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Abstract. In this paper we prove the existence and uniqueness of both entropy solutions

and renormalized solutions for the p(x)-Laplacian equation with variable exponents and

a signed measure in L1(Ω) + W−1,p′(·)(Ω). And moreover, we obtain the equivalence of

entropy solutions and renormalized solutions.

1. Introduction

Let Ω be a bounded open domain in RN (N ≥ 2) with Lipschitz boundary ∂Ω. In this
paper we study the following nonlinear elliptic problem{

−div
(
|∇u|p(x)−2∇u

)
= µ in Ω,

u = 0 on ∂Ω,
(1.1)

where the variable exponent p : Ω → (1,+∞) is a continuous function, and µ is a signed
measure in L1(Ω) + W−1,p′(·)(Ω).

The study of differential equations and variational problems with nonstandard growth
conditions arouses much interest with the development of elastic mechanics, electro-rheological
fluid dynamics and image processing, etc. We refer the readers to [31, 32, 35, 14] and
references therein. p(x)-growth conditions can be regarded as a very important class of
nonstandard (p, q)-growth conditions. There are already numerous results for such kind of
problems (see [1, 2, 3, 19, 22, 18, 5]). The functional spaces to deal with these problems
are the generalized Lebesgue spaces Lp(x)(Ω) and the generalized Lebesgue-Sobolev spaces
W k,p(x)(Ω).

Under our assumptions, it is reasonable to work with entropy solutions or renormalized
solutions, which need less regularity than the usual weak solutions. The notion of renormal-
ized solutions was first introduced by DiPerna and Lions [17] for the study of Boltzmann
equation. It was then adapted to the study of some nonlinear elliptic or parabolic problems
and evolution problems in fluid mechanics. We refer to [13, 15, 8, 10, 9, 28] for details. At
the same time the notion of entropy solutions has been proposed by Bénilan et al. in [7]
for the nonlinear elliptic problems. This framework was extended to related problems with
constant p in [12, 11, 4, 30]. The interesting and difficult cases are those of 1 < p ≤ N , since
the variational methods of Leray-Lions (see [27] ) easily apply for p > N , with the solution
being bounded and its gradient being in Lp(Ω).
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Recently, Sanchón and Urbaon in [33] studied a Dirichlet problem of p(x)-Laplace equa-
tion and obtained the existence and uniqueness of entropy solutions for L1 data, as well as
integrability results for the solution and its gradient. The proofs rely crucially on a pri-
ori estimates in Marcinkiewicz spaces with variable exponents. Besides, Bendahmane and
Wittbold in [6] proved the existence and uniqueness of renormalized solutions to nonlinear
elliptic equations with variable exponents and L1 data.

The aim of this paper is to extend the results in [7, 12, 33, 15, 6], taking into account
a signed measure µ in L1(Ω) + W−1,p′(·)(Ω). As far as we know, there are few papers
concerned with the nonlinear elliptic or parabolic equations involving measure data with
variable exponents. So, the study of problem (1.1) is a new and interesting topic. The
uniqueness of entropy solutions and renormalized solutions will strongly rely on the structure
of the measure µ, that is, µ belongs to L1(Ω)+W−1,p′(·)(Ω). If not, there is a counterexample
in [12] showing that why the definition of entropy solution is not suitable for uniqueness if
the measure µ is the Dirac mass.

Inspired by [7], [12], [26] and [33], we develop a refined method. We first construct an ap-
proximate solution sequence for problem (1.1) and establish some a priori estimates. Next,
we draw a subsequence to obtain a limit function, and prove this function is an entropy solu-
tion. The advantage of our method is that we can give the concrete expression for the limit
function of approximate solutions by means of truncation techniques and prove the strong
convergence of the truncations of approximate solutions. Based on this fact, we obtain that
the entropy solution of problem (1.1) is also a renormalized solution. It is worth pointing out
that we generalize the definition of renormalized solutions from L1 functions to measurable
functions. This allows us to drop some redundant conditions imposed on the exponent p(x)
in the previous work. Even for the constant exponent case, to the best of our knowledge,
there seems no result about the existence and uniqueness of renormalized solutions to such
elliptic equations with a signed measure µ in L1(Ω) + W−1,p′(Ω). By choosing suitable test
functions and employing the decomposition for the region of integration according to the
different contributions corresponding to different integration sets, we prove the uniqueness of
entropy solutions and renormalized solutions, and thus the equivalence of entropy solutions
and renormalized solutions.

For the convenience of the readers, we recall some definitions and basic properties of the
generalized Lebesgue spaces Lp(x)(Ω) and generalized Lebesgue-Sobolev spaces W k,p(x)(Ω).

Set C+(Ω) = {h ∈ C(Ω) : minx∈Ω h(x) > 1}. For any h ∈ C+(Ω) we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

For any p ∈ C+(Ω), we introduce the variable exponent Lebesgue space Lp(·)(Ω) to consist
of all measurable functions such that∫

Ω

|u(x)|p(x) dx < ∞,

endowed with the Luxemburg norm

|u|p(·) = inf
{

λ > 0 :
∫

Ω

∣∣∣u(x)
λ

∣∣∣p(x)

dx ≤ 1
}

,

which is a separable and reflexive Banach space. The dual space of Lp(x)(Ω) is Lp′(x)(Ω),
where 1/p(x) + 1/p′(x) = 1. If p(x) is a constant function, then the variable exponent
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Lebesgue space coincides with the classical Lebesgue space. The variable exponent Lebesgue
spaces is a special case of Orlicz-Musielak spaces treated by Musielak in [29].

For any positive integer k, denote

W k,p(x)(Ω) = {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k},

where the norm is defined as

‖u‖W k,p(x) =
∑
|α|≤k

|Dαu|p(x).

W k,p(x)(Ω) is also a Banach space. It is called generalized Lebesgue-Sobolev space, which is
a special generalized Orlicz-Sobolev space. An interesting feature of a generalized Lebesgue-
Sobolev space is that smooth functions are not dense in it without additional assumptions
on the exponent p(x). This was observed by Zhikov [34] in connection with Lavrentiev
phenomenon. However, when the exponent p(x) is log-Hölder continuous, i.e., there is a
constant C such that

|p(x)− p(y)| ≤ C

− log |x− y|
(1.2)

for every x, y ∈ Ω with |x − y| ≤ 1
2 , then smooth functions are dense in variable exponent

Sobolev spaces and there is no confusion in defining the Sobolev space with zero boundary
values, W

1,p(·)
0 (Ω), as the completion of C∞

0 (Ω) with respect to the norm ‖u‖W 1,p(·) (see
[23]).

