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Abstract: In 1957, Hadwiger made a conjecture that every n-dimensional con-
vex body can be covered by 2" translates of its interior. Up to now, this conjec-
ture is open for all n > 3. In this article we encode Hadwiger’s conjecture into
a series of functions defined on the spaces of convex bodies, propose a four-step
program to approach this conjecture, and obtain some partial results.
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1. Introduction

In n-dimensional Fuclidean space E™, let K be a convex body with boundary
O(K), interior int(K) and volume v(K), and let ¢(K) denote the smallest num-
ber of translates of int(K) that their union can cover K. In 1955, Levi [16]
studied ¢(K) for the two-dimensional convex domains and proved that

| 4, if K is a parallelogram,
o(K) = { 3, otherwise.

Let P denote an n-dimensional parallelopiped. Clearly, any translate of int(P)
can not cover two vertices of P. Therefore, it can be deduced that

c(P) = 2™.

Based on these results and some other observations, in 1957 Hadwiger [11]
made the following conjecture: For every n-dimensional convex body K we have

o(K) < 2", (1)

where the equality holds if and only if K is a parallelopiped.
This conjecture has been studied by many authors. In the course, many
partial results have been achieved and several connections with other important
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problems such as the illumination problem and the separation problem have been
discovered (see Bezdek [3], Boltyanski, Martini and Soltan [7], Brass, Moser and
Pach [8] and Zong [24] for general references). For example, Lassak [14] proved
this conjecture for the three-dimensional centrally symmetric case, Rogers and
Zong [19] obtained

2
¢(K) < (:) (nlogn + nloglogn + 5n)

for general n-dimensional convex bodies and
c¢(K) <2™(nlogn + nloglogn + 5n)

for centrally symmetric ones. Nevertheless, we are still far away from the solu-
tion of the conjecture, even the three-dimensional case.

Let m be a positive integer and let v, (K) be the smallest positive number
r such that K can be covered by m translates of 7K. Clearly, we have

Tm(K) =1
for all m < n, and

’Ym(K) > ’Ym-‘rl(K) (2)

for all positive integers m and all convex bodies K.

Let 7™ denote the set of all non-singular linear transformations in E™ and let
K™ denote the space of all n-dimensional convex bodies with the Banach-Mazur
metric defined by

|| K1, Ka|| =log min{r: K; +x CT(K;) CrK; +x; x€ E"; TeT"}.

It is well known that K™ is bounded, connected and compact. On the other hand,
for any given positive integer m, it can be shown that +,,(K) as a function of
K defined on K" is continuous. In addition, we have

Ym (K1) = m(K2)
whenever ||K1, K3|| = 0. Then we define

I(n,m) = max {ym(K)}

and

7(n,m) = min {ym(K)}.

Tt is easy to see that (1) holds for all n-dimensional convex bodies K if and
only if
Yor (K) <1

holds for all K € K™. Therefore, it is equivalent to

I'(n,2") < 1.



Thus, Hadwiger’s conjecture can be encoded in the functions 7, (K) defined on
the space K.

In this article, we suggest a four-step program (Section 3) to approach Had-
wiger’s conjecture and study the values of v, (K) for some particular m and K.
Among other things, the following results are proved:

Theorem 1. Let K be a bounded three-dimensional convex cone (the convex
hull of a convex domain and a point which is not in the plane of the domain),

then we have
18(K) < %

Theorem 2. Let K, be the unit ball of the three-dimensional £, norm,

Kp=A{(z,y,2) : [a]" +[y|’ +|z]" <1}, 1<p< oo,

78 (K) < \/g

2. The two-dimensional case, a brief review

then we have

The values of v(2,m) and T'(2,m) have been studied by several authors. Clearly,

we have
v(2,2) =T(2,2) =T(2,3) =1

and, by considering the area measures,

1

However, for the nontrivial cases, it is not easy to determine the exact values
of v(2,m) and I'(2,m). We list the known results in the following tables.

m 3 4 5
1 1
’7(27 m) % 2 2

Authors | J.F. Belousov [1] | S. Krotoszynski [13] | S. Krotoszynski [13]

m |3 4 516 7 8
r(2,m) |1 2 77| 72 1 1

Authors M. Lassak [15] | ?? | 77 | F.W. Levi [16] | F.W. Levi [16]

Remark 1. By I'(2,2?) = v/2/2 it follows that every two-dimensional convex

domain K can be covered by four translates of QK . As shown in the second
table, the values of T'(2,5) and I'(2,6) have not been determined yet.



