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The conventionally used Modified Self-consistent Field Theory (MSCFT) for confined

system is known to have two major difficulties: numerical instability and too many artificial

constrains. Here we propose a modified Compressible Model based Selft-consistent Field

Theory (CMSCFT), which has no artificial constrains and gives satisfactory simulations of

all known hard-surface effects including surface depletion, surface density oscillation, and

surface segregation. We also show that CMSCFT converges to conventional Self-consistent

Field Theory (SCFT) when compressibility tends to zero. Therefore, we suggest that

CMSCFT will be a promising tool when dealing with copolymer systems with hard surface

confinements.

Keywords: Compressible Model; Boundary Layer; Boundary Effect.

INTRODUCTION

Self-assembly behavior of block polymers is an effective and efficient method to create

structures at nanometer scale which encourages various potential applications including

lithographic templates for nano-wires, photonics crystals, and high-density magnetic storage

media [1]. As a consequence, block polymers have been the focus of academic community

in the past decades. Until recently, plenty of great improvements have been achieved and

SCFT is proved to be one of the most powerful tools that successfully characterizes block

copolymer melt system without confinements [2–5].

However, things become much more complicated when we consider confinement effects

which can influence self-assembly behaviors in the bulk [6, 7]. Asakura and Oosawa [8]

suggested long ago that the loss of configurational entropy of polymers in the proximity

to the hard wall should lead to a strong steric repulsion called “entropy repulsion”, giving

rise to the depletion of density profile near surface. The competition between the packing

constraints and the loss of configurational entropy in the vicinity of the hard wall leads to

more complicated polymer interfacial behavior, e.g. surface depletion [9, 10], surface density

oscillation [11, 13], and surface segregation [14]. Thus, the behavior of polymer melts at

hard surfaces requires much more efforts than simple liquids.

Confinement effects of copolymer melt are also associated with many scientific challenges

and technological applications [15], and have drawn increasing interest in the community.
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The interest in this field can date back to 1979, when Joany et al. first obtained the density

profile of polymer solutions [16] by mean-field theory. This result was later confirmed by

Allain’s direct optical observation, and the profile is shown to be expressed as the square of

a hyperbolic tangent [9]:

𝜌(𝑥) = tanh2
(𝑥
𝛿

)
, (1)

where 𝛿 is the depletion layer thickness. It is striking to note that, Eq. (1) is exactly

the same as the profile established by Van der Waals for the interface between the co-

existing fluid phases of a binary mixture in 1894 [17]. Later on, J. N. Israelachvili and

coworkers performed measurements of equilibrium surfaces force of various systems: poly-

dimethylsiloxane (PDMS) with up to 50 monomer units per molecule [18], and two samples

of liquid polybutadienes (PB) with about 𝑛 ≈ 20 and 𝑛 ≈ 65 segments [13]. In the case

of PDMS, experiment shows large oscillations of the surface force when the distance (called

𝐷) between two mica surface is below ∼ 5𝑛𝑚. However, the two PB samples show sim-

ply steeply repulsive force: effectively an impenetrable “hard wall” at 𝐷 ≈ 3.0𝑛𝑚 and

𝐷 ≈ 3.7𝑛𝑚, respectively. These results reveal much important information about surface

force of confined copolymer melt systems, though the force law in the area closer to 𝐷 = 0,

e.g. 𝐷 ∈ (0, 3𝑛𝑚), has not been established yet. Furthermore, a review of recent exper-

imental work about polymer-induced forces near hard surfaces was given by Kleshchanok

et al. [19], where limited theoretical work about surface potential was also mentioned. In

Kleshchanok’s review, the Derjaguin approximation [20, 21] is highly regarded as a powerful

tool computing potential near more complicated surfaces, e.g. sphere and cylinder.

Simultaneously, plenty of computational simulations were also devoted to confinement

effects. Monte Carlo simulations were first studied by Kikuchi and Binder [22]. Later,

Matsen developed a Modified Self-consistent Field Theory (MSCFT) for confined copolymer

systems [23]. In the framework of conventional SCFT, incompressibility constraint requires

the total polymer segmental density to be uniform (normalized as 1 in volume fraction).