Throughout this paper we assume that p(x) ∈ C+(Ω) with 1 < p− ≤ p+ < N satisfies the
log-Hölder continuity condition (1.2), and µ is a signed measure in L1(Ω) + W−1,p′(·)(Ω),
i.e.,

µ = f − div F, (1.3)

where f ∈ L1(Ω) and F ∈ (Lp′(·)(Ω))N . Let Tk denote the truncation function at height
k ≥ 0:

Tk(r) = min{k,max{r,−k}} =

 k if r ≥ k,
r if |r| < k,
−k if r ≤ −k.

We denote

T 1,p(·)
0 (Ω) = {u : Ω → R is measurable |Tk(u) ∈ W

1,p(·)
0 (Ω), for every k > 0}.

Next we define the very weak gradient for every measurable function u ∈ T 1,p(·)
0 (Ω). The

proof follows from Lemma 2.1 of [7] due to the fact that W
1,p(·)
0 (Ω) ⊂ W

1,p−
0 (Ω).

Proposition 1.1. For a measurable function u ∈ T 1,p(·)
0 (Ω), there exists a unique measur-

able function v : Ω → RN , which we call the very weak gradient of u and denote v = ∇u,
such that

∇Tk(u) = vχ{|u|<k} for a.e. x ∈ Ω and for every k > 0,

where χE denotes the characteristic function of a measurable set E. Moreover, if u belongs
to W 1,1

0 (Ω), then v coincides with the weak gradient of u.

The notion of the very weak gradient allows us to give the following definitions of entropy
solutions and renormalized solutions for problem (1.1).
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Definition 1.2. A measurable function u ∈ T 1,p(·)
0 (Ω) is an entropy solution to problem

(1.1) if∫
Ω

|∇u|p(x)−2∇u · ∇Tk(u− φ) dx =
∫

Ω

fTk(u− φ) dx +
∫

Ω

F · ∇Tk(u− φ) dx, (1.4)

for all φ ∈ W
1,p(·)
0 (Ω) ∩ L∞(Ω).

Definition 1.3. A measurable function u ∈ T 1,p(·)
0 (Ω) is a renormalized solution to problem

(1.1) if the following conditions are satisfied:

(i) lim
n→∞

∫
{n≤|u|≤n+1}

|∇u|p(x) dx = 0;

(ii) For every function ϕ ∈ C∞
0 (Ω) and S ∈ W 1,∞(R) satisfying that S has a compact

support,∫
Ω

[S(u)|∇u|p(x)−2∇u · ∇ϕ+S′(u)|∇u|p(x)ϕ] dx =
∫

Ω

[fS(u)ϕ+F · ∇(S(u)ϕ)] dx (1.5)

holds.

Now we state our main results as follows.

Theorem 1.4. Assume that µ satisfies (1.3). Then there exists a unique entropy solution
u ∈ T 1,p(·)

0 (Ω) for problem (1.1).

Theorem 1.5. Assume that µ satisfies (1.3). Then the entropy solution u in Theorem 1.4
is also a renormalized solution for problem (1.1). And the renormalized solution is unique.

Remark 1.6. The entropy solution for problem (1.1) is equivalent to the renormalized so-
lution for problem (1.1).

Remark 1.7. When p(x) is a constant, we know from [12] that µ ∈ L1(Ω) + W−1,p′(Ω) if
and only if µ ∈Mp

b(Ω), i.e., every signed measure that is zero on the sets of zero p-capacity
can be decomposed into the sum of a function in L1(Ω) and an element in W−1,p′(Ω), and
conversely, every signed measure in L1(Ω)+W−1,p′(Ω) has zero measure for the sets of zero
p-capacity.

The rest of this paper is organized as follows. In Section 2, we state some basic results
that will be used later. We will prove the main results in Section 3. In the following sections
C will represent a generic constant that may change from line to line even if in the same
inequality.

2. Preliminaries

In this section, we first state some elementary results for the generalized Lebesgue spaces
Lp(x)(Ω) and the generalized Lebesgue-Sobolev spaces W k,p(x)(Ω). The basic properties of
these spaces can be found from [25] by Kováčik and Rákosńık, and many of these properties
were independently established in [22] by Fan and Zhao.

Lemma 2.1 ([22, 25]). (1) The space Lp(·)(Ω) is a separable, uniform convex Banach space,
and its conjugate space is Lp′(·)(Ω) where 1/p(x) + 1/p′(x) = 1. For any u ∈ Lp(·)(Ω) and
v ∈ Lp′(·)(Ω), we have∣∣∣ ∫

Ω

uv dx
∣∣∣ ≤ ( 1

p−
+

1
p′−

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x);



ENTROPY AND RENORMALIZED SOLUTIONS 5

(2) If p1, p2 ∈ C+(Ω), p1(x) ≤ p2(x) for any x ∈ Ω, then there exists the continuous
embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω), whose norm does not exceed |Ω|+ 1.

Lemma 2.2 ([22]). If we denote

ρ(u) =
∫

Ω

|u|p(x) dx, ∀u ∈ Lp(x)(Ω),

then
min{|u|p−p(x), |u|

p+

p(x)} ≤ ρ(u) ≤ max{|u|p−p(x), |u|
p+

p(x)}.

Lemma 2.3 ([22]). W k,p(x)(Ω) is a separable and reflexive Banach space.

Lemma 2.4 ([24, 25]). Let p ∈ C+(Ω) satisfy the log-Hölder continuity condition (1.2).
Then, for u ∈ W

1,p(·)
0 (Ω), the p(·)-Poincaré inequality

|u|p(x) ≤ C|∇u|p(x)

holds, where the positive constant C depends on p and Ω.

Remark 2.5. Note that the following inequality∫
Ω

|u|p(x) dx ≤ C

∫
Ω

|∇u|p(x) dx

in general does not hold.

