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Abstract

A numerical method in Fourier space is developed to solve the polymeric
self-consistent field equations. The method does not require a priori sym-
metric information. More significantly, periodic structure can be adjusted
automatically during the iteration process. In this article, we apply our
method to diblock copolymer melt, thus reproduce all known stable phases,
and reveal some meta-stable phases. It is worthy to point out that we also
give an efficient strategy to estimating initial values for diblock copolymer
system. Finally, by comparing with Matsen-Schick’s method, we show some
advantages of our method.
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1. Introduction

During the last decades, the various and fascinating ordered phases of
block copolymer systems have been studied extensively [1, 2, 3]. The equi-
librium morphology formed in periodically ordered state depends on com-
positions, interaction between distinct blocks, particular molecular architec-
ture, and also the period structure. Theoretically, self-consistent field theory
(SCFT) has proven itself to be a particularly successful framework for study-
ing the phase behavior of block copolymers. It is a mean-field theory. By
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finding the solutions of SCFT equations, we can get the equilibrium order
microstructures of block copolymers.

Due to the nonlinearity and the presence of multiple solutions, solving
the SCFT analytically is a challenging problem. One successful approach is
to apply numerical methods to solving the SCFT equations. It should be
noted that the computational box can influence the final equilibrium mor-
phologies [4]. Generally, the numerical methods can be classified into two
categories. One type is calculated in Fourier space. Under an assumption of
symmetry, Matsen and Schick [5] expanded the spatially varying functions in
a finite set of basis functions, and obtained the first exact numerical phase di-
agram of three-dimensional ordered diblock copolymer phases. Then, based
on this method, Tyler and Morse [6] minimized the SCFT free energy with
respect to the computational box parameters according to a certain crystal
system. Since this method assumes the symmetry and period structure of
possible phases which determines the morphology of the solutions, it can not
be used to discover new phases. Recently, Zhang and Zhang [7] have pro-
posed an efficient numerical method based on Landau-Brazovsikii model. It
does not require the assumption of the microphase symmetry, and the pe-
riod structure can be adjusted automatically. Guo et al. [8] have proposed a
generic Fourier space approach which does not need a priori knowledge of the
structure of solutions and has been capable of discovering new equilibrium
morphologies.

The other type is calculated in real space. A well known method called
combinatorial screening algorithm was proposed by Drolet and Fredrick-
son [9]. The advantage of this method is that it does not require a priori
assumption of symmetry, and can be used to discover new phases. A pseu-
dospectral technology for solving the modified diffusion equation was intro-
duced by Rasmussen and Kalosakas [10], which improves the computational
efficiency of the real space methods. Based on density functional theory,
Bohbot-Raviv and Wang [4] proposed a numerical method involving mini-
mizing a free energy functional with respect to the composition profile and
the size of the calculation area. For the real space methods, the calculation
area is normally set as a cubic in 3D or a square in 2D, whereas the period
of one ordered phase is not likely to be a cubic or a square. Thus the cal-
culation area has to be set as large as possible, which significantly increases
the computational complexity.

Solving the SCFT equations directly is unstable, thus several iteration
methods have been devised for solving the self-consistent set of equations. In
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the beginning, the nonlinear equation system methods have been chosen to
update the field functions, such as Broyden method [5], Picard iteration [11]
and Newton-Raphson method [6]. The disadvantage of these methods is that
they have larger computational complexity. Then, a set of nonlinear op-
timization algorithms is introduced to solve SCFT equations. Drolet and
Fredrickson [9] brought in a “simple mixing” iteration scheme, which has
been proved to be usable, but slow and sometimes unstable [12]. To increase
the stability, Tzeremes et al. [13] added density information into the “sim-
ple mixing” iteration scheme. To accelerate its convergence, Thompson et
al. [12] proposed Anderson mixing, and Ceniceros et al. [14] introduced a class
of semi-implicit methods and multilevel strategy.