However, hard wall constraint requires the polymer density to vanish at the surface. In Ref

[23], Matsen generalized this incompressibility condition, and enforced the total segment

density to an arbitrarily predesigned profile 𝜙0 which continuously increases from 0 to 1

in the vicinity of the boundary. This method was widely used in the subsequent research:

just like Matsen, Geisinger et al. used cosine-shape profile to examine the phase stability
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[24]; Chen and Fredrickson adopted a linear profile in ABC triblock thin film [25]; Li et

al. chose a “step-function” profile under cylinder confinement [26]. Unfortunately, this

widely used method have some inherent problems, such as numerical instability as well as

the incorporation of arbitrary profiles. Although Q. Wang et al. recently tried to amend

the method by selecting a “best” profile that reduces numerical instability, it is hard to say

that they have got a truly physical profile [27]. In addition, in Q. Wang’s paper, boundary

layer thickness is so artificial that no rule is known to fix it. Finally, it is improper to guess

“suitable” profile for various block copolymer melt systems. In light of these difficulties,

we propose this CMSCFT, in the hope that it can be a useful improvement to the current

theory.

In the present paper, we introduce Helfand’s harmonic penalty function [28] in compress-

ible SCFT framework, and use it to examine all boundary effects thoroughly. We should

mention that, this idea is inspired from the compressible model of homopolyer solution in

Fredrickson’s monograph [29]. All parameters in CMSCFT have clear physical backgrounds.

Boundary potentials are constructed through physical analysis and experimental inspiration

from Israelachvili et al. [13, 18, 19]. Compressibility 1/𝜁 can also be fixed by comparing

numerical simulations and experimental measurements. The boundary layer profile from our

simulations has a good agreement with experimental results [9] and emprical formula (1).

Finally, our simulation describes all known hard surface effects: surface density depletion,

oscillation, and surface segregation. The rest of this article is organized as follows: in Sec.

II, we introduce Compressible Model and numerical method; Sec. III shows the CMSCFT

simulations of boundary effects, and comparison with similar or relative works is also given;

concluding remarks are given in Sec. IV.

COMPRESSIBLE MODEL

Suppose the AB diblock copolymer melt system, called 𝑹, has 𝑛 copolymers which de-

scribed as Gaussian chains 𝑟𝑗(𝑠) with 𝑗 = 1, 2, ⋅ ⋅ ⋅𝑛. We use 𝑁 to represent the total number

of segments per copolymer, and 𝑓 for copolymer composition: 𝑠 ∈ [0, 𝑓 ] for A segments and

the rest for B segments. And 𝜌0 = 𝑛𝑁
𝑉

is the total segment density, where V is the system
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volume. So normalized segment density operators can be written as:

𝜌𝐴(𝒓) =
𝑁

𝜌0

𝑛∑
𝑗=1

∫ 𝑓

0

𝑑𝑠𝛿(𝒓 − 𝒓𝑗(𝑠)),

𝜌𝐵(𝒓) =
𝑁

𝜌0

𝑛∑
𝑗=1

∫ 1

𝑓

𝑑𝑠𝛿(𝒓 − 𝒓𝑗(𝑠)),

(2)

where 𝜌𝐴(𝒓) and 𝜌𝐵(𝒓) are segment density for A and B, respectively. The Hamiltonian in

this system includes both elastic potential energy of Gaussian chain 𝑈0[𝑹] and short-range

interaction between AB segments 𝑈1[𝑹], as given below:

𝛽𝑈0[𝑹] =
3

2𝑁𝑏2

𝑛∑
𝑗=1

∫ 1

0

𝑑𝑠

∣∣∣∣𝑑𝒓𝑗(𝑠)

𝑑𝑠

∣∣∣∣2
𝛽𝑈1[𝑹] =

𝜀𝐴𝐴𝜌0
2

∫
𝑑𝒓𝜌𝐴𝜌𝐴 +

𝜀𝐵𝐵𝜌0
2

∫
𝑑𝒓𝜌𝐵𝜌𝐵 + 𝜀𝐴𝐵𝜌0

∫
𝑑𝒓𝜌𝐴𝜌𝐵,

(3)

where we assume that A and B particles have the same statistical segment length 𝑏 and 𝜀𝐼𝐽 is

the cohesive interaction between segments of type 𝐼 and 𝐽 . Incompressibility in conventional

SCFT framework requires uniform density: 𝜌𝐴(𝒓)+𝜌𝐵(𝒓) = 1 throughout the system, which

is ensured by a 𝛿-functional in the partition function.