Lemma 2.6 ([16, 21]). Let Ω ⊂ RN be an open, bounded set with Lipschitz boundary and
p(x) ∈ C+(Ω) with 1 < p− ≤ p+ < N satisfy the log-Hölder continuity condition (1.2). If
q ∈ L∞(Ω) with q− > 1 satisfies

q(x) ≤ p∗(x) :=
Np(x)

N − p(x)
, ∀x ∈ Ω,

then we have
W 1,p(x)(Ω) ↪→ Lq(x)(Ω)

and the imbedding is compact if inf
x∈Ω

(p∗(x)− q(x)) > 0.

Now we begin to prove some a priori important estimates for entropy solutions of problem
(1.1).

Proposition 2.7. If u is an entropy solution of problem (1.1), then there exists a positive
constant C such that for all k > 1,

meas{|u| > k} ≤ C(M + 1)
p∗−
p−

k
p∗−(1− 1

p−
)

holds, where

M =
p−

p− − 1
‖f‖L1(Ω) +

p−(p+ − 1)
p+(p− − 1)

∫
Ω

|F |p
′(x) dx.

Proof. Choosing φ = 0 in the entropy equality (1.4) and using Young’s inequality, we obtain
that ∫

Ω

|∇Tk(u)|p(x) dx =
∫
{|u|≤k}

|∇u|p(x) dx
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≤ kp−
p− − 1

‖f‖L1(Ω) +
p−(p+ − 1)
p+(p− − 1)

∫
Ω

|F |p
′(x) dx,

which implies that for all k > 1,
1
k

∫
Ω

|∇Tk(u)|p(x) dx ≤ M1 +
M2

k
≤ M := M1 + M2, (2.1)

where

M1 =
p−

p− − 1
‖f‖L1(Ω), M2 =

p−(p+ − 1)
p+(p− − 1)

∫
Ω

|F |p
′(x) dx.

Recalling Sobolev embedding theorem in Lemma 2.6 and Lemma 2.1, we have the follow-
ing continuous embedding

W
1,p(x)
0 (Ω) ↪→ Lp∗(x)(Ω) ↪→ Lp∗−(Ω),

where p∗(x) = Np(x)
N−p(x) and p∗− = Np−

N−p−
. It follows from Lemma 2.2 and (2.1) that for every

k > 1,

‖Tk(u)‖p∗−
= |Tk(u)|p∗− ≤ C|∇Tk(u)|p(x)

≤ C
( ∫

Ω

|∇Tk(u)|p(x) dx
)β

≤ C(Mk)β ,

where

β =

{
1

p−
if |∇Tk(u)|p(·) ≥ 1,

1
p+

if |∇Tk(u)|p(·) ≤ 1.

Noting that {|u| ≥ k} = {|Tk(u)| ≥ k}, we have

meas{|u| > k} ≤
(‖Tk(u)‖p∗−

k

)p∗−
≤ CMβp∗−

kp∗−(1−β)
≤ C(M + 1)

p∗−
p−

k
p∗−(1− 1

p−
)

.

This completes the proof. �

Proposition 2.8. If u is an entropy solution of problem (1.1), then for a given a > 0 we
have

lim
k→+∞

∫
{k≤|u|≤k+a}

|∇u|p(x) dx = 0.

Proof. For given a, k > 0, define the function Tk,a(s) = Ta(s− Tk(s)) as

Tk,a(s) =

 s− ksign(s) if k ≤ |s| < k + a,
a if |s| ≥ k + a,
0 if |s| ≤ k.

Using Tk,a(u) to take the place of Tk(u− φ) in (1.4), we find∫
{k≤|u|≤k+a}

|∇u|p(x)−2∇u · ∇u dx ≤
∫

Ω

fTk,a(u) dx +
∫
{k≤|u|≤k+a}

F · ∇u dx.

In view of Young’s inequality, we have∫
{k≤|u|≤k+a}

|∇u|p(x) dx

≤ a

∫
{|u|>k}

|f | dx +
∫
{k≤|u|≤k+a}

1
p(x)

|∇u|p(x) +
p(x)− 1

p(x)
|F |p

′(x) dx
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≤ a

∫
{|u|>k}

|f | dx +
1

p−

∫
{k≤|u|≤k+a}

|∇u|p(x) dx +
p+ − 1

p+

∫
{k≤|u|≤k+a}

|F |p
′(x) dx,

which implies that∫
{k≤|u|≤k+a}

|∇u|p(x) dx

≤ ap−
p− − 1

∫
{|u|>k}

|f | dx +
p−(p+ − 1)
p+(p− − 1)

∫
{k≤|u|≤k+a}

|F |p
′(x) dx.

Therefore, we obtain that

lim
k→+∞

∫
{k≤|u|≤k+a}

|∇u|p(x) dx = 0.

Thus we finish the proof of the proposition. �

3. The proofs of main results

Now we are ready to prove the main results. First we prove the existence and uniqueness
of entropy solutions for problem (1.1).

Proof of Theorem 1.4.
(1) Existence of entropy solutions.
We first introduce the approximate problems. Find two sequences of C∞

0 (Ω) functions
{fn} and {Fn} strongly converging respectively to f in L1(Ω) and to F in (Lp′(·)(Ω))N such
that

‖fn‖L1(Ω) ≤ ‖f‖L1(Ω),

∫
Ω

|Fn|p
′(x) dx ≤

∫
Ω

|F |p
′(x) dx. (3.1)

Then we consider approximate problem of (1.1){
−div

(
|∇un|p(x)−2∇un

)
= fn − div(Fn) in Ω,

un = 0 on ∂Ω.
(3.2)

By employing the variation methods and arguments in Theorem 4.2 of [20] or [27], we easily
find a unique weak solution un ∈ W

1,p(·)
0 (Ω) of problem (3.2), which is obviously an entropy

solution of problem (3.2). Our aim is to prove that a subsequence of these approximate
solutions {un} converges to a measurable function u, which is an entropy solution of problem
(1.1). We will divide the proof into several steps. Some of the reasoning is based on the
ideas developed in [33], [7], [12] and [26].

Choosing Tk(un) as a test function in (3.2) and applying Young’s inequality in the right-
hand side we have∫

Ω

|∇Tk(un)|p(x) dx ≤ k‖fn‖L1(Ω) +
∫

Ω

1
p(x)

|∇Tk(un)|p(x) dx +
∫

Ω

1
p′(x)

|Fn|p
′(x) dx,

which implies that∫
Ω

|∇Tk(un)|p(x) dx ≤ kp−
p− − 1

‖fn‖L1(Ω) +
p−(p+ − 1)
p+(p− − 1)

∫
Ω

|Fn|p
′(x) dx

≤ kp−
p− − 1

‖f‖L1(Ω) +
p−(p+ − 1)
p+(p− − 1)

∫
Ω

|F |p
′(x) dx. (3.3)
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Step 1. Construct a subsequence {un} of {un} and a limit function u such that, for
every positive integer k,

Tkun → Tku strongly in Lq(Ω),

where q = p−+p∗−
2 .