Our research aims at developing a method in Fourier space that really
doesn’t need a priori symmetric information of basis functions, and the size
and shape of the computational box can be adjusted automatically accord-
ing to the period microstructures during the iteration process. The number
of basis functions is decided by the given numerical accuracy. The numer-
ical method based on Landau-Brazovsikii model [7] is the starting point of
our study. The diblock copolymer melt has been extensively studied with
SCFT [1, 3], so it is suitable for us to display our method. Because of the
presence of multiple solutions of the nonlinear equation system, the solutions
are sensitive to initial values. An appropriate method of estimating initial
values is given to find the patterns quickly. Furthermore, we compare our
approach with Matsen-Schick’s method (MSM) [5, 6]. It is demonstrated
that our method generates the same ordered phases as MSM, and the way to
adjust the computational box in our method is not only more effective than
that of MSM, but also more easily to reach the minimum value of free energy
density in some cases. Meanwhile, the current method can be extended to
other molecular architecture system.

The rest of the paper is organized as follows. In Section 2, we present the
SCFT of diblock copolymer melt. In Section 3, we propose our numerical
method. To verify the validity of our method, we report our numerical results
and also compare it with MSM in Section 4. Finally, we give our conclusion
in Section 5.

2. Self-consistence field theory

In this section, we will give a brief introduction to the self-consistent
field theory of an incompressible diblock copolymer melt, more details can
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be found in [2, 3, 5, 15]. We consider a system with volume V of n diblock
copolymers each having A and B arms joined together with a covalent bond.
The total degree of polymerization of a diblock copolymer is N , and the
A-monomer fraction is f , correspondingly, the B-monomer fraction is 1− f .
The field-theoretic free energy density functional for the diblock copolymer
melt is given by

h[µ+, µ−] =
1

V

∫

dr(−µ+ +
1

χN
µ2
−) − logQ[µ+, µ−]. (1)

where χ is the Flory-Huggins segment-segment interaction parameter. µ+(r)
and µ−(r) can be viewed as fluctuating pressure and exchange chemical po-
tential fields, respectively. Q is the single-chain partition function, which is
determined by

Q =
1

V

∫

dr q(r, s), ∀s ∈ [0, 1]. (2)

The forward propagator q(r, s) represents the probability density that the
chain of contour length s has its end at position r, where the variable s is
used to parameter each copolymer chain, s = 0 represents the tail of the
A block and s = f is the junction between the A and B blocks. Because
Q is independent of s, we usually choose Q = (1/V )

∫

dr q(r, 1). From the
standard Gaussian chain model [1, 3], we know that q satisfies the modified
diffusion equation

∂

∂s
q(r, s) = R2

g∇
2q(r, s) − ω(r, s)q(r, s),

q(r, 0) = 1, (3)

and

ω(r, s) =

{

ωA(r) = µ+(r) − µ−(r), 0 ≤ s ≤ f,
ωB(r) = µ+(r) + µ−(r), f < s ≤ 1,

where ωA(r), ωB(r) are the external fields, which act on A and B monomers
respectively, and Rg is the radius of gyration.

The normalized segment density operators in the sense of ensemble aver-
age φA and φB at r can be written as

φA(r) =
1

Q

∫ f

0

ds q(r, s)q+(r, 1 − s), (4)

φB(r) =
1

Q

∫ 1

f

ds q(r, s)q+(r, 1 − s). (5)
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The reverse propagator, q+(r, s), obeys (3) but ω satisfies

ω(r, s) =

{

ωB(r), 0 ≤ s ≤ 1 − f,
ωA(r), 1 − f < s ≤ 1.

Minimizing the free energy density functional with respect to the fields µ+

and µ−, we have SCFT equations

δh

δµ+
= φA(r; µ±) + φB(r; µ±) − 1 = 0, (6)

δh

δµ−
= φB(r; µ±) − φA(r; µ±) +

2µ−

χN
= 0. (7)

Our task is to find as many equilibrium states as possible by solving the
SCFT equations.