𝑍 =

∫ 𝑛∏
𝑗=1

𝒟𝒓𝑗 ⋅ 𝛿[𝜌𝐴 + 𝜌𝐵 − 1] ⋅ exp
{
−𝐻 {𝑹}

𝑘𝐵𝑇

}
(4)

In order to satisfy the hard wall constraint, Matsen constrained the total density to be a

predesigned profile 𝜙0 by a modified 𝛿-functional [23]:

𝑍 =

∫ 𝑛∏
𝑗=1

𝒟𝒓𝑗 ⋅ 𝛿[𝜌𝐴 + 𝜌𝐵 − 𝜙0] ⋅ exp
{
−𝐻 {𝑹}

𝑘𝐵𝑇

}
(5)

In CMSCFT, we use Helfand’s harmonic penalty function [28] instead to characterize in-

compressibility:

𝛽𝑈2[𝑹] =
1

2
𝜁𝜌0

∫
𝑑𝒓 (𝜌𝐴 + 𝜌𝐵 − 1)2 (6)

Note that 1/𝜁 is the measurement of compressibility: the system becomes incompressible

when 𝜁 → ∞. Generally, the energy of polymer-boundary interaction is written as integra-

tion of given boundary potential 𝐽(𝒓):

𝛽𝑈3[𝑹] = 𝜌0

∫
𝑑𝒓 (𝜌𝐴 + 𝜌𝐵) ⋅ 𝐽(𝒓) (7)
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Now the system Hamiltonian has two more terms than the conventional case:

𝐻 {𝑹} = 𝑈0[𝑹] + 𝑈1[𝑹] + 𝑈2[𝑹] + 𝑈3[𝑹]. (8)

And the partition function of compressible model can be written as functional integration

without 𝛿-functional:

𝑍 =

∫ 𝑛∏
𝑗=1

𝒟𝒓𝑗 ⋅ exp
{
−𝐻 {𝑹}

𝑘𝐵𝑇

}
(9)

We should mention that a superfluous assumption was made due to technical difficulty in

deriving field-based formulation: segment-segment interaction is assume to be equal (𝜀𝐴𝐴 =

𝜀𝐵𝐵 = 𝜀). With this assumption, the field-based Hamiltonian of compressible model can be

obtained through a Hubbard-Stratonovich transformation. Interested readers are referred

to, e.g., Ref. [5, 29] for detailed derivation. Consequently, field-theoretic Hamiltonian of

compressible model can be fixed as follows up to an unimportant constant which makes no

difference of the SCFT model:

𝐻[𝜇+, 𝜇−]
𝑛

=
1

𝑉

[
1

𝜒𝑁

∫
𝑑𝒓𝜇2

− −
∫
𝑑𝒓𝜇+

]
− ln𝑄 [𝜇+, 𝜇−]

+
1

𝑉 [𝜒𝑁 + 2(𝜁 + 𝜀)𝑁 ]

∫
𝑑𝒓

{[
2𝐽(𝒓) + 𝜀

] ⋅𝑁 ⋅ 𝜇+ − 𝜇2
+

}
,

(10)

where 𝜀 = 𝜀𝐴𝐵+𝜀, 𝜒 = 𝜀𝐴𝐵− (𝜀𝐴𝐴+𝜀𝐵𝐵)/2 = 𝜀𝐴𝐵−𝜀 is Flory segment-segment interaction

parameter, 𝑄[𝜇+, 𝜇−] is single-chain partition function, 𝜇+ is the fluctuation pressure field

and 𝜇− is exchange chemical potential field. It is convenient to introduce equivalent fields

𝑤𝐴 and 𝑤𝐵 on the A, B segments, where

𝑤𝐴 = 𝜇+ − 𝜇−

𝑤𝐵 = 𝜇+ + 𝜇−
(11)

At the same time, field based partition function can be written as:

𝑍 =

∫
𝒟𝜇+𝒟𝜇− ⋅ exp

{
−𝐻[𝜇+, 𝜇−]

𝑘𝐵𝑇

}
(12)

Saddle point approximation, which takes maximum along 𝜇+ direction and minimum along

𝜇− direction, is used to calculate the Partition Function (12). And hence free energy in

the vicinity of equilibrium state approximates the field based Hamiltonian (10). Conse-

quently, finding equilibrium state is equivalent to finding the saddle point of Hamiltonian
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(10). 𝐹 [𝜇+, 𝜇−] = 𝐻[𝜇+, 𝜇−]/𝑛 is introduced as free energy for convenience. We can use the

well-known steepest update strategy to approximate the saddle point:

𝛿𝐹 [𝜇+, 𝜇−]
𝛿𝜇+

=
2

𝑉 [𝜒𝑁 + 2(𝜁 + 𝜀)𝑁 ]