As {T1un} is bounded in W
1,p(·)
0 (Ω) from (3.3), recalling Lemma 2.6, there exist a sub-

sequence {u1
n} of {un} and a function v1 ∈ Lq(Ω) with |v1| ≤ 1 such that

T1u
1
n → v1 strongly in Lq(Ω).

As {T2u
1
n} is bounded in W

1,p(·)
0 (Ω), there exist a subsequence {u2

n} of {u1
n} and a function

v2 ∈ Lq(Ω) with |v2| ≤ 2 such that

T2u
2
n → v2 strongly in Lq(Ω).

By the same procedures, for every positive integer k, we find there exist a subsequence
{uk

n} of {uk−1
n } and a function vk ∈ Lq(Ω) with |vk| ≤ k such that

Tkuk
n → vk strongly in Lq(Ω).

Set un = un
n, n = 1, 2, · · · . Then we have, for every positive integer k,

Tkun → vk strongly in Lq(Ω).

Let l, k be any two positive integers with l < k. Noting the equality

Tl(Tkun) = Tlu
n,

and sending n →∞, we conclude that

Tlvk = vl.

It follows from the construction of vk that

Ω = {0 ≤ |v1| < 1} ∪ {|v1| = 1} ∪ {a negligible set}
= {0 ≤ |v1| < 1} ∪ {1 ≤ |v2| < 2} ∪ {|v2| = 2} ∪ {a negligible set}
= · · · · · ·
=

⋃
k=1

{k − 1 ≤ |vk| < k}
⋃
{a negligible set}.

Then we define a measurable function u in Ω by

u(x) =

{
vk(x) when k − 1 ≤ |vk(x)| < k, for k = 1, 2, · · · ,

0 a negligible set,

which satisfies that
Tku = vk, for k = 1, 2, · · · .

Step 2. Prove the convergence in measure of {un} and find its subsequence which is
almost everywhere convergent in Ω.

For every fixed ε > 0, and every positive integer k, we know that

{|un − um| > ε} ⊂ {|un| > k} ∪ {|um| > k} ∪ {|Tk(un)− Tk(um)| > ε}.
Recalling the convergence of {Tkun} in Lq(Ω) and Proposition 2.7, we conclude that

lim sup
n,m→∞

meas{|un − um| > ε} ≤ C(p(·), ‖f‖L1(Ω), |F |p(·)
)
k−α,

where α = p∗−(1− 1
p−

) > 0.
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Because of the arbitrariness of k, we prove that

lim sup
n,m→∞

meas{|un − um| > ε} = 0,

which implies the convergence in measure of {un}, and then we find an a.e. convergent
subsequence (still denoted by {un}) in Ω such that

un → u a.e. in Ω. (3.4)

In the following we denote {un} by {un} for simplicity of notation.

Step 3. We prove that Tk(un) strongly converges to Tk(u) in W
1,p(x)
0 (Ω), for every k > 0.

Since set {(k, h)|k, h = 1, 2, · · · } is countable, using the boundedness of Tk(un) and
T2k(un − Th(un)) in W

1,p(·)
0 (Ω) and the diagonal procedures, we draw a subsequence (still

denoted by {un}) from {un} such that, for every pair of positive integers k, h,

Tk(un) ⇀ Tk(u) weakly in W
1,p(·)
0 (Ω), (3.5)

T2k(un − Th(un)) ⇀ T2k(u− Th(u)) weakly in W
1,p(·)
0 (Ω) (3.6)

and

T2k(un − Th(un) + Tk(un)− Tk(u)) ⇀ T2k(u− Th(u)) weakly in W
1,p(·)
0 (Ω). (3.7)

First we prove that this subsequence {un} satisfies that Tkun strongly converges to Tku

in W
1,p(·)
0 (Ω) for every positive integer k.

Fix a positive integer k. Let h be a positive integer satisfying h > k. We choose

wn = T2k

(
un − Th(un) + Tk(un)− Tk(u)

)
as a test function in (3.2). If we set M = 4k + h, then it is easy to see that ∇wn = 0 where
|un| > M . Therefore, we may write the weak form of (3.2) as∫

Ω

|∇TM (un)|p(x)−2∇TM (un) · ∇wn dx =
∫

Ω

fnwn dx +
∫

Ω

Fn · ∇wn dx.

Splitting the integral in the left-hand side on the sets where |un| ≤ k and where |un| > k
and discarding some nonnegative terms, we find∫

Ω

|∇TM (un)|p(x)−2∇TM (un) · ∇T2k(un − Th(un) + Tk(un)− Tk(u)) dx

≥
∫

Ω

|∇Tk(un)|p(x)−2∇Tk(un) · ∇(Tk(un)− Tk(u)) dx

−
∫
{|un|>k}

∣∣|∇TM (un)|p(x)−2∇TM (un)
∣∣|∇Tk(u)| dx.

It follows from the above inequality that∫
Ω

(|∇Tk(un)|p(x)−2∇Tk(un)− |∇Tk(u)|p(x)−2∇Tk(u)) · ∇(Tk(un)− Tk(u)) dx

≤
∫
{|un|>k}

∣∣|∇TM (un)|p(x)−2∇TM (un)
∣∣|∇Tk(u)| dx

+
∫

Ω

fnT2k(un − Th(un) + Tk(un)− Tk(u)) dx

+
∫

Ω

Fn · ∇T2k(un − Th(un) + Tk(un)− Tk(u)) dx
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−
∫

Ω

|∇Tk(u)|p(x)−2∇Tk(u) · ∇(Tk(un)− Tk(u)) dx

= I1 + I2 + I3 + I4. (3.8)

Now we show the limits of I1, I2, I3 and I4 are zeros when n, and then h tend to infinity
respectively.

