ quantum repeater protocol uses this idea
to distribute entanglement over longer distances. Figure 1(b) shows the DLCZ repeater setup in which, we
first entangle ensembles A&A′ and B&B′, and then perform a partial BSM on the retrieved photons from
the middle ensembles A′ and B′, which, upon success, leaves A and B entangled.
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Fig. 1. (a) The DLCZ scheme for entanglement distribution between atomic ensembles A and B. The Λ-
level atomic ensembles are coherently pumped to create anti-Stokes photons. Such photons are then routed
down toward a 50-50 beam splitter and two single-photon detectors. A single click on one, and only one, of
photodetectors heralds entanglement between A and B. (b) The DLCZ scheme for quantum repeaters. In
order to entangle ensembles A and B, at distance L, we first entangle A&A′ and B&B′, at distance L/2,
using the scheme described in (a). We then use a 50-50 beam splitter and single-photon detectors to perform
a partial BSM on the photonic states retrieved from middle ensembles A′ and B′. A click on one, and only
one, of detectors heralds the success of entanglement swapping. (c) The DLCZ setup for QKD. Alice and
Bob first create two entangled pairs of ensembles, A&B and C&D, using the DLCZ schemes described in
(a) or (b). They perform a random Pauli measurement by applying random phase shifts to retrieved optical
modes, which interfere at a 50-50 beam splitter. After the sifting procedure, a click on detector D1/2 is
associated with bit 1/0, and in the case of a double click a random bit will be assigned to the raw key.

Based on the above protocols, the DLCZ QKD protocol works as follows. First, our two remote parties,
Alice and Bob, generate identical entangled pairs, namely AB and CD, over distance L; see Fig. 1(c). They
then retrieve the photons in the four ensembles and perform a QKD measurement on these photons according
to the BB84 protocol [1]. The measurement modules used for this purpose is similar to the BSM module
used in the repeater setup with additional phase shift units whose phase values are randomly chosen to be
either 0 or π/2. After the sifting procedure, by which Alice and Bob specify the measurement events where
they have both used the same phase shifts and have obtained at least one click on their respective detectors,
they obtain a raw key by assigning bit one to the key whenever only D1 has clicked on their side, and bit
zero whenever only D2 has clicked. In the case of a double click, they assign bit zero or one, with equal
probability, to their raw keys. By using privacy amplification and reconciliation techniques, Alice and Bob
turn their raw keys to a common secure key, which can be used for encryption purposes.

3 Performance Analysis, Numerical Results, and Discussion

Here, we find the key generation rate for the DLCZ QKD protocol when the initial entangled states are
obtained via the direct method shown in Fig. 1(a), or via the repeater system of Fig. 1(b). We assume
all setups are symmetric and phase stabilized, and dark count is negligible. Memories are assumed to have
sufficiently long coherence times. The fundamental source of error that we consider is the possibility of
having multiple excitations in our ensembles in conjunction with the path loss and BSM inefficiencies. The
methodology that we use is similar to that of [9] in which we first find the relevant characteristic functions
and density operators in terms of Gaussian integrals. The parameters of interest will then be reduced to
statistical moments of a Gaussian random variable, which can be analytically found.

We use the cyclic protocol proposed in [8] for quantum repeaters in which a large number of logical
memories are employed at each node. By using all memories successively, in the steady state, the number of
entangled pairs generated per second per logical memory is given by Rentg

n = PS(L/2n)Pn
Mc/(2L), where c

is the speed of light in the channel, PS(L) is the probability that the entanglement distribution scheme of
Fig. 1(a) heralds success over distance L, PM is the probability that the BSM module in Fig. 1(b) heralds
success, and n is the nesting level of the system (n = 0 in Fig. 1(a), and n = 1 in Fig. 1(b)). In the DLCZ
QKD protocol, the number of raw key bits generated per second per employed memory is then given by
Rrawkey

n = Rentg
n Pclick/2, where Pclick is the probability that both Alice and Bob get at least one click on

their measurement modules of Fig. 1(c) when they use similar phase shifts.
To include the error in our analysis, we combine the Shor and Preskill’s result for the key generation rate

of the BB84 protocol [10], i.e., the ratio between the number of secure key bits and the number of raw key
bits, in the limit of an infinitely long key, and the squashing technique proposed in [11] to finally obtain

Rn = [1− 2H(QBER)]Rrawkey
n , n = 0, 1, (1)

where QBER = Perror/Pclick, with Perror being the probability that Alice and Bob, conditional on using
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Fig. 2. (a) The number of secure key bits generated per second per memory for the DLCZ QKD protocol
with (R1) and without (R0) repeater versus pc at L = 350 km. There exists an optimum value of pc at
which the QKD rate peaks. (b) Quantum bit error rate in the DLCZ QKD protocol versus distance at the
long-distance-limit optimum values of pc. (c) Normalized QKD rates at the long-distance-limit optimum
values of pc. In all graphs, solid lines correspond to resolving detectors and dashed lines represent the non-
resolving cases. The underlying channel is assumed to be optical fiber with 0.17 dB/km loss and c = 2×108

m/s. The measurement efficiency, ηm = ηCηD, is 0.35.

similar phase shifts, assign different bits to their raw keys, and H(p) = −p log2 p− (1− p) log2(1− p).
Figure 2(a) shows R0 and R1 as functions of the excitation probability pc. We assume that the underlying

channel is optical fiber with 0.17 dB/km loss. The efficiency of the measurement module, ηm, the product
of the atomic-to-photonic conversion efficiency, ηC , and photodetectors’ quantum efficiencies, ηD, is 0.35. It
can be seen that there exists an optimum value of pc at which the QKD rates peak. This optimum value is
lower for the repeater setup than for the no-repeater case. It is also lower for non-resolving detectors than
the resolving ones. Whereas a higher value of pc increases the heralding rate of success, it creates more error
as well, hence in some cases we are better off to start with a lower value of pc to allow for a higher margin
of error by the end of the QKD procedure. The optimum values of pc are functions of distance as well. For
our parameter setting, however, the optimum values are roughly constant for L > 100 km.

Figure 2(b) shows QBER versus distance at the optimum values of pc (long-distance limit). Repeater
systems should tolerate a higher error rate because they undergo an extra step of entanglement swapping.
Interestingly, the repeater with resolving detector tolerates a higher QBER than the NRPD case. That is
because, with resolving detectors, we can use a higher value of pc, and get a higher generation rate for the
raw key in Eq. (1). In all cases, QBER approaches a constant value at long distances. That is because the
optimum value of pc is fixed for long distances, hence, the possibility of multiple excitations is also limited.

Finally, Fig. 2(c) highlights the trade-off between loss in the channel for the no-repeater case versus
higher error rates for the repeater case, by comparing R0 and R1. Because the QBER is limited, the repeater
setup is the eventual winner of this competition. For the parameters used in our calculations, the cross-over
distance is around 350 km. For highly efficient BSM modules, this distance will drop to about 150 km; that
is about 75 km between each repeater station. To create 1 kbps of secure key we need about 10,000 memories
for the DLCZ system. This work was supported by QuantumWorks, OCE, and NSERC Discovery Grant.
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