{[
𝐽(𝒓) +

𝜀

2

] ⋅𝑁 − 𝜇+

}
+

1

𝑉
[𝜌𝐴 + 𝜌𝐵 − 1]

𝛿𝐹 [𝜇+, 𝜇−]
𝛿𝜇−

=
1

𝑉

[
2

𝜒𝑁
𝜇− + 𝜌𝐵 − 𝜌𝐴

]
,

(13)

where 𝜌𝐴, 𝜌𝐵 are real density of A, B segments respectively. They can be computed by way

of backward and forward propagators 𝑞+(𝒓, 𝑠), and 𝑞(𝒓, 𝑠):

𝜌𝐴 =
𝑉

𝑄

∫ 𝑓

0

𝑑𝑠𝑞(𝒓, 𝑠)𝑞+(𝒓, 1− 𝑠)

𝜌𝐵 =
𝑉

𝑄

∫ 1

𝑓

𝑑𝑠𝑞(𝒓, 𝑠)𝑞+(𝒓, 1− 𝑠)

𝑄 =

∫
𝑑𝒓𝑞(𝒓, 𝑠)𝑞+(𝒓, 1− 𝑠)

=

∫
𝑑𝒓𝑞(𝒓, 1) =

∫
𝑑𝒓𝑞+(𝒓, 1)

(14)

Propagators are statistical weight of segments located 𝑠𝑁 units along the chain contour at

point 𝒓 with initial condition 𝑞+(𝒓, 0) = 1, 𝑞(𝒓, 0) = 1:

∂𝑞(𝒓, 𝑠)

∂𝑠
= Δ𝑟𝑞(𝒓, 𝑠)− 𝑤𝐴(𝒓)𝑞(𝒓, 𝑠), 𝑠 ⩽ 𝑓

∂𝑞(𝒓, 𝑠)

∂𝑠
= Δ𝑟𝑞(𝒓, 𝑠)− 𝑤𝐵(𝒓)𝑞(𝒓, 𝑠), 𝑠 > 𝑓

∂𝑞+(𝒓, 𝑠)

∂𝑠
= Δ𝑟𝑞

+(𝒓, 𝑠)− 𝑤𝐵(𝒓)𝑞
+(𝒓, 𝑠), 𝑠 ⩽ 𝑓

∂𝑞+(𝒓, 𝑠)

∂𝑠
= Δ𝑟𝑞

+(𝒓, 𝑠)− 𝑤𝐴(𝒓)𝑞
+(𝒓, 𝑠), 𝑠 > 𝑓

(15)

Our goal is to vanish the right hand side of equation (13). From measurements by Is-

raelachvili et al. [13, 18, 19], we know that boundary potentials grow rapidly to ∞ when 𝒓

is approaching the boundary, which can cause some computational difficulties: 1) it is hard

to vanish the right hand side of the first equation in (13) because of numerical error, 2)

extreme singularity of equivalent field 𝑤𝐴, 𝑤𝐵 near surfaces brings stability problem of PDE

(15). To avoid excessive numerical error, we recommend a temporary field when updating

the gradient of Hamiltonian in formula (13):

�̃�+ = 𝜇+ −
[
𝐽(𝒓) +

𝜀

2

]
⋅𝑁

At the same time implicit treatment of the entire right hand side is adopted in numerical

approach to ensure unconditional stability when solving propagators (15).
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It is important to note that, if we consider a free system without boundary influence

(𝐽(𝒓) = 0), the compressible model above converges to conventional incompressible model

in the limit 𝜁 → ∞:

𝐻[𝜇+, 𝜇−]
𝑛

→ 1

𝑉

[
1

𝜒𝑁

∫
𝑑𝒓𝜇2

− −
∫
𝑑𝒓𝜇+

]
− ln𝑄 [𝜇+, 𝜇−] ,

where the right hand side of the above formula is exactly field-theoretic Hamiltonian of

conventional SCFT (regardless of a constant shift).

More generally speaking, boundary potential 𝐽(𝒓) on segment 𝐴,𝐵 should be different.

