A quantitative approach to Hadwiger's covering conjecture¹

Chuanming ZONG

LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China

(Email: cmzong@math.pku.edu.cn)

Dedicated to Professor Yuan Wang on the occasion of his 80th birthday

Abstract: In 1957, Hadwiger made a conjecture that every n-dimensional convex body can be covered by 2^n translates of its interior. Up to now, this conjecture is open for all $n \geq 3$. In this article we encode Hadwiger's conjecture into a series of functions defined on the spaces of convex bodies, propose a four-step program to approach this conjecture, and obtain some partial results.

Keywords: convex body, Hadwiger's conjecture, illumination problem, separation problem, Banach-Mazur metric, β -net

MSC (2000): 52C17; 11H31

1. Introduction

In n-dimensional Euclidean space E^n , let K be a convex body with boundary $\partial(K)$, interior int(K) and volume v(K), and let c(K) denote the smallest number of translates of int(K) that their union can cover K. In 1955, Levi [16] studied c(K) for the two-dimensional convex domains and proved that

$$c(K) = \left\{ \begin{array}{ll} 4, & \text{if K is a parallelogram,} \\ 3, & \text{otherwise.} \end{array} \right.$$

Let P denote an n-dimensional parallelopiped. Clearly, any translate of int(P) can not cover two vertices of P. Therefore, it can be deduced that

$$c(P) = 2^n$$
.

Based on these results and some other observations, in 1957 Hadwiger [11] made the following conjecture: For every n-dimensional convex body K we have

$$c(K) \le 2^n,\tag{1}$$

where the equality holds if and only if K is a parallelopiped.

This conjecture has been studied by many authors. In the course, many partial results have been achieved and several connections with other important

 $^{^1\}mathrm{This}$ work is supported by the National Science Foundation of China, a 973 Project and the Chang Jiang Scholars Program.

problems such as the *illumination problem* and the *separation problem* have been discovered (see Bezdek [3], Boltyanski, Martini and Soltan [7], Brass, Moser and Pach [8] and Zong [24] for general references). For example, Lassak [14] proved this conjecture for the three-dimensional centrally symmetric case, Rogers and Zong [19] obtained

$$c(K) \le \binom{2n}{n} (n\log n + n\log\log n + 5n)$$

for general n-dimensional convex bodies and

$$c(K) \le 2^n (n \log n + n \log \log n + 5n)$$

for centrally symmetric ones. Nevertheless, we are still far away from the solution of the conjecture, even the three-dimensional case.

Let m be a positive integer and let $\gamma_m(K)$ be the smallest positive number r such that K can be covered by m translates of rK. Clearly, we have

$$\gamma_m(K) = 1$$

for all $m \leq n$, and

$$\gamma_m(K) \ge \gamma_{m+1}(K) \tag{2}$$

for all positive integers m and all convex bodies K.

Let \mathcal{T}^n denote the set of all non-singular linear transformations in E^n and let \mathcal{K}^n denote the space of all *n*-dimensional convex bodies with the *Banach-Mazur* metric defined by

$$||K_1, K_2|| = \log \min \{r : K_1 + \mathbf{x} \subseteq T(K_2) \subseteq rK_1 + \mathbf{x}; \mathbf{x} \in E^n; T \in \mathcal{T}^n \}.$$

It is well known that K^n is bounded, connected and compact. On the other hand, for any given positive integer m, it can be shown that $\gamma_m(K)$ as a function of K defined on K^n is continuous. In addition, we have

$$\gamma_m(K_1) = \gamma_m(K_2)$$

whenever $||K_1, K_2|| = 0$. Then we define

$$\Gamma(n,m) = \max_{K \in \mathcal{K}^n} \{ \gamma_m(K) \}$$

and

$$\gamma(n,m) = \min_{K \in \mathcal{K}^n} \{ \gamma_m(K) \}.$$

It is easy to see that (1) holds for all n-dimensional convex bodies K if and only if

$$\gamma_{2^n}(K) < 1$$

holds for all $K \in \mathcal{K}^n$. Therefore, it is equivalent to

$$\Gamma(n,2^n) < 1.$$

Thus, Hadwiger's conjecture can be encoded in the functions $\gamma_m(K)$ defined on the space \mathcal{K}^n .