3. Numerical method

As mentioned above, the computational box should be treated as variable
in the method, therefore we need to add them to the spatially varying func-
tions. Before doing this, a short introduction to the Bravais lattice and recip-
rocal lattice is necessary. The Bravais lattice is defined by Rl = l1a1 + l2a2 +
l3a3, l1, l2, l3 ∈ Z, and the primitive vectors are denoted by a1 = (a11, a12, a13),
a2 = (a21, a22, a23), a3 = (a31, a32, a33). The corresponding reciprocal lattice
primitive vectors are b1 = (b11, b12, b13), b2 = (b21, b22, b23), b3 = (b31, b32, b33)
and {G} = {Gmnk|Gmnk = mb1 + nb2 + kb3}, where m, n, k ∈ Z, are the
reciprocal lattice. These two sets of primitive vectors satisfy ai · bj = 2πδij ,
where i, j = 1, 2, 3. For brevity, element of {G} is sometimes written as G

instead of Gmnk, and B = (b1,b2,b3),
The equilibrium phases are periodic, free energy density functional de-

pends not only on fields µ±(r), composition, but also on the computational
box. All spatially varying functions are periodic on the primitive lattice, and
the plane waves {eiG·r}, G ∈ {G}, which form a basis for the function space
{f(r|f(r + Rl)) = f(r)}. The periodic function can be expanded as

f(r) =
∑

{G}

fGeiG·r. (8)

Thus all periodic functions are decided by the Fourier coefficients and recip-
rocal vectors B.
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Since for any G1 + G2 + · · · + Gm 6= 0, m ∈ N, we have
∫

Ω

ei(G1+G2+···+Gm)·r = 0, (9)

the single-chain partition functional can be written as

Q =
1

V

∫

dr q(r, 1) = q0(1), (10)

and the free energy density functional h is

h[µ±,G;B] = −µ+,0 +
1

χN

∑

G

µ−,Gµ−,−G − log q0(1). (11)

Eqs. (6) and (7) can be rewritten as

δh

δµ+,G

= φA,G + φB,G − δ0,G = 0, (12)

δh

δµ−,G

= φB,G − φA,G +
2µ−,G

χN
= 0, (13)

and Eqs. (4) and (5) turn to be

φA,G =
1

q0(1)

∫ f

0

ds
∑

G1+G2=G

qG1
(s) q+

G2
(1 − s), (14)

φB,G =
1

q0(1)

∫ 1

f

ds
∑

G1+G2=G

qG1
(s) q+

G2
(1 − s). (15)

The modified diffusion equation (3) is reduced to

dqG

ds
=

{ ∑

G1
AGG1

qG1
(s), 0 ≤ s ≤ f,

∑

G1
BGG1

qG1
(s), f < s ≤ 1,

(16)

where

AGG1
= −R2

g|G|2δGG1
− ωA,G−G1

,

BGG1
= −R2

g|G|2δGG1
− ωB,G−G1

.

The initial condition is qG(0) = δG0. The Fourier coefficients q+
G of reverse

propagator satisfy the similar expression. In order to achieve the equilibrium

6



state, we require a set of Fourier coefficients {µ±,G} and primitive reciprocal
vectors B that can minimize the free energy density. This can be separated
into two problems.

1. Given B, minimize the free energy density to find saddle-points {µ±,G};
2. Given a set of {µ±,G}, find the reciprocal vectors of B to minimize the
free energy density.

Both problems have to be solved simultaneously if {µ±,G} and B are solu-
tions. In Sections 3.1 and 3.2, we will give the methods to solve the above
two problems, respectively.

Theoretically, the set of basis functions is infinite. In practice, however,
the spatially varying functions have to be expanded into finite basis functions,
which means

f(r) ≈ f (N)(r) =
∑

m,n,k

f(Gmnk)e
iGmnk ·r, (17)

where |m| ≤ N , |n| ≤ N , |k| ≤ N , and m, n, k ∈ Z. In the expansion, the
number of Fourier components is (2N + 1)3.