Limit of I1. We observe that |∇TM (un)|p(x)−2∇TM (un) is bounded in Lp′(x)(Ω), and
by the Lebesgue dominated convergence theorem χ{|un|>k}|∇Tk(u)| converges strongly in
Lp(x)(Ω) to χ{|u|>k}|∇Tk(u)|, which is zero, as n tends to infinity. Thus we obtain

lim
n→+∞

I1 = lim
n→+∞

∫
{|un|>k}

∣∣|∇TM (un)|p(x)−2∇TM (un)
∣∣|∇Tk(u)| dx = 0. (3.9)

Limit of I2. Notice that

I2 ≤
∫

Ω

|fn − f ||T2k(un − Th(un) + Tk(un)− Tk(u))| dx

+
∫

Ω

|fT2k(un − Th(un) + Tk(un)− Tk(u))| dx

≤ 2k

∫
Ω

|fn − f | dx +
∫

Ω

|fT2k(un − Th(un) + Tk(un)− Tk(u))| dx.

Since fn is strongly compact in L1(Ω), using (3.4) and the Lebesgue dominated conver-
gence theorem, we have

lim
h→+∞

lim
n→+∞

|I2| ≤ lim
h→+∞

∫
Ω

|fT2k(u− Th(u))| dx = 0. (3.10)

Limit of I3. If we take T2k(un − Th(un)) as a test function in (3.2), we proceed as in the
beginning of the proof to have∫

Ω

|∇T2k(un − Th(un))|p(x) dx ≤ C
(
k, p(·), ‖f‖L1(Ω), |F |p(·)

)
,

where C is a positive constant that does not depend on h. Since

T2k(un − Th(un)) ⇀ T2k(u− Th(u)) weakly in W
1,p(x)
0 (Ω),

we know ∫
Ω

|∇T2k(u− Th(u))|p(x) dx ≤ C
(
k, p(·), ‖f‖L1(Ω), |F |p(·)

)
.

It follows from the strong convergence of Fn in (Lp′(x)(Ω))N , (3.7), Lemma 2.1 and Lemma
2.2 that

lim
n→+∞

I3 =
∫

Ω

F · ∇T2k(u− Th(u)) dx

=
∫
{h≤|u|≤h+2k}

F · ∇T2k(u− Th(u)) dx

≤ 2|F |p′(·),{h≤|u|≤h+2k} max
{(∫

Ω

|∇T2k(u− Th(u))|p(x) dx
)1/p−

,( ∫
Ω

|∇T2k(u− Th(u))|p(x) dx
)1/p+

}
≤ C|F |p′(·),{h≤|u|≤h+2k}.
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In view of the absolute continuity of the integral, we have

lim
h→+∞

lim
n→+∞

I3 = lim
h→+∞

∫
Ω

F · ∇T2k(u− Th(u)) dx = 0. (3.11)

Limit of I4. Recalling (3.5), we have

lim
n→+∞

I4 = 0. (3.12)

Therefore, passing to the limits in (3.8) as n, and then h tend to infinity, by means of
(3.9), (3.10), (3.11) and (3.12), we deduce that

lim
n→+∞

E(n) = 0,

where

E(n) =
∫

Ω

(
|∇Tk(un)|p(x)−2∇Tk(un)− |∇Tk(u)|p(x)−2∇Tk(u)

)
· ∇(Tk(un)− Tk(u)) dx.

We recall the following well-known inequalities: for any two real vectors a, b ∈ RN ,

(a|a|p−2 − b|b|p−2)(a− b) ≥ c(p)|a− b|p, if p ≥ 2

and for every ε ∈ (0, 1],

|a− b|p ≤ c(p)ε(p−2)/p(a|a|p−2 − b|b|p−2)(a− b) + ε|b|p, if 1 < p < 2,

where c(p) = 21−p

p−1 when p ≥ 2 and c(p) = 32−p

p−1 when 1 < p < 2.
Therefore, we have∫

{x∈Ω:p(x)≥2}
|∇Tk(un)−∇Tk(u)|p(x) dx ≤ 2p+−1(p+ − 1)E(n) (3.13)

and ∫
{x∈Ω:1<p(x)<2}

|∇Tk(un)−∇Tk(u)|p(x) dx

≤ 32−p−

p− − 1
· ε(p−−2)/p−E(n) + ε

∫
Ω

|∇Tk(u)|p(x) dx. (3.14)

Since E(n) → 0 as n → +∞, then using the arbitrariness of ε and ∇Tk(u) is bounded in
(Lp(x)(Ω))N , we conclude that

lim
n→+∞

∫
Ω

|∇Tk(un)−∇Tk(u)|p(x) dx = 0, (3.15)

which implies that, for every positive integer k,

Tk(un) → Tk(u) strongly in W
1,p(·)
0 (Ω).

Moreover, for every positive real number r, there exists a positive integer k such that r ≤ k.
Recalling the fact that Tr(Tk(·)) = Tr(·) and

Tr(Tk(un)) → Tr(Tk(u)) strongly in W
1,p(·)
0 (Ω),

we have, for every r > 0,

Tr(un) → Tr(u) strongly in W
1,p(·)
0 (Ω), (3.16)

which also implies that,

|∇Tr(un)|p(x)−2∇Tr(un) → |∇Tr(u)|p(x)−2∇Tr(u) in (Lp′(x)(Ω))N . (3.17)
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Step 4. Show that u is an entropy solution.
Now we choose vn = Tk(un−φ) as a test function in (3.2) for k > 0 and φ ∈ W

1,p(·)
0 (Ω)∩

L∞(Ω). We note that, if L = k + ‖φ‖L∞(Ω) and n > L, then∫
Ω

|∇un|p(x)−2∇un · ∇Tk(un − φ) dx =
∫

Ω

|∇TL(un)|p(x)−2∇TL(un) · ∇Tk(un − φ) dx

and ∫
Ω

|∇TL(un)|p(x)−2∇TL(un) · ∇Tk(un − φ) dx

=
∫

Ω

fnTk(un − φ) dx +
∫

Ω

Fn · ∇Tk(un − φ) dx.