In this article, we suggest a four-step program (Section 3) to approach Hadwiger's conjecture and study the values of $\gamma_m(K)$ for some particular m and K. Among other things, the following results are proved:

Theorem 1. Let K be a bounded three-dimensional convex cone (the convex hull of a convex domain and a point which is not in the plane of the domain), then we have

$$\gamma_8(K) \leq \frac{2}{3}$$
.

Theorem 2. Let K_p be the unit ball of the three-dimensional ℓ_p norm,

$$K_p = \{(x, y, z) : |x|^p + |y|^p + |z|^p \le 1\}, \quad 1 \le p \le +\infty,$$

then we have

$$\gamma_8(K) \le \sqrt{\frac{2}{3}}$$
.

2. The two-dimensional case, a brief review

The values of $\gamma(2,m)$ and $\Gamma(2,m)$ have been studied by several authors. Clearly, we have

$$\gamma(2,2) = \Gamma(2,2) = \Gamma(2,3) = 1$$

and, by considering the area measures,

$$\gamma(2,m) \ge \frac{1}{\sqrt{m}}.$$

However, for the nontrivial cases, it is not easy to determine the exact values of $\gamma(2, m)$ and $\Gamma(2, m)$. We list the known results in the following tables.

m	3	4	5	
$\gamma(2,m)$	$\frac{2}{3}$	$\frac{1}{2}$	$\frac{1}{2}$	
Authors	J.F. Belousov [1]	S. Krotoszynski [13]	S. Krotoszynski [13]	

m	3	4	5	6	7	8
$\Gamma(2,m)$	1	$\frac{\sqrt{2}}{2}$??	??	$\frac{1}{2}$	$\frac{1}{2}$
Authors		M. Lassak [15]	??	??	F.W. Levi [16]	F.W. Levi [16]

Remark 1. By $\Gamma(2, 2^2) = \sqrt{2}/2$ it follows that every two-dimensional convex domain K can be covered by four translates of $\frac{\sqrt{2}}{2}K$. As shown in the second table, the values of $\Gamma(2,5)$ and $\Gamma(2,6)$ have not been determined yet.

3. A four-step program to Hadwiger's conjecture

Let B^n denote the *n*-dimensional unit ball centered at the origin, and let $\overline{\mathcal{K}^n}$ denote the set of all convex bodies K satisfying

$$B^n \subseteq K \subseteq nB^n. \tag{3}$$

According to John's theorem (see [12]), for each n-dimensional convex body K there is an non-singular linear transformation $T \in \mathcal{T}^n$ such that

$$B^n \subseteq T(K) \subseteq nB^n$$
.

Therefore, we have

$$\Gamma(n,m) = \max_{K \in \overline{\mathcal{K}^n}} \gamma_m(K).$$

Definition 1. Let β be a positive number, and let $K_1, K_2, \dots, K_{l(\beta)}$ be $l(\beta)$ convex bodies in $\overline{K^n}$. If for any $K \in \overline{K^n}$ there is a corresponding K_i satisfying

$$||K, K_i|| < \beta$$
,

then we call $\mathcal{N} = \{K_1, K_2, \cdots, K_{l(\beta)}\}$ a β -net in $\overline{\mathcal{K}^n}$.

Remark 2. Defining

$$\mathcal{B}(K_i, \beta) = \{ K \in \mathcal{K}^n : ||K, K_i|| \le \beta \},$$

it is easy to see that $\mathcal{N} = \{K_1, K_2, \cdots, K_{l(\beta)}\}$ is a β -net in \mathcal{K}^n if and only if

$$\bigcup_{i=1}^{l(\beta)} \mathcal{B}(K_i, \beta) = \mathcal{K}^n.$$

The philosophy of our program. If Hadwiger's conjecture is true in E^n , then there is a positive number $c_n < 1$ such that

$$\gamma_{2^n}(K) \le c_n \tag{4}$$

holds for all $K \in \overline{\mathbb{K}^n}$. On the other hand, since $\gamma_{2^n}(K)$ is continuous on $\overline{\mathbb{K}^n}$, there is a positive number β such that

$$|\gamma_{2^n}(K) - \gamma_{2^n}(K')| \le \frac{1}{2}(1 - c_n) \tag{5}$$

holds whenever $||K, K'|| \leq \beta$. By (3), we should be able to construct a β -net \mathcal{N} in $\overline{\mathcal{K}^n}$ with the assistance of a computer.