3.1. Given B, find saddle-point µ±,G

For diblock copolymer melt, an important fact is that the free energy
density functional h[µ±(r)] is to be maximized with respect to µ+(r) and
minimized with respect to µ−(r) [3, 14]. Therefore, we choose the continuous
steepest descent method to calculate saddle points without affecting the final
results. More iteration methods can be found in [3, 9, 10, 13, 12, 14]. The
continuous steepest descent method can be expressed as

∂

∂s
µ+(r, s) = λ+

δh[µ+, µ−]

δµ+(r, s)
, (18)

∂

∂s
µ−(r, s) = −λ−

δh[µ+, µ−]

δµ−(r, s)
, (19)

where λ+, λ− > 0. Using explicit forward Euler scheme and Eqs. (12-13), we
can obtain

µj+1
+,G = µj

+,G + λ+ds(φj
A,G + φj

B,G − δ0,G), (20)

µj+1
−,G = µj

−,G − λ−ds

(

φj
B,G − φj

A,G +
2µj

−,G

χN

)

, (21)
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where φj
A,G, φj

B,G can be calculated by Eqs. (14) and (15) through compos-
ite Simpson’s rule. The pseudospectral technology, second-order operator-
splitting scheme [10] was chosen to calculate qG(s) and q+

G
(s).

When calculating φA,G and φB,G, we use fast Fourier transform (FFT)
to reduce the computational complexity. The key point is how to avoid the
aliasing error in valuating the convolution sum

∑

G1+G2=G
qG1

(s) q+
G2

(1− s).
In our code, we use phase shift method to remove the error. The detail of
the techniques can be found in [16].

3.2. Given µ±,G, generate B

If B is one of the solutions, the first derivatives of the free energy func-
tional with respect to bmn should be zero for m, n = 1, 2, 3. We can choose
a proper coordinate system such that b12 = 0, b13 = 0, b23 = 0, b11 6= 0,
b22 6= 0, b33 6= 0. We update B through steepest descent method as

bj+1
mn = bj

mn − α
∂h[B]

∂bmn

, (22)

where m, n = 1, 2, 3, m ≤ n. It is difficult to calculate ∂h/∂bmn analytically,
whereas we calculate it numerically. The value of α can be calculated by
Armijo-Goldstein inexact line search algorithm [17]. Therefore, the size and
shape of computational box can be automatically adjusted during the process
of minimizing the free energy density.

Now, for a given N , we can obtain {µ
(N)
±,G} and B according to the iteration

process referred as Procedure I, which is specified in the following four steps.

Procedure I

Step 1 Given initial values {µ±,G}, B and set m = 1, then calculate the free
energy density hm.

Step 2 Fixed B, calculate {µ±,G} by the method described in Section 3.1.

Step 3 Adjust B and get the free energy density hm+1 by the method de-
scribed in Section 3.2.

Step 4 Calculate the free energy density hm+1, if |hm+1−hm| > ε1, then set
hm = hm+1, m = m + 1, go back to step 2.
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3.3. The way to find appropriate N

Now, for a given N , we can calculate µ±,G and B by Procedure I. However,
spectral expansion f (N) is just an approximation of f(r), we have the problem
that how large is enough for N to make f (N) a good estimate of f(r). If N
is too large, the computational complexity may go beyond the computer’s
capacity; if N is too small, f (N) may be far away from f(r). Getting the
appropriate N within a tolerance is an adaptive process which is referred as
Procedure II.

Procedure II

Step 1 Starting from a given N and reasonable initial values of µ
(N)
±,G, B(N),

apply Procedure I to generate µ
(N)
±,G, B(N) and the free energy density

value h[µ
(N)
±,G;B(N)].

Step 2 Use µ
(N)
±,G and B(N) as the initial estimate of N + k modes prob-

lem, and then apply Procedure I to generate µ
(N+k)
±,G , the corresponding

B(N+k), and the free energy density h[µ
(N+k)
±,G ;B(N+k)].

Step 3 Repeat the above step till

∣

∣

∣
h[µ

(N+k)
±,G ;B(N+k)] − h[µ

(N)
±,G;B(N)]

∣

∣

∣
< ε2.