Using (3.5) and (3.17), we pass to the limits as n tends to infinity to conclude∫
Ω

|∇u|p(x)−2∇u · ∇Tk(u− φ) dx =
∫

Ω

fTk(u− φ) dx +
∫

Ω

F · ∇Tk(u− φ) dx,

for every k > 0 and every φ ∈ W
1,p(·)
0 (Ω) ∩ L∞(Ω). Therefore, we finish the proof of the

existence of entropy solutions.
(2) Uniqueness of entropy solutions.
Suppose that u and v are two entropy solutions of problem (1.1). We write the entropy

equality (1.4) corresponding to solution u with test function Th(v) and v with test function
Th(u). Add up both equalities, we find∫

{|u−Th(v)|≤k}

[
|∇u|p(x)−2∇u− F

]
· ∇Tk(u− Th(v)) dx

+
∫
{|v−Th(u)|≤k}

[
|∇v|p(x)−2∇v − F

]
· ∇Tk(v − Th(u)) dx

=
∫

Ω

f
[
Tk(u− Th(v)) + Tk(v − Th(u))

]
dx. (3.18)

First we consider the right-hand side of (3.18). Noting that

Tk(u− Th(v)) + Tk(v − Th(u)) = 0 in {|u| ≤ h, |v| ≤ h},
we obtain ∣∣∣ ∫

Ω

f
[
Tk(u− Th(v)) + Tk(v − Th(u))

]
dx

∣∣∣
≤ 2k

( ∫
{|u|>h}

|f | dx +
∫
{|v|>h}

|f | dx
)
.

Since both meas {|u| > h} and meas {|v| > h} tend to 0 as h goes to infinity from Proposition
2.7, the right-hand side of (3.18) tends to 0 as h tends to ∞.

We will reach the conclusion u = v after discarding some nonnegative but uninteresting
terms and passing to the limits in (3.18). We proceed by splitting the integrals above into
the contributions corresponding to different integration sets. For the left-hand side of (3.18),
let us denote (we omit the dependence on x ∈ Ω for the sake of brevity.)

A0 = {|u− v| ≤ k, |u| ≤ h, |v| ≤ h},
A1 = {|u− Th(v)| ≤ k, |v| > h}, A′

1 = {|v − Th(u)| ≤ k, |u| > h},
A2 = {|u− Th(v)| ≤ k, |v| ≤ h, |u| > h}, A′

2 = {|v − Th(u)| ≤ k, |u| ≤ h, |v| > h}.
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Then we have {|u− Th(v)| ≤ k} = A0 ∪A1 ∪A2 and {|v− Th(u)| ≤ k} = A0 ∪A′
1 ∪A′

2. On
the set A0 the left-hand side of (3.18) is equal to∫

A0

[|∇u|p(x)−2∇u− |∇v|p(x)−2∇v] · ∇(u− v) dx.

On the set A1, for the first term of the left-hand side of (3.18) we have∫
A1

[|∇u|p(x)−2∇u− F ] · ∇u dx ≥ −
∫

A1

F · ∇u dx.

By Lemma 2.1, we get ∫
A1

F · ∇u dx ≤ 2|F |p′(x),A1 |∇u|p(x),A1 .

Since measA1 tends to zero as h tends to infinity, we have that |F |p′(x),A1 tends to zero. If
we prove that |∇u|p(x),A1 is bounded with respect to h, then the term with A1 will converge
to zero. We decompose A1 as

A1 = {v > h, |u− h| ≤ k} ∪ {v ≤ −h, |u + h| ≤ k} = A+
1 ∪A−

1 .

On A+
1 (and the same for A−

1 ) we have −k ≤ u− h ≤ k, and so h− k ≤ u ≤ h + k. Hence
A+

1 ⊆ Bh−k,2k, where Bh,k = {h ≤ |u| ≤ h + k}. Choosing φ = Th(u) in (1.4) and using
Young’s inequality, we can get ∫

Bh,k

|∇u|p(x) dx ≤ C.

Thus, from Lemma 2.2 we have

|∇u|p(x),A1 ≤ C max
{( ∫

A1

|∇u|p(x) dx
)1/p−

,
( ∫

A1

|∇u|p(x) dx
)1/p+

}
≤ C max

{( ∫
Bh−k,2k

|∇u|p(x) dx
)1/p−

,
( ∫

Bh−k,2k

|∇u|p(x) dx
)1/p+

}
≤ C,

that is what we need. In the same way we can estimate the second term of (3.18) on the set
A′

1. Therefore, we obtain

lim sup
h→∞

( ∫
A1

[
|∇u|p(x)−2∇u− F

]
· ∇u dx +

∫
A′

1

[
|∇v|p(x)−2∇v − F

]
· ∇v dx

)
≥ 0.

On the set A2 (and the same estimates can be done on A′
2), we have∫

A2

[
|∇u|p(x)−2∇u− F

]
· ∇(u− v) dx ≥−

∫
A2

[
|∇u|p(x)−2∇u− F

]
· ∇v dx

−
∫

A2

F · ∇u dx. (3.19)

By the same reasoning, the second term of the right-hand side of (3.19) tends to zero as h
tends to infinity, since measA2 tends to zero as h tends to infinity. We split A2 as A+

2 ∪A−
2 ,

where

A+
2 = {|u− v| ≤ k, |v| ≤ h, u > h}, A−

2 = {|u− v| ≤ k, |v| ≤ h, u < −h}.
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On A+
2 (and A−

2 can be treated in the same way), we have v ≤ h and −k ≤ u − v ≤ k, so
that v−k ≤ u ≤ v +k ≤ h+k; since v−k > h, then A+

2 ⊆ Bh,k. Using the same argument,
we obtain the result. For the first term of the right-hand side of (3.19) we have∫

A2

[
|∇u|p(x)−2∇u− F

]
· ∇v dx

≤ 2
(∣∣|∇u|p(x)−1

∣∣
p′(x),{h≤|u|≤h+k} + |F |p′(x)

)
|∇v|p(x),{h−k≤|v|≤h},

and the right-hand side tends to zero as h → ∞ for every k > 0 thanks to Proposition 2.8
and Lemma 2.2. Summing up the results obtained for A0, A1, A

′
1, A2 and A′

2, we have

lim
h→∞

∫
A0

[
|∇u|p(x)−2∇u− |∇v|p(x)−2∇v

]
· ∇(u− v) dx = 0,

that is ∫
|u−v|≤k

[
|∇u|p(x)−2∇u− |∇v|p(x)−2∇v

]
· ∇(u− v) dx = 0,

for every k > 0. Thus, we have ∇u = ∇v a.e. in Ω.
Finally, from Lemma 2.4, we have

|Tk(u− v)|p(x) ≤ C|∇Tk(u− v)|p(x) = 0, for all k > 0,

and hence u = v a.e. in Ω. Therefore we obtain the uniqueness of entropy solutions. This
completes the proof of Theorem 1.4. �

Given two bounded measurable functions p(·), q(·) : Ω → R, we write

q(·) � p(·) if (p− q)− > 0.