A four-step program for Hadwiger's conjecture.

Step 1. In the considered dimension, for example n=3, study the values of $\gamma_{2^n}(K)$ for some particular convex bodies K and therefore choose a suitable constant c_n for (4).

Step 2. Choose a suitable positive number β to guarantee (5), based on a close study on the function $\gamma_{2^n}(K)$.

Step 3. Based on (3) to construct a suitable β -net \mathcal{N} . For example, choose a well-distributed set $\{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_p\}$ of points on the surface of nB^n . For each point \mathbf{x}_i we define

$$X_{i,k} = \left\{ \left(\frac{1}{n} + \frac{j}{k} \left(1 - \frac{1}{n} \right) \right) \mathbf{x}_i : j = 0, \dots, k \right\}.$$

Then the set

$$\mathcal{P} = \{conv\{\mathbf{y}_1, \mathbf{y}_2, \cdots, \mathbf{y}_p\} : \mathbf{y}_i \in X_{i,k}\}$$

of polytopes will be a β -net in $\overline{\mathcal{K}^n}$, provided both p and k are large enough. Here, as usual, $conv\{X\}$ denotes the convex hull of X.

Step 4. By considering several patterns, with the assistance of a computer, verify that

$$\gamma_{2^n}(K_i) \le c_n$$

holds for all $K_i \in \mathcal{N}$.

Remark 3. In principle, the conjecture can be proved in E^n by our program if it is true in this particular dimension and the computing facility is efficient enough. Clearly the set \mathcal{P} can be much reduced in cardinality.

4. The covering functions on \mathcal{K}^3

In this section, among other things, we will prove Theorem 1 and Theorem 2. As a consequence, we give some insight to a reasonable estimate for the constant c_3 defined in the previous section. First, let us introduce two lemmas.

Lemma 1 (Besicovitch [2]). Each two-dimensional convex domain has an inscribed affine regular hexagon.

Remark 4. Affine regular hexagons are the imagines of a regular hexagon under non-singular linear transformations.

Lemma 2. Let K be a two-dimensional convex domain, let λ be a real number satisfying $0 < \lambda < 1$, and let $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ be an ordered triple on the boundary of K. If $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\} \subset \lambda K + \mathbf{y}$, then the whole curve from \mathbf{x}_1 to \mathbf{x}_3 passing \mathbf{x}_2 belongs to $\lambda K + \mathbf{y}$.

Proof. For convenience, we assume that $\mathbf{o} \in int(K)$ and $\mathbf{y} = (0, a)$. It is well known in convexity (see Eggleston [9]) that the set of regular convex domains (each tangent touches K at exactly one point and there is one and only one tangent at each boundary point) is dense in K^2 . Therefore, without loss of generality, we assume that K is regular.

Let $\mathbf{x}_1 = (x_1, y_1)$ and $\mathbf{x}_3 = (x_3, y_3)$ denote the points of $\partial(K) \cap (\lambda K + \mathbf{y})$ with maximal and minimal x-coordinates, respectively. Let y = f(x) denote the curve of $\partial(K)$ from \mathbf{x}_3 to \mathbf{x}_1 , and let y = g(x) denote the above part of

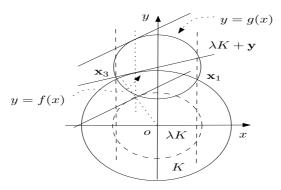


Figure 1

 $\partial(\lambda K) + \mathbf{y}$ in the strip of $x_3 \leq x \leq x_1$. By convexity, as shown in Figure 1, we have

$$g(x_3) \ge f(x_3),$$

$$g(x_1) \ge f(x_1),$$

$$g'(x) = f'(\frac{1}{\lambda}x) \ge f'(x)$$

for $x_3 \le x \le 0$, and

$$g'(x) = f'(\frac{1}{\lambda}x) \le f'(x)$$

for $0 \le x \le x_1$. Thus, we get

$$g(x) - f(x) = g(x_3) - f(x_3) + \int_{x_2}^{x} (g'(t) - f'(t))dt \ge 0$$

when $x_3 \leq x \leq 0$, and

$$g(x) - f(x) = g(x_1) - f(x_1) + \int_0^x (f'(t) - g'(t))dt \ge 0$$

when $0 \le x \le x_1$. Therefore, by convexity, the whole curve y = f(x) belongs to $\lambda K + \mathbf{y}$. The lemma is proved.