3. A four-step program to Hadwiger’s conjecture

Let B™ denote the n-dimensional unit ball centered at the origin, and let X"
denote the set of all convex bodies K satisfying

B" C K CnB". (3)

According to John’s theorem (see [12]), for each n-dimensional convex body K
there is an non-singular linear transformation 7' € 7™ such that

B" CT(K) CnB".
Therefore, we have

I'(n,m) = max ym(K).
Kekn

Definition 1. Let 3 be a positive number, and let K, K», ---, K@) be ()
convex bodies in 7. If for any K € K" there is a corresponding K; satisfying

K, Kil| < 8,
then we call N = {Ky, K>, - -+, K5} a B-net in K"
Remark 2. Defining
B(Ki,p) ={K e K" : ||K, K[| <5},
it is easy to see that N' = {K1, K, ---, Ky5)} is a f-net in K™ if and only if

1(B)
U Bk, 8) = k™.
=1

The philosophy of our program. If Hadwiger’s conjecture is true in E™,
then there is a positive number ¢, < 1 such that

Yan (K) < ¢ (4)

holds for all K € K™. On the other hand, since 72~ (K) is continuous on K7,
there is a positive number § such that

[Y2n (K) = 720 (K")| < 3(1 = cn) ()

holds whenever [|K, K'|| < 8. By (3), we should be able to construct a -net N
in K™ with the assistance of a computer.

A four-step program for Hadwiger’s conjecture.

Step 1. In the considered dimension, for example n = 3, study the values of
van (K) for some particular convex bodies K and therefore choose a suitable
constant ¢, for (4).



Step 2. Choose a suitable positive number § to guarantee (5), based on a close
study on the function va= (K).

Step 3. Based on (3) to construct a suitable S-net /. For example, choose a
well-distributed set {x1,xa2,---,%p} of points on the surface of nB™. For each
point x; we define

Xip ={(G+ 4= 7)xi: j =0k},

Then the set
P = {conv{yl,yz, o aYP} LY € Xz,k}

of polytopes will be a $-net in K», provided both p and k are large enough.
Here, as usual, conv{X} denotes the convex hull of X.

Step 4. By considering several patterns, with the assistance of a computer,
verify that
Yaon (Kz) <cp

holds for all K; € N.

Remark 3. In principle, the conjecture can be proved in E™ by our program
if it is true in this particular dimension and the computing facility is efficient
enough. Clearly the set P can be much reduced in cardinality.

4. The covering functions on K3

In this section, among other things, we will prove Theorem 1 and Theorem 2.
As a consequence, we give some insight to a reasonable estimate for the constant
c3 defined in the previous section. First, let us introduce two lemmas.

Lemma 1 (Besicovitch [2]). Each two-dimensional convex domain has an
inscribed affine regular hexagon.

Remark 4. Affine regular hexagons are the imagines of a regular hexagon
under non-singular linear transformations.

Lemma 2. Let K be a two-dimensional convex domain, let A be a real number
satisfying 0 < X < 1, and let {x1,%X2,%3} be an ordered triple on the boundary
of K. If {x1,%2,%x3} C AK +y, then the whole curve from x; to x3 passing X
belongs to AK +y.

Proof. For convenience, we assume that o € int(K) and y = (0,a). It is well
known in convexity (see Eggleston [9]) that the set of regular convexr domains
(each tangent touches K at exactly one point and there is one and only one
tangent at each boundary point) is dense in KX2. Therefore, without loss of
generality, we assume that K is regular.

Let x; = (21,y1) and x3 = (23,y3) denote the points of I(K) N (AK +y)
with maximal and minimal x-coordinates, respectively. Let y = f(x) denote
the curve of §(K) from x3 to x3, and let y = g(x) denote the above part of



O(AK) +y in the strip of z3 < z < x1. By convexity, as shown in Figure 1, we
have

g(x3) > f(z3),
g(x1) > f(=1),
g'(z) = f'(52) > f'(=)

for z3 <z <0, and

for 0 < x < x1. Thus, we get

o) = §(@) = glos) = f(ae) + [ @) = F@)dt >0

z3

when z3 < x <0, and

9(@) - (@) = g(@1) — flar) + / (F(0) - g )t > 0

when 0 < z < x1. Therefore, by convexity, the whole curve y = f(z) belongs to
AK +y. The lemma is proved. &

Corollary 1. Let K be an n-dimensional convex body, A\ be a real number
satisfying 0 < A < 1, R be a closed region on O(K) with boundary T and a
relatively interior point p. If

Tu{p} CAK +y
holds for some point 'y, then we have

R CAMK +y.