Thus the energy of polymer-boundary interaction is written as:

𝛽𝑈3[𝑹] = 𝜌0

∫
𝑑𝒓

[
𝜌𝐴 ⋅ 𝐽𝐴(𝒓) + 𝜌𝐵 ⋅ 𝐽𝐵(𝒓)

]
= 𝜌0

∫
𝑑𝒓

[
(𝜌𝐴 + 𝜌𝐵) ⋅ 𝐽+(𝒓) + (𝜌𝐴 − 𝜌𝐵) ⋅ 𝐽−(𝒓)

]
,

(16)

where 𝐽+(𝒓) and 𝐽−(𝒓) are just notations for convenience:

𝐽+(𝒓) =
𝐽𝐴(𝒓) + 𝐽𝐵(𝒓)

2

𝐽−(𝒓) =
𝐽𝐴(𝒓)− 𝐽𝐵(𝒓)

2

By using a same procedure as above, we can determine the Hamiltonian for compressible

model up to an unimportant constant:

𝐻[𝜇+, 𝜇−]
𝑛

=
1

𝑉

{
1

𝜒𝑁

∫
𝑑𝒓

[
𝜇2
− + 2𝑁 ⋅ 𝐽−(𝒓) ⋅ 𝜇−

]
−
∫
𝑑𝒓𝜇+

}
− ln𝑄 [𝜇+, 𝜇−]

+
1

𝑉 [𝜒𝑁 + 2(𝜁 + 𝜀)𝑁 ]

∫
𝑑𝒓

{
[2𝐽+(𝒓) + 𝜀] ⋅𝑁 ⋅ 𝜇+ − 𝜇2

+

}
,

(17)

where 𝜀 = 𝜀𝐴𝐵 + 𝜀. Then variational gradient (13) for steepest update strategy is written

as:

𝛿𝐹 [𝜇+, 𝜇−]
𝛿𝜇+

=
2

𝑉 [𝜒𝑁 + 2(𝜁 + 𝜀)𝑁 ]

{[
𝐽+(𝒓) +

𝜀

2

]
⋅𝑁 − 𝜇+

}
+

1

𝑉
[𝜌𝐴 + 𝜌𝐵 − 1] ,

𝛿𝐹 [𝜇+, 𝜇−]
𝛿𝜇−

=
1

𝑉

{
2

𝜒𝑁

[
𝜇− +𝑁 ⋅ 𝐽−(𝒓)

]
+ 𝜌𝐵 − 𝜌𝐴

}
.

(18)

In order to reduce excessive numerical error, we need another intermediate field:

�̃�− = 𝜇− +𝑁 ⋅ 𝐽−(𝒓).

In numerical simulations, we recommend the following four-order formula to discretize

the modified diffusion equation (15):

25

12
𝑞𝑛+1 − 𝛿𝑠 ⋅Δ𝑞𝑛+1 + 𝛿𝑠 ⋅ 𝑤 ⋅ 𝑞𝑛+1 = 4𝑞𝑛 − 3𝑞𝑛−1 +

4

3
𝑞𝑛−2 − 1

4
𝑞𝑛−3 (19)
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The initial value of first four steps of (19) can be fixed by stable lower order method (like

backward Euler discretization) and extrapolation. Because of the singularity of field 𝑤𝐴(𝐵)

and resulting strong fluctuation of density profile near the boundary, non-uniform grids

are also recommended. In fact, finite element implementation was used in this paper for

convenience.

RESULTS AND DISCUSSION

For simplicity, our simulation only considers lamellae phase of diblock copolymer melt

thin films, which can be reduced to a 1-D case. We note that, all simulations can be directly

applied to 3-D case without difficulty but would require much more computational effort.

The parameters are fixed as follows in the simulation, unless mentioned otherwise:

𝜀𝐴𝐴 = 𝜀𝐵𝐵 = 0.1, 𝜀𝐴𝐵 = 0.2; 𝑁 = 120, 𝑓 = 0.48, 𝐿 = 4𝜋 ⋅𝑅𝑔,

where, 𝐿 is the thickness of thin films and 𝑅𝑔 is polymer’s unperturbed radius of gyration.

Note that SCFT involves multi-solutions. All those equilibrium states we get from simula-

tions should be meta-stable phase that relies significantly on initial fields we assign before

hand. In the following simulations, we set 𝜇+ = 0, 𝜇− = 1 which has no inclination to any

special density profile pattern.