Corollary 1. Let K be an n-dimensional convex body, λ be a real number satisfying $0 < \lambda < 1$, R be a closed region on $\partial(K)$ with boundary Γ and a relatively interior point \mathbf{p} . If

$$\Gamma \cup \{\mathbf{p}\} \subset \lambda K + \mathbf{y}$$

holds for some point y, then we have

$$R \subset \lambda K + \mathbf{y}$$
.

Proof of Theorem 1. Let K be a three-dimensional cone over a convex domain D. By Lemma 1, there is an affine regular hexagon H inscribed in D.

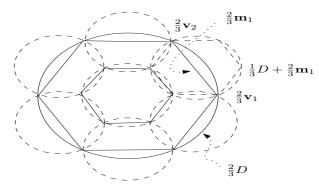


Figure 2

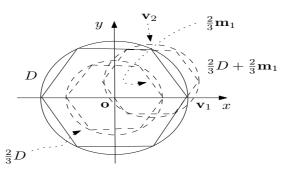


Figure 3

Without loss of generality, we assume that $\mathbf{v} = (0, 0, 1)$ is the vertex of K, H is perpendicular to \mathbf{v} and centered at the origin $\mathbf{o} = (0, 0, 0)$.

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_6$ be the six vertices of H and let $\mathbf{m}_1, \mathbf{m}_2, \dots, \mathbf{m}_6$ denote the midpoints of $\mathbf{v}_1\mathbf{v}_2, \mathbf{v}_2\mathbf{v}_3, \dots, \mathbf{v}_6\mathbf{v}_1$, respectively. By elementary argument, as shown in Figure 2, we have

$$\left\{\frac{2}{3}\mathbf{v}_1, \frac{2}{3}\mathbf{v}_2\right\} \subset \frac{1}{3}D + \frac{2}{3}\mathbf{m}_1.$$

Thus, by Lemma 2 we get

$$\frac{2}{3}D + \frac{1}{3}\mathbf{v} \subseteq \bigcup_{i=0}^{6} \left(\frac{1}{3}D + \frac{2}{3}\mathbf{m}_i + \frac{1}{3}\mathbf{v}\right), \tag{6}$$

where $\mathbf{m}_0 = (0, 0, 0)$. Similarly, as shown in Figure 3, we have

$$\{\mathbf{v}_1,\mathbf{v}_2\} \subset \frac{2}{3}D + \frac{2}{3}\mathbf{m}_1$$

and therefore

$$D \subseteq \bigcup_{i=0}^{6} \left(\frac{2}{3}D + \frac{2}{3}\mathbf{m}_i\right). \tag{7}$$

On the other hand, we have

$$\frac{1}{3}D + \frac{2}{3}\mathbf{m}_i + \frac{1}{3}\mathbf{v} \subset \frac{2}{3}K + \frac{2}{3}\mathbf{m}_i \tag{8}$$

and

$$\frac{2}{3}D + \frac{2}{3}\mathbf{m}_i \subset \frac{2}{3}K + \frac{2}{3}\mathbf{m}_i. \tag{9}$$

 \Diamond

Therefore, by (6), (7), (8), (9) and convexity we get

$$K \subseteq \bigcup_{i=0}^{7} \left(\frac{2}{3}K + \frac{2}{3}\mathbf{m}_i\right),$$

where $\mathbf{m}_7 = \frac{1}{2}\mathbf{v}$. Theorem 1 is proved.

Proof of Theorem 2.

Case 1. $1 \le p \le 2$. In this case, we take

$$\Gamma = \left\{ \mathbf{x} = (x_1, x_2, x_3) : x_1 = \left(\frac{1}{3}\right)^{\frac{1}{p}}, \mathbf{x} \in \partial(K_p) \right\},\,$$

 $\lambda = \sqrt{\frac{2}{3}}$, $\mathbf{y} = ((\frac{1}{3})^{\frac{1}{p}}, 0, 0)$, and let R denote the part of $\partial(K_p)$ bounded by Γ and containing (1, 0, 0).

For any point $\mathbf{x} \in \Gamma$, we have

$$\left(\left(\frac{1}{3} \right)^{\frac{1}{p}} \right)^p + |x_2|^p + |x_3|^p = 1,$$

$$|x_2|^p + |x_3|^p = \frac{2}{3} \le \left(\sqrt{\frac{2}{3}}\right)^p$$

and therefore

$$\Gamma \subset \lambda K_p + \mathbf{y}$$
.