It means, the (N + k), which makes the difference of the free energy density
between N modes and (N + k) modes less than a given small number ε2, is
the appropriate one. In practice, we set k = 1 and ε1 = ε2 = 10−4.

3.4. The strategy to estimating good initial values

For Fourier space method, estimating initial values is to give the initial
Fourier coefficients of µ−,Gmnk

, while µ+,Gmnk
are all set as zero according

to Eqs. (12-13). In other words, we should give the initial reciprocal vectors
Gmnk, only on which the Fourier coefficients are nonzero. In the beginning,
we set initial values randomly and executed our method repeatedly. The
lamellar, cylinder phases usually appeared, whereas the complex structures
such as gyroid, Fddd phases seldom emerged. This implies that it is hard to
find some required equilibrium states if we don’t have any information about
them because of the nonlinearity and the presence of multiple solutions. Some
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authors [12, 18] also met the same problem. Therefore, choosing the suitable
initial values should be investigated.

Generally, it is difficult for us to find the appropriate initial values for
a nonlinear problem. Fortunately, the microscopic equilibrium state struc-
tures of the diblock copolymer melt demonstrate certain crystal symmetry.
In the light of this fact we can obtain the initial reciprocal lattice vectors
from Landau theory of block copolymers [19, 20, 21] or the crystal struc-
ture factor table [22]. The Landau theory of block copolymer is applied to
weakly-segregated melts, and gives reciprocal lattice vectors that belong to
different stable phases. Leiblei [19] has given these reciprocal lattice vectors
of lamellar, hexagonal and body-centered cubic spheres (BCC) phases. The
reciprocal lattice vectors of gyroid and face-centered cubic spheres (FCC)
phases were given by Erukhimovich [20] and Fddd phase has been studied by
Ranjan et.al [21]. An alterative approach is directly using the crystal struc-
ture factor to obtain the reciprocal lattice vectors. However, this method
does not tell us the main reciprocal lattice vectors required to expand the
spatially varying functions initially. Maybe, we can use basis functions as
many as possible in the beginning to depict the symmetry of ordered phases,
but it brings more computational burden in adjusting the Fourier coefficients.

Table 1: The initial reciprocal vectors Gmnk of µ−,Gmnk for BCC, FCC, gyroid and Fddd

phases.

Stable Phases The initial reciprocal vectors Gmnk

BCC (011̄), (1̄01), (11̄0), (01̄1̄), (1̄01̄), (1̄1̄0)
FCC (111), (111̄), (11̄1), (11̄1̄), (222), (222̄), (22̄2),

(22̄2̄), (220), (22̄0), (202), (202̄), (022), (022̄)
Gyroid (2̄11), (2̄1̄1̄)∗, (211̄)∗, (21̄1), (12̄1), (121̄)

(1̄2̄1̄)∗, (1̄21)∗, (112̄), (11̄2)∗, (1̄12), (1̄1̄2̄)
Fddd (111), (111̄), (11̄1), (11̄1̄), (220), (22̄0), (004)

“*” denotes the sign of Fourier coefficients is opposite.

In this paper, we restrict our attention to the three-dimension stable
phases, i.e. BCC, FCC, gyroid and Fddd. For these stable ordered phases,
the initial reciprocal vectors of µ−,Gmnk are summarized in Table 1. In view
of centrosymmetry of these phases, we set µ−,Gm̄n̄k̄ = µ−,Gmnk at the same
time. In Landau theory of block copolymer [20, 21], the reciprocal vectors of
FCC phase are {111} (including (111),(111̄), (11̄1), (11̄1̄)), whereas from our
experience, the final structure won’t be the FCC phase if only the vectors
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{111} are used as initial ones. So we use crystal structure factor of Fm3̄m [22]
to get the initial reciprocal vectors, as shown in Table 1. These estimating
initial values are suitable to the weakly-segregated melt. Let the weakly-
segregated results be the initial values, then the ordered phases at strong
segregation can also be discovered. Of course, the approach of estimating
initial values can be extended to real space method if we note Eq. (17).