Remark 3.1. If u is an entropy solution of problem (1.1), then following the arguments in
[33] by some necessary changes and using some a priori estimates in Marcinkiewicz for u
and ∇u, we can obtain that |u|q(·) ∈ L1(Ω), for all 0 � q(·) � q0(·), and |∇u|q(·) ∈ L1(Ω),
for all 0 � q(·) � q1(·), where

q0(·) :=
p∗(·)
p′+

and q1(·) :=
q0(·)

q0(·) + 1
p(·).

Next, we prove that the entropy solution u is also a renormalized solution of problem
(1.1) and the renormalized solution of problem (1.1) is unique.

Proof of Theorem 1.5.
(1) The entropy solution is a renormalized solution.
First we observe that the entropy solution u in Theorem 1.4 satisfies Tk(u) ∈ W

1,p(·)
0 (Ω),

for given k > 0. Choosing a = 1 in Proposition 2.8, we obtain the renormalized condition,
i.e.,

lim
k→+∞

∫
{k≤|u|≤k+1}

|∇u|p(x) dx = 0.

Let {un} be a sequence constructed in (3.2), which satisfies Tk(un) strongly converges to
Tk(u) in W

1,p(x)
0 (Ω), for every k > 0.

Let S ∈ W 1,∞(R) be such that suppS ⊂ [−M,M ] for some M > 0. For every ϕ ∈ C∞
0 (Ω),

S(un)ϕ ∈ W
1,p(x)
0 (Ω) is a test function in (3.2). It yields∫

Ω

[S(un)|∇un|p(x)−2∇un · ∇ϕ + S′(un)|∇un|p(x)ϕ] dx
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=
∫

Ω

[fnS(un)ϕ + Fn · ∇(S(un)ϕ)] dx. (3.20)

For the left-hand side of (3.20), because of suppS′ ⊂ [−M,M ] we know

S(un)|∇un|p(x)−2∇un = S(un)|∇TM (un)|p(x)−2∇TM (un)

and
S′(un)|∇un|p(x) = S′(un)|∇TM (un)|p(x).

Using (3.4), (3.16) and (3.17), we have

S(un)|∇TM (un)|p(x)−2∇TM (un) → S(u)|∇TM (u)|p(x)−2∇TM (u) in (Lp′(·)(Ω))N

and
S′(un)|∇TM (un)|p(x) → S′(u)|∇TM (u)|p(x) in L1(Ω).

Noting that

S(u)|∇TM (u)|p(x)−2∇TM (u) = S(u)|∇u|p(x)−2∇u,

S′(u)|∇TM (u)|p(x) = S′(u)|∇u|p(x),

we deduce

S(un)|∇un|p(x)−2∇un → S(u)|∇u|p(x)−2∇u in (Lp′(·)(Ω))N

and
S′(un)|∇un|p(x) → S′(u)|∇u|p(x) in L1(Ω).

For the right-hand side of (3.20), since ∇(S(un)ϕ) = ∇(S(TM (un))ϕ), thanks to the
strong convergence of TM (un), fn and Fn, it is easy to pass to the limits in the right-hand
side terms. Therefore, we obtain∫

Ω

[S(u)|∇u|p(x)−2∇u · ∇ϕ + S′(u)|∇u|p(x)ϕ] dx =
∫

Ω

[fS(u)ϕ + F · ∇(S(u)ϕ)] dx,

which is (ii) in Definition 1.3. This completes the proof of the existence of renormalized
solutions.

(2) Uniqueness of renormalized solutions.
Now we prove the uniqueness of renormalized solutions for problem (1.1) by choosing an

appropriate test function. Let u and v be two renormalized solutions for problem (1.1). Fix
a positive number k. For σ > 0, let Sσ be the function defined by

Sσ(r) = r if |r| < σ,

Sσ(r) = (σ +
1
2
)∓ 1

2
(r ∓ (σ + 1))2 if σ ≤ ±r ≤ σ + 1,

Sσ(r) = ±(σ +
1
2
) if ± r > σ + 1.

(3.21)

It is obvious that 
S′σ(r) = 1 if |r| < σ,

S′σ(r) = σ + 1− |r| if σ ≤ |r| ≤ σ + 1,

S′σ(r) = 0 if |r| > σ + 1.

It is easy to check Sσ ∈ W 2,∞(R) with suppS′σ ⊂ [−σ − 1, σ + 1] and suppS′′σ ⊂ [σ, σ +
1] ∪ [−σ − 1,−σ]. Therefore, we may take S = S′σ in (1.5) to have∫

Ω

[S′σ(u)|∇u|p(x)−2∇u · ∇ϕ + S′′σ(u)|∇u|p(x)ϕ] dx =
∫

Ω

[fS′σ(u)ϕ + F · ∇(S′σ(u)ϕ)] dx
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and∫
Ω

[S′σ(v)|∇v|p(x)−2∇v · ∇ϕ + S′′σ(v)|∇v|p(x)ϕ] dx =
∫

Ω

[fS′σ(v)ϕ + F · ∇(S′σ(v)ϕ)] dx.

As Tk(Sσ(u) − Sσ(v)) ∈ W
1,p(·)
0 (Ω) ∩ L∞(Ω), we plug ϕ = Tk(Sσ(u) − Sσ(v)) as a test

function in the above equalities and subtract them to obtain that

J1 + J2 = J3 + J4 + J5, (3.22)

where

J1 =
∫

Ω

(
S′σ(u)|∇u|p(x)−2∇u− S′σ(v)|∇v|p(x)−2∇v

)
· ∇Tk(Sσ(u)− Sσ(v)) dx,

J2 =
∫

Ω

[S′′σ(u)|∇u|p(x) − S′′σ(v)|∇v|p(x)]Tk(Sσ(u)− Sσ(v)) dx,

J3 =
∫

Ω

f(S′σ(u)− S′σ(v))Tk(Sσ(u)− Sσ(v)) dx,

J4 =
∫

Ω

Tk(Sσ(u)− Sσ(v))F · ∇(S′σ(u)− S′σ(v)) dx,

J5 =
∫

Ω

F (S′σ(u)− S′σ(v)) · ∇Tk(Sσ(u)− Sσ(v)) dx.