Model Comprison

In systems without hard surface confinement, where periodic boundary condition was

used to compute propagators (15), CMSCFT gradually converges to conventional SCFT

when compressibility 1/𝜁 drops to zero. Of course, boundary potential in CMSCFT was

set to be zero: 𝐽(𝒓) = 0. Fig. 1 shows the density profiles of conventional SCFT. Just

as expected, little difference between density profile of the two models was noticed even

when incompressibility is only about 𝜁 = 10. Furthermore, from Fig. 2 we can observe

a clear linear dependence that shows precisely how CMSCFT asymptotically converges to

conventional SCFT in the limit 𝜁 → ∞:

∥𝜌0 − 1∥∞ = 𝐶 ⋅ 1
𝜁
,
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where 𝜌0 = 𝜌𝐴 + 𝜌𝐵 is the total density of both segments.

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1
ρ

r/Rg

ρ̄0 = ρA + ρB

ρA

ρB

FIG. 1: Density profiles for lamellae phase without hard wall confinement. 𝜌𝐴 denotes

density of A-segments, 𝜌𝐵 for B-segments, and 𝜌0 for total density of all segments.

0 0.005 0.01 0.015 0.02
0

1

2

3

4

x 10
−4

1/ζ

‖
ρ̄ 0

-
1
‖
∞

FIG. 2: Total density 𝜌0 of CMSCFT converges to 1 when 𝜁 tends to ∞.

Confinement Effects and Boundary Layer

Confinement effects, such as density depletion, surface oscillation, and surface segregation,

have generated increasing interests in the community. Although plenty of efforts have been

made, there is still lots of work to do. As stated in section I., the conventionally used

MSCFT skill developed by Matsen [23] is not so satisfactory. Moreover, no method has been

proposed to calculate boundary layer thickness in numerical simulations. In this section, we

are going to show that CMSCFT gives a satisfactory simulation of all confinement effects.

Furthermore, boundary layer thickness calculated in CMSCFT can agree well with real

physical system, as long as boundary potential is well constructed.
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Surface Depletion

Equilibrium surface force measurement of two liquid PB sample by Israelachvili et al.

[13] shows no oscillation but steeply repulsive force approaching the boundaries. For this

kind of system, modified Lennard-Jones potential is appropriate to characterize the hard

wall influence:

𝐽(𝒓) =

⎧⎨⎩
4𝛼

[(
𝜎

𝑑(𝒓)

)12

−
(

𝜎
𝑑(𝒓)

)6
]
+ 𝛼 𝑑(𝒓) ⩽ 6

√
2𝜎

0 otherwise,

(20)

where 𝑑(𝒓) is the distance of the point 𝒓 to boundary. Note that polymer-boundary inter-

action only happens when segments are adjacent to the boundary. And 𝑏 =
√
6/𝑁𝑅𝑔 is

statistical segment length in Gaussian chain model of block copolymer. Consequently, we

can fix 𝜎 = 𝑏/2 in Eq. (20), e.g., 𝜎 ∼ 0.1𝑅𝑔 when 𝑁 = 120 and 𝑏 ≈ 0.22𝑅𝑔. Finally, 𝛼

in (20) is fixed to control the magnitude of Lennard-Jones potential. Surface interaction

energy is ∼ 𝑘𝐵𝑇 according to Israelachvili’s measurement [12, 13]. Hence we simply set

𝛼 = 1 here. Specifically, the following Lennard-Jones potential is used in our calculation for

convenience:

𝐽(𝒓) =

⎧⎨⎩
4 ⋅

[(
0.1
𝑑(𝒓)

)12

−
(

0.1
𝑑(𝒓)

)6
]
+ 1 𝑑(𝒓) ⩽ 0.1× 6

√
2

0 otherwise.

(21)

Fig. 3 shows density profiles of the confined system. By comparing with Fig. 1, we note

that, hard wall confinement does not change the pattern of density profile in the bulk. Fig.

4 illustrates the profile of boundary layer. The red dots are the simulations of CMSCFT, the

blue line is the emprical formula (1), and the dotted line is Q. Wang’s exponential profile for

the “best” numerical behavior. Note that all three profiles share the same boundary layer

thickness 𝛿 in this manner:

𝛿 =

∫ 𝑟0

𝑟

(𝜓 − 𝜌(𝑟)) 𝑑𝑟, (22)

where 𝜓, a constant, is total density in the bulk where far enough away from boundaries,

𝑟, shown in Fig. 4, is the position where total density 𝜌0 starts to increase, and 𝑟0 is a

distance far away from boundaries where polymer density reach bulk density: 𝜌(𝑟0) = 𝜓.

Boundary layer thickness, according to formula (22), is ∼ 0.04𝑅𝑔 and 0.014𝑅𝑔 respectively.