From another point of view, the symmetric information has been used
to estimate initial values. However, we don’t change the essence feature of
the method that it does not need a priori symmetry information of basis
functions. The approximation space of our method is still the whole space.
Our method can be used to discover new phases. Good initial values will
help us accelerate the process to find the required solutions.

We will give some remarks on this numerical method. The similar nu-
merical method has been applied to the Landau-Brazovsikii model by Zhang
and Zhang [7]. However, it differs from ours. In Landau-Brazovsikii model,
the free energy function is just a function of composition profile, and the
first derivatives of the free energy function with respect to parameters of
computational box can be calculated analytically. Meanwhile, the tactics to
estimate initial values for diblock copolymer melt was not given in [7].

4. Numerical Results

4.1. Efficiency

The efficiency of our method will be shown in the following aspects: the
stable phases can be captured; the computational box can be adjusted auto-
matically and the meta-stable phases can also be discovered. The procedure
II was run on Inter(R) Core(TM)2 Duo 2.66 GHz CPU with memory 2 G.

By applying these initial values above-mentioned and executing Proce-
dure II, the different equilibrium stable phases can be discovered, as is shown
in Fig. 1. The corresponding average time to convergence and the modes re-
quired are given in Table 2.

In order to show that the computational box can be adjusted automat-
ically, we take gyriod phase calculated in an arbitrary box as an example.
Other phases also have similar results. Fig. 2 shows the change tendency of
the length of a1, a2, a3, the corresponding angles of θ1, θ2, θ3. We can find
that computational box converges to a cubic. The final morphology produced
is shown in the third image from left in Fig. 1.
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Figure 1: Stable phases, from left to right, BCC phase when χN = 14.0, f = 0.3; FCC
phase when χN = 17.67, f = 0.235; gyroid phase when χN = 14.0, f = 0.4; Fddd phase
when χN = 12.0, f = 0.43, respectively.

Table 2: Modes required and CPU consuming of stable phases

BCC FCC gyroid Fddd
N 4 5 9 10

CPU time(s) 56 331 504 13378
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Figure 2: The adjustment of computational box during the iteration process.

We also discovered some meta-stable phases by inputting different initial
values. By fixing coordinate χN = 14.0, f = 0.4 and applying our method,
three meta-stable phases have been captured, as shown in Fig. 3. The left
image in Fig. 3 shows BCC3 phase as mentioned in [20]. A space group
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Figure 3: From left to right, three meta-stable phases BCC3, Fd3̄m (space group symme-
try) and perforated-lamellar phase when χN = 14.0, f = 0.4.

symmetry Fd3̄m phase is shown in the middle of Fig. 3. The right diagram
in Fig. 3 shows perforated-lamellar phase.

4.2. Compare with Matsen-Schick’s Method

Now we make some comparisons between Matsen-Schick’s method (MSM)
and our method (SMEP). Before that, we give a brief introduction to MSM.

4.2.1. An introduction to MSM

Here, we just address the differences in Fourier expansion from the stand-
point of numerical computation. MSM is a Spectral-Galerkin method, more
details can be found in [5, 6, 23]. The modified diffusion equation (3) is
expanded as

dqi

ds
=







−R2
gλiD

−2qi −
∑

j,k

ωA,jqkΓijk, 0 ≤ s ≤ f,

−R2
gλiD

−2qi −
∑

j,k

ωB,jqkΓijk, f < s ≤ 1,
(23)

where Γijk = V −1
∫

fi(r)fj(r)fk(r)dr, fi(r), i = 1, 2, 3, ..., are normalized
orthonormal basis functions each possessing the symmetry of the phase ob-
tained in [22], λi is the eigenvalues of the Laplacian operator: ∇2fi(r) =
−λiD

−2fi(r), and D is a length scale for the phase. The reverse propaga-
tor q+(r, s) has the similar expression. The density operators (4-5) can be
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written as

φA,i =
1

q0(1)

∫ f

0

∑

j,k

qjqkΓijk, (24)

φB,i =
1

q0(1)

∫ 1

f

∑

j,k

qjqkΓijk, (25)

It should be noted that the FFT technology can not be used to solve modified
diffusion equations (23) and density functions (24-25) due to the special basis
functions.