On the other hand, it can be verified that

$$(1,0,0) \in \lambda K_p + \mathbf{y}.$$

By Corollary 1 we have

$$R \subset \lambda K_n + \mathbf{y}$$
.

Therefore, in this case K_p can be covered by the union of $\lambda K_p \pm \left(\left(\frac{1}{3} \right)^{\frac{1}{p}}, 0, 0 \right)$, $\lambda K_p \pm \left(0, \left(\frac{1}{3} \right)^{\frac{1}{p}}, 0 \right)$ and $\lambda K_p \pm \left(0, 0, \left(\frac{1}{3} \right)^{\frac{1}{p}} \right)$ and thus

$$\gamma_8(K_p) \le \gamma_6(K_p) \le \sqrt{\frac{2}{3}}.$$

Case 2. $2 \le p \le \infty$. In this case we define

$$\Gamma_i = \{ \mathbf{x} = (x_1, x_2, x_3) : x_i = 0, x_j \ge 0, j \ne i, \mathbf{x} \in \partial(K_p) \},$$

$$\Gamma = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3,$$

 $\lambda = \sqrt{\frac{2}{3}}$, $\mathbf{y} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$, and let R denote the part of $\partial(K_p)$ bounded by Γ and containing the point $((\frac{1}{3})^{\frac{1}{p}}, (\frac{1}{3})^{\frac{1}{p}}, (\frac{1}{3})^{\frac{1}{p}})$.

Let J denote the intersection of K_p with the plane $x_1 = 0$, and let J' denote the intersection of $\lambda K_p + \mathbf{y}$ with the plane. It is easy to see that J' is homothetic to J. By a routine computation, for all $2 \le p \le +\infty$, it can be shown that

$$\left(\frac{2}{3}\right)^p + 2\left(\frac{1}{3}\right)^p \le \left(\frac{2}{3}\right)^{\frac{p}{2}}.$$

Thus, both (0,1,0) and (0,0,1) belong to J'. Consequently, we also have

$$\left(0, (\frac{1}{2})^{\frac{1}{p}}, (\frac{1}{2})^{\frac{1}{p}}\right) \in J'.$$

By Lemma 2, we get

$$\Gamma_1 \subset J' \subset \lambda K_p + \mathbf{y}$$

and therefore

$$\Gamma \subset \lambda K_p + \mathbf{y}$$
.

On the other hand, it can be verified that $\mathbf{o} \in \lambda K_p + \mathbf{y}$,

$$3\left(\left(\frac{1}{3}\right)^{\frac{1}{p}} - \frac{1}{3}\right)^p \le \left(\frac{2}{3}\right)^{\frac{p}{2}}$$

and therefore

$$\left(\left(\frac{1}{3}\right)^{\frac{1}{p}},\left(\frac{1}{3}\right)^{\frac{1}{p}},\left(\frac{1}{3}\right)^{\frac{1}{p}}\right) \in \lambda K_p + \mathbf{y}.$$

By Corollary 1 we get

$$R \subset \lambda K_p + \mathbf{y}$$
.

Thus, in this case K_p can be covered by the union of the eight translates $\sqrt{\frac{2}{3}}K_p + (\pm \frac{1}{3}, \pm \frac{1}{3}, \pm \frac{1}{3})$ and hence

$$\gamma_8(K_p) \leq \sqrt{\frac{2}{3}}$$
.

 \Diamond

As a conclusion of the two cases, Theorem 2 is proved.

Remark 5. It was shown by Schütte [21] that

$$\gamma_8(K_2) \le \sin 48^{\circ}9' = 0.744894 \dots < \sqrt{\frac{2}{3}}$$

Thus, following the proof of Theorem 2 we can get that $\sqrt{\frac{2}{3}}$ is not the optimal upper bound for $\gamma_8(K_p)$. However, perhaps one can take $c_3 = \sqrt{\frac{2}{3}}$.

Remark 6. Let T denote a regular tetrahedron. The next table lists the values of $\gamma_m(K)$ for some small m and some particular K, where the values of $\gamma_4(K_2)$ and $\gamma_6(K_2)$ were discovered by L. Fejes Tóth [10] and the values of $\gamma_5(K_2)$ and $\gamma_7(K_2)$ were discovered by Schütte [21].