From Fig. 4, we note that CMSCFT simulation perfectly match the emprical Hyperbolic

tangent profile (1).
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FIG. 3: Density profiles for lamellae phase with hard wall confinement, where

Lennard-Jones potential (21) is used and 𝜁 is set to be 10. Notations are used the same as

Fig. 1.
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FIG. 4: Boundary layer profile near hard surface. Again, Lennard-Jones potential (21) is

used and 𝜁 is set to be 10, 100 respectively. Comparison with emprical Hyperbolic tangent

(1) and Q. Wang’s EXP in MSCFT [27] is given with the same layer thickness.

Boundary Layer Thickness

Boundary layer thickness is also very important in various applications. However, current

simulation method, such as Monte-Carlo and MSCFT, needs to determine layer thickness

beforehand. On the contrary, CMSCFT can automatically determine the layer thickness with

given boundary potential. We have investigated the relationships between layer thickness

and various parameters in CMSCFT. Again, Lennard-Jones potential (20) is used in this

section, and formula (22) is served as the definition of layer thickness. We didn’t see notable

influence of parameters: 𝜒𝑁 , 𝑓 , and 𝐿. However, a simple dependence of 𝛿 on 𝜁 (with all

12



other parameters fixed) is observed, as shown in Fig. 5:

𝛿 ≈ 0.123
1√
𝜁
+ 0.008, (23)

where specified Lennard-Jones (21) is used, and �̃� in (22) is fixed so that 𝜌0(�̃�) = 10−4. We

note that the zeroth-order constant in the above formula is much smaller than the first-order

coefficient. So, it is reasonable to say that the above relationship should be exactly direct

proportion:

𝛿 = 𝐶
1√
𝜁

(24)

As shown in Fig. 6, 𝜎 in Lennard-Jones potential (20) hardly influence the shape of Bound-

ary Layer profile but will affect the position 𝑟 where total density 𝜌0 starts to increase.

Furthermore, 𝑟 relies almost linearly on 𝜎. Note that here 𝜁 = 10.

0.1 0.2 0.3 0.4

0.02

0.03

0.04

0.05

0.06

 

 

1
√

ζ

CMSCFT Simulation
Linear prediction

δ/Rg

FIG. 5: Layer thickness 𝛿 − 𝜁 dependence. Comparison between CMSCFT simulation and

linear prediction (23) is given.

Surfaces Oscillations

It’s suggested by experimental measurements [18] that, surfaces force can be oscillatory

to some extent. Hence, it is necessary to consider oscillatory boundary potentials. In this

section, we add the following oscillatory behavior to Lennard-Jones potential for convenience:

𝐽(𝒓) =

⎧⎨⎩
{
4𝛼

[(
𝜎

𝑑(𝒓)

)12

−
(

𝜎
𝑑(𝒓)

)6
]
+ 𝛼

}
⋅
{
cos[2𝑛𝜋 ⋅ 𝑑(𝒓)

𝜎
] + 1

}
𝑑(𝒓) ⩽ 6

√
2𝜎

0 otherwise.

(25)
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FIG. 6: Boundary Layer −𝜎 dependence. 𝜁 is set to be 10. Comparison with emprical

Hyperbolic tangent (1) and Q. Wang’s EXP in MSCFT [27], in the condition of a same

layer thickness, is given.

Fig. 7 shows the profile of oscillatory potential (25) with 𝑛 = 12, 𝜎 = 0.1, and 𝛼 = 1.

We note that, when 𝑑(𝒓) ⩾ 0.075𝑅𝑔 the potential profile shown in this figure looks pretty

close to the surface force profile measured by Israelachvili et al. [18]. Oscillation in the

corresponding boundary layer profile of total density is too weak to be observe directly. Thus

we have to compare this profile with non-oscillating profile which corresponds to Lennard-

Jones potential (21). From Fig. 8, which shows the difference between these two boundary

layer profiles, we can see an obvious oscillation in the range 𝑑(𝒓) ∈ [0.035𝑅𝑔, 0.08𝑅𝑔] where

the total density is increasing.

0.05 0.06 0.07 0.08 0.09 0.1
0

10

20
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40

d(r)/Rg

J(r)

FIG. 7: Oscillatory Boundary Potential (25) with 𝑛 = 12, 𝜎 = 0.1, and 𝛼 = 1.
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FIG. 8: The difference between Oscillatory Boundary Layer with oscillatory potential

shown in Fig. 7 and Non-oscillating Boundary Layer with Lennard-Jones potential (21).

Note that here 𝜁 is set to be 20.