In the following, the same iteration process as described in Section 3 was
used for MSM including adjustment of the computational box. However,
the number of computational box parameters to be adjusted depends on the
crystal system, e.g., the length of the side of a cubic crystal, the length of
the three orthogonal edges of an orthorhombic crystal, or the three angles
and three lengths of a triclinic crystal [6]. It differs from SMEP that all the
parameters of computational box can be adjusted freely during the iteration
process.

4.2.2. Comparison results

In the section, we will compare the results of the two type of spectral
methods. We focus our attention on BCC and gyroid phases. Because BCC
and gyroid phases both belong to cubic crystal system, only the length of any
one edge of cubic is adjusted in MSM. In order to compare the two numerical
methods, the same initial conditions. For MSM, the reciprocal vectors (110)
and (211) were set as the initial vectors for BCC phase and gyroid phase,
respectively. The initial reciprocal vectors for SMEP were given in Table 1.
The cubic with length of edge 4.45Rg and length of edge 8.7Rg were set as
the initial computational box for BCC and gyroid phases, respectively, for
both methods. The error tolerance, ε1 and ε2, of these two methods were
both set as 10−4. In calculation, we fixed the coordinates at χN = 14.0,
f = 0.3 for BCC phase and χN = 14.0, f = 0.4 for gyroid phase.

After executing Procedure II, we can obtain the similar images, BCC
and gyroid phases, as shown in Fig. 1 by two methods. The computational
box converges to a cubic in SMEP. A more detailed comparison is map-
ping the Fourier coefficients calculated by SMEP to those corresponding the
Bragg reflections of morphology [22]. We found that the ordered phases, BCC
and gyroid phases, obtained by SMEP belong to corresponding space group,
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Table 3: The magnitude of nonzero Fourier coefficients φA,Gmnk
for BCC and gyroid phases

obtained by MSM and SMEP. The index of reciprocal vector (mnk) includes reciprocal
vectors within a star of point group symmetry m3̄m both for BCC and gyroid phases.

BCC Gyroid
(mnk) MSM SMEP Difference (mnk) MSM SMEP Difference
(000) 0.30000 0.30000 0.00000 (000) 0.40000 0.40000 0.00000
(110) 0.03307 0.03291 0.00016 (211) 0.05373 0.05371 0.00002
(200) 0.00939 0.00932 0.00007 (220) 0.02609 0.02590 0.00019
(211) 0.00225 0.00223 0.00002 (444) 0.00253 0.00248 0.00005
(222) 0.00045 0.00045 0.00000 (611) 0.00203 0.00203 0.00000
(321) 0.00036 0.00036 0.00000 (400) 0.00184 0.00187 0.00003
(310) 0.00036 0.00036 0.00000 (543) 0.00170 0.00166 0.00004
(220) 0.00026 0.00025 0.00001 (440) 0.00142 0.00145 0.00003
(400) 0.00025 0.00023 0.00002 (321) 0.00140 0.00140 0.00000
(330) 0.00018 0.00018 0.00000 (631) 0.00123 0.00122 0.00001
(411) 0.00018 0.00017 0.00001 (541) 0.00120 0.00118 0.00002

... ... ... ... ... ... ... ...

Im3̄m and Ia3̄d, respectively. The result is also consistent with Guo et.al [8].
The deviation of Fourier coefficients of φA,Gmnk

between MSM and SMEP for
BCC and gyroid phases is shown in Table 3. The index of reciprocal vector
(mnk) in Table 3 indicates that the reciprocal vectors is within a star of point
group symmetry m3̄m both for BCC and gyroid phases. Therefore, MSM
and SMEP can calculate the same ordered phases with delicate difference in
Fourier coefficients.