Proof of Theorem 1. Let K be a three-dimensional cone over a convex
domain D. By Lemma 1, there is an affine regular hexagon H inscribed in D.
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Figure 3

Without loss of generality, we assume that v = (0,0, 1) is the vertex of K, H is
perpendicular to v and centered at the origin o = (0,0, 0).

Let vy, vo, - -+, vg be the six vertices of H and let m;, m,, - --, mg denote
the midpoints of viva, vavs, - -+, vgVvy, respectively. By elementary argument,
as shown in Figure 2, we have

{2vi, 3w} 1D+ 3,
Thus, by Lemma 2 we get

6
%D+%v§U(%D+%mi+%v), (6)
=0

where mgy = (0,0,0). Similarly, as shown in Figure 3, we have
{Vl,Vz} C %D + %ml
and therefore .
Dc|J(ED+2m). (7)
i=0
On the other hand, we have

tD+2m;+ivC 2K+ 2m; (8)



and
%D + %mz C %K + %m, 9)
Therefore, by (6), (7), (8), (9) and convexity we get

7
Kc|JGK+3m),
1=0

where my; = %v. Theorem 1 is proved. &

Proof of Theorem 2.
Case 1. 1 < p < 2. In this case, we take

=

I'=

—N

L x €Ky},

x = (z1,%2,23) : T1 = (%)

e

A=4/2,y=((3)7,0,0), and let R denote the part of d(K,) bounded by T
and containing (1,0, 0).
For any point x € I', we have

1 1\P
((§)p) + |z2|” + |2sP =1,

p
P +lasP = < (3)

FCAK,+y.
On the other hand, it can be verified that

and therefore

(1,0,0) € AK, +y.

By Corollary 1 we have
RC MK, +y.

Therefore, in this case K, can be covered by the union of AK, + ((%)%,O, 0),
AK, + (0, (%)%,0) and \K,, + (0,0,(%)%) and thus

8 (Ky) < 16(K,) < /2.
Case 2. 2 < p < c0. In this case we define
I ={x=(x1,22,23): =0, ; >0,j #14, x € I(Kp)},
r=r, Ul ulsy,

A=4/2,y=(3%,3), and let R denote the part of 8(K,) bounded by T' and

containing the point ((1)7, (3)7,(1)7).



Let J denote the intersection of K, with the plane z; = 0, and let J' denote
the intersection of AKX, +y with the plane. It is easy to see that J' is homothetic
to J. By a routine computation, for all 2 < p < 400, it can be shown that

(3)+2(5)"<(3)*.
Thus, both (0,1,0) and (0,0,1) belong to J'. Consequently, we also have
(0,37, (7).

By Lemma 2, we get
I'TCJ CAKp+y

and therefore
I'CAK,+Yy.

On the other hand, it can be verified that o € AK, +y,

3((B)7-1)" < 3"

and therefore

s =

)

RCAK, +y.

W=

[(1)7) €Ak, +y.

()7

By Corollary 1 we get

Thus, in this case K, can be covered by the union of the eight translates \/g K,+

(+3,+%,+3) and hence
78(Kp) < \/g

As a conclusion of the two cases, Theorem 2 is proved. &

Remark 5. It was shown by Schiitte [21] that
18 (K) < sind8°0 = 0.744894 - < /2.

Thus, following the proof of Theorem 2 we can get that \/g is not the optimal

upper bound for s(K,). However, perhaps one can take ¢z = %

Remark 6. Let T denote a regular tetrahedron. The next table lists the values
of ¥ (K) for some small m and some particular K, where the values of v4(K>)
and ~(K3) were discovered by L. Fejes Té6th [10] and the values of v5(K3) and
~v7(K3) were discovered by Schiitte [21].

Remark 7. If Hadwiger’s conjecture is true for all dimensions, then we have
I'(n,2™) <1
for all n. Nevertheless, it seems that

lim I'(n,2") =1.

n—oo



m 4 5 6 7 8
Y (T) : i3 ? ? ?
Ym (K1) 1 1 3 3 3
vm(K2) | 0.9428 - | 0.8944-.. | 0.8164--- | 0.7775--- | ?
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