Remark 7. If Hadwiger's conjecture is true for all dimensions, then we have

$$\Gamma(n,2^n)<1$$

for all n. Nevertheless, it seems that

$$\lim_{n\to\infty}\Gamma(n,2^n)=1.$$

	m	4	5	6	7	8
	$\gamma_m(T)$	$\frac{3}{4}$	$\frac{9}{13}$?	?	?
^	$\gamma_m(K_1)$	1	1	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{2}{3}$
	$\gamma_m(K_2)$	0.9428 · · ·	$0.8944\cdots$	$0.8164\cdots$	$0.7775 \cdots$?

References

- [1] J.F. Belousov, Theorems on the covering of plane figures, *Ukrain. Geom.* Sb. 20 (1977), 10-17.
- [2] A.S. Besicovitch, Measure of asymmetry of convex curves, *J. London Math. Soc.* **23** (1948), 237-240.
- [3] K. Bezdek, The illumination conjecture and its extensions, *Period. Math. Hungar.* **53** (2006), 59-69.
- [4] K. Bezdek and T. Bisztriczky, A proof of Hadwiger's covering conjecture for dual cyclic polytopes, *Geom. Dedicata* **68** (1997), 29-41.
- [5] V. Boltyanski, Solution of the illumination problem for bodies with mdM = 2, Discrete Comput. Geom. **26** (2001), 527-541.
- [6] V. Boltyanski and H. Martini, Illumination of direct vector sums of convex bodies, *Studia Sci. Math. Hungar.* 44 (2007), 367-376.
- [7] V.G. Boltyanski, H. Martini and P.S. Soltan, Excursions into Combinatorial Geometry, Springer-Verlag, Berlin, 1997.
- [8] P. Brass, W. Moser and J. Pach, Research Problems in Discrete Geometry, Springer-Verlag, New York, 2005.
- [9] H.G. Eggleston, Convexity, Cambridge University Press, Cambridge, 1958.
- [10] L. Fejes Tóth, Kreisüberdeckungen der hyperbolischen Ebene, Acta Math. Acad. Sci. Hungar. 4 (1953), 111-114.
- [11] H. Hadwiger, Ungelöste Probleme No. 20, Elem. Math. 12 (1957), 121.
- [12] F. John, Extremum problems with inequalities as subsidiary conditions, *Courant Anniversary Volume*, Interscience, New York, 1948, 187-204.
- [13] S. Krotoszynski, Covering a plane convex body with five smaller homothetical copies, *Beiträge Algebra Geom.* **25** (1987), 171-176.
- [14] M. Lassak, Solution of Hadwiger's covering problem for centrally symmetric convex bodies in E^3 , J. London Math. Soc. **30** (1984), 501-511.

- [15] M. Lassak, Covering a plane convex body by four homothetical copies with the smallest positive ratio, *Geom. Dedicata* **21** (1986), 157-167.
- [16] F.W. Levi, Ein geometrisches Überdeckungsproblem, Arch. Math. 5 (1954), 476-378.
- [17] H. Martini and V. Soltan, Combinatorial problems on the illumination of convex bodies, *Aeguationes Math.* 57 (1999), 121-152.
- [18] I. Papadoperakis, An estimate for the problem of illumination of the boundary of a convex body in E^3 , Geom. Dedicata, **75** (1999), 275-285.
- [19] C.A. Rogers and C. Zong, Covering convex bodies by translates of convex bodies, *Mathematika*, **44** (1997), 215-218.
- [20] O. Schramm, Illuminating sets of constant width, *Mathematika* **35** (1988), 180-189.
- [21] K. Schütte, Überdeckungen der Kugel mit höchstens acht Kreisen, *Math. Ann.* **129** (1955), 181-186.
- [22] I. Talata, Solution of Hadwiger-Levi's covering problem for duals of cyclic 2k-polytopes, Geom. Dedicata 74 (1999), 61-71.
- [23] C. Zong, Some remarks concerning kissing numbers, blocking numbers and covering numbers, *Period. Math. Hungar.* **30** (1995), 233-238.
- [24] C. Zong, The kissing number, blocking number and covering number of a convex body, *Contemp. Math.* **453** (2008), 529-548.