Table 4: Comparison of free energy density and length of edge

BCC gyroid
MSM SMEP MSM SMEP

Energy density -0.561042 -0.561619 -0.266687 -0.269220
Length of edge 4.520909 4.516176 8.726663 8.708911

Table 4 shows the eventually convergent results: the free energy density
and the length of the edge of computational box. From Table 4, we observe
that the free energy density obtained by SMEP is lower than that of MSM.
It might be related with the Fourier coefficients and the computational box.
The derivation in Fourier coefficients between MSM and SMEP is small,
similarly as shown in Table 3. Therefore, the most possible reason is the
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difference of computational box, which is also mentioned in [4, 6]. SMEP can
make free energy density converge to its minimum value easily.

Table 5: The iterations of Procedure I required for various N .

BCC gyroid
N MSM SMEP N MSM SMEP
1 ** 3
2 23 3 2 2 5
3 3 2 3 51 3
4 1 1 4 9 4

5 ** 3
6 ** 3
7 6 2
8 14 2
9 1 1

“**” means that the iterations is more than 200.

Table 5 shows the number of iterations required of Procedure I, including
finding the saddle points of µ± and adjusting the computational box. In
Table 5, we find the method to adjust computational box in SMEP is more
effective than that of MSM according to the number of iterations of Procedure
I. The optimization algorithm of adjusting the computational box may also
affect the number of iterations.

Table 6: The principal relationship between numbers of basis functions of MSM and SMEP

BCC FCC gyroid Fddd
Nm Nx/96 Nx/64 Nx/96 Nx/16

Then, we will give a rough computational complexity analysis. When the
mode number increases to N , the number of Fourier coefficients of SMEP
is Nx ∼ O((2N + 1)3). The computational effort to calculate Eqs. (14-16)
in SMEP is O(NsNxlogNx), where Ns is the number of chain contour steps.
The number of basis functions of MSM, Nm, is determined by the symmetry
and Bravais lattice of a certain space group [22]. The principal relationship
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between numbers of basis functions of two methods is shown in Table 6. How-
ever, the computational effort of MSM to calculate Eqs. (23-25) is O(NsN

2
m).

Therefore, when calculating the modified diffusion equation and density op-
erations, for BCC and gyroid phases, the computational complexity of MSM
is larger than that of SMEP when the modes N is greater than 23. The
conclusion holds when N is greater than 18 for FCC phase or 6 for Fddd.
However, the final computational complexity is heavily dependent on the it-
eration method for updating the field functions and the way to adjust the
computational box.

From MSM and SMEP, we can obtain the same ordered structures that
belong to the corresponding space group for diblock copolymer melt. The
way to adjust the computational box by SMEP removes the constraints of
the size and shape of computational box, which makes the free energy achieve
its minimum value easily and more effective than that of MSM. In strongly-
segregated system, a large number of basis functions are required for captur-
ing the sharp interface [15]. SMEP can reduce the computational complexity
with the FFT technology. SMEP can also relieve the programmers’ burden
because all phases can be calculated by the same code, while MSM need dif-
ferent codes for different phases. Meanwhile, for more complex copolymers,
SMEP can be extended to other topological architecture easily because the
symmetrical information is not required.

5. Conclusion

A novel numerical method, which does not need a priori symmetric in-
formation and can adjust the period structure automatically, is developed
based on SCFT. Here, the method is applied to diblock copolymer system.
Ever though the SCFT equations are nonlinear system and exist the multi-
ple solutions, an efficient method for estimating initial values is given in the
light of symmetrical microstructures of diblock copolymer system. Using the
method, we calculated all stable phases of diblock copolymers discovered in
the experiment, FCC, BCC, cylinder, gyroid, lamellar and Fddd phases and
also captured some metastable phases. We also compared our method with
Matsen-Schick’s method. Numerical examples demonstrate that our method
has some advantages over MSM. Our future work is to apply the current
method to other block copolymer systems based on SCFT as well.
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