Entropy-Driven Surface Segregation

In 1992, Mohan Sikka et al. carried out an experiment about Entropy-driven surface

segregation in block copolymer melts [14]. They showed that conformationally smaller

block would preferentially segregate to both the solid and air interface, which have little

relationship with surface energy. In addition, they attributed this surface segregation to

configurational entropy loss and conformational asymmetry of block polymer.

In our simulation, although boundary potential of both segments are set to be equal (the

same as specified Lennard-Jones (21)), i.e.,

𝐽𝐴(𝒓) = 𝐽𝐵(𝒓) = 𝐽(𝒓)

we still observe surface segregation just as concluded by Mohan [14]. According to segment

density distribution formula (14), we can easily define the reduced distribution function of

the (𝑠𝑁)th segment on a copolymer chain (where 𝑄 is defined by formula (14)):

𝜌(𝒓, 𝑠) =
𝑉 ⋅ 𝑞(𝒓, 𝑠) ⋅ 𝑞+(𝒓, 1− 𝑠)

𝑄
(26)

Fig. 9 shows how all segments along a copolymer chain distribute at some distance off the

boundary, where the separation of A- and B-segments occurs at 𝑓 = 0.48. It is obvious from

this figure that segment segregation exists only at the vicinity of boundary, and decreases

rapidly into the bulk. Both ends are much denser than other segments near boundary. In

addition, A-end are even more denser than B-end as concluded by Mohan [14], although
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there is only little asymmetry in the copolymers (𝑓 = 0.48). In Fig. 9, we observe another

interesting phenomenon. It seems that surface segregation only relates to segments near

the ends. Segments away from the ends have a similar distribution profile that has little

dependence on position 𝒓 in the vicinity of boundaries.

0 0.2 0.4 0.6 0.8 1
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ρ(
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/ρ̄

0

 

 
d(r) = 0.05 Rg
d(r) = 0.06 Rg

FIG. 9: Reduced distribution of segments along a whole chain at two different distance off

the boundary 𝑑(𝒓) = 0.05𝑅𝑔 and 0.06𝑅𝑔 respectively.

Fig. 10 shows how certain segment (A-end, segment near A-end, and A-B joins) distributes

over space. It can be seen that, the end of the segments is likely to assemble at hard surface.

However this effect decreases quickly into the bulk. Fig. 10 shows more clearly that surface

segregation is only related to segments near the ends. Even when 𝑠 = 0.0025, which is prety

near A-end, we only observe very weak accumulation near surface. Moreover, solid wall does

not have noticable influence of the reduced distribution of A-B joins (𝑓 = 0.48).
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FIG. 10: Reduced distribution of some segments on copolymer chain. A-ends (𝑠 = 0),

some A-segments near A-end (𝑠 = 0.0025), and A-B joins (𝑠 = 𝑓 = 0.48) respectively.
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CONCLUSION

We propose a modified Compressible Model based SCFT (CMSCFT) for confined di-

block copolymer melt system. Unlike the conventionally used MSCFT developed by Matsen

[23], which constraints the total density to be a predesigned profile 𝜙0, CMSCFT makes no

artificial constraints: The boundary potential is fixed by experimental inspiration and phys-

ical analysis, and model compressibility 1/𝜁 can be fixed by comparison between simulation

results (24) and experimental measurements. So, with properly reconstructed boundary

potential and carefully chosen compressibility parameter 1/𝜁, the CMSCFT can be used to

simulate a real physical system.

Furthermore, CMSCFT gives a successful simulation of all known hard surface effects:

surface density oscillations [11, 13], surface depletion [9, 10], and surface segregation [14].

First of all, boundary layer profile of CMSCFT simulations match perfectly with the empri-

cal Hyperbolic-tangent profile. However the “best” profile propose by Q. Wang et al. has a

notable difference with CMSCFT simulations. Secondly, CMSCFT method can conveniently

calculate boundary layer thickness, and give the dependences between layer thickness and

some model parameters. Then we show that surface oscillation is attributed to oscillatory

boundary potential in CMSCFT. Finally, CMSCFT can well reproduce the surface segre-

gation effect: chain ends enriches near hard surface and chain ends of shorter blocks are

much denser than those of the longer ones. Consequently, we claim that CMSCFT can be

a promising tool in confined copolymer system simulations. A final remark: although we

only derive the model under diblock copolymer system, the extention to more complicated

architecture copolymer (like triblock and star copolymer) should be straightforward.
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