We estimate J1, J2 and J3 one by one. Writing

J1 =
∫

Ω

[
|∇Sσ(u)|p(x)−2∇Sσ(u)− |∇Sσ(v)|p(x)−2∇Sσ(v)

]
· ∇Tk(Sσ(u)− Sσ(v)) dx

+
∫

Ω

[
S′σ(u)− S′σ(u)|S′σ(u)|p(x)−2

]
|∇u|p(x)−2∇u · ∇Tk(Sσ(u)− Sσ(v)) dx

−
∫

Ω

[
S′σ(v)− S′σ(v)|S′σ(v)|p(x)−2

]
|∇v|p(x)−2∇v · ∇Tk(Sσ(u)− Sσ(v)) dx

:= J1
1 + J2

1 + J3
1 ,

and setting σ ≥ k, we have

J1
1 ≥

∫
{|u−v|≤k}∩{|u|,|v|≤k}

(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v) · ∇(u− v) dx. (3.23)

Recalling suppS′σ ⊂ [−σ − 1, σ + 1] and suppS′′σ ⊂ [σ, σ + 1] ∪ [−σ − 1,−σ], we obtain

|J2
1 | ≤2

( ∫
{σ≤|u|≤σ+1}

|∇u|p(x) dx +
∫
{σ≤|u|≤σ+1}∩{|v|≤σ+1}∩{|Sσ(u)−Sσ(v)|≤k}

|∇u|p(x)−1|∇v| dx
)

≤2
( ∫

{σ≤|u|≤σ+1}
|∇u|p(x) dx +

∫
{σ≤|u|≤σ+1}∩{σ−k≤|v|≤σ+1}

|∇u|p(x)−1|∇v| dx
)

≤C
( ∫

{σ≤|u|≤σ+1}
|∇u|p(x) dx +

∫
{σ−k≤|v|≤σ+1}

|∇v|p(x) dx
)
.

And we may get the similar estimate for J3
1 . Furthermore, we have

|J2| ≤ C
( ∫

{σ≤|u|≤σ+1}
|∇u|p(x) dx +

∫
{σ≤|v|≤σ+1}

|∇v|p(x) dx
)
.

From the above estimates and (i) in Definition 1.3, we obtain

lim
σ→+∞

(|J2
1 |+ |J3

1 |+ |J2|) = 0.
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Observing

f(S′σ(u)− S′σ(v)) → 0 strongly in L1(Ω)

as σ → +∞ and using the Lebesgue dominated convergence theorem, we deduce that

lim
σ→+∞

|J3| = 0.

From Lemma 2.1 and Sσ ∈ W 2,∞(R), we have

|J4| ≤ k

∫
Ω

|F |(|S′′σ(u)∇u|+ |S′′σ(v)∇v|)

≤ k

∫
{σ≤|u|≤σ+1}

|F ||∇u| dx +
∫
{σ≤|v|≤σ+1}

|F ||∇v| dx

≤ 2k|F |p′(·)
(
|∇u|p(·),{σ≤|u|≤σ+1} + |∇v|p(·),{σ≤|v|≤σ+1}

)
.

By means of Lemma 2.2 and (i) in Definition 1.3, we obtain that

lim
σ→+∞

|J4| = 0.

Next we show
lim

σ→+∞
|J5| = 0.

Write

|J5| ≤
∫

Ω

|F ||S′σ(u)− S′σ(v)|T ′
k(Sσ(u)− Sσ(v))|S′σ(u)∇u− S′σ(v)∇v| dx

=
∫

Ω

G(u, v) dx. (3.24)

We divide the estimate of J5 into several cases according to the different integration sets.
Denote

E1 = {|u| ≤ σ, |v| ≤ σ} ∪ {|u| ≥ σ + 1, |v| ≥ σ + 1},
E2 = {|u| ≤ σ, |v| ≥ σ + 1} ∪ {|v| ≤ σ, |u| ≥ σ + 1} = E21 ∪ E22,

E3 = {|u| ≤ σ, σ ≤ |v| ≤ σ + 1} ∪ {|v| ≤ σ, σ ≤ |u| ≤ σ + 1} = E31 ∪ E32,

E4 = {σ ≤ |u| ≤ σ + 1, σ ≤ |v| ≤ σ + 1},
E5 = {σ ≤ |u| ≤ σ + 1, |v| ≥ σ + 1} ∪ {σ ≤ |v| ≤ σ + 1, |u| ≥ σ + 1}.

It is obvious that Ω = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5.
From the definition of Sσ and suppS′σ ⊂ [−σ−1, σ+1], we deduce the following estimates.
Estimate on E1. ∫

E1

G(u, v) dx = 0.

Estimate on E2.∫
E21

G(u, v) dx ≤
∫
{|Sσ(u)−Sσ(v)|≤k}∩{|u|≤σ}∩{|v|≥σ+1}

|F ||∇u| dx

≤
∫
{σ−k≤|u|≤σ}

|F ||∇u| dx

and ∫
E22

G(u, v) dx ≤
∫
{σ−k≤|v|≤σ}

|F ||∇v| dx.
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Estimate on E3.∫
E31

G(u, v) dx ≤
∫
{|Sσ(u)−Sσ(v)|≤k}∩{|u|≤σ}∩{σ≤|v|≤σ+1}

G(u, v) dx

≤ 2
( ∫

{σ−k≤|u|≤σ}
|F ||∇u| dx +

∫
{σ−k≤|v|≤σ+1}

|F ||∇v| dx
)

and ∫
E32

G(u, v) dx ≤ 2
( ∫

{σ−k≤|u|≤σ+1}
|F ||∇u| dx +

∫
{σ−k≤|v|≤σ}

|F ||∇v| dx
)
.

Estimate on E4.∫
E4

G(u, v) dx ≤ 2
( ∫

{σ≤|u|≤σ+1}
|F ||∇u| dx +

∫
{σ≤|v|≤σ+1}

|F ||∇v| dx
)
.

Estimate on E5.∫
E5

G(u, v) dx ≤
∫
{σ≤|u|≤σ+1}

|F ||∇u| dx +
∫
{σ≤|v|≤σ+1}

|F ||∇v| dx.

Summing up the above estimates, we have

|J5| ≤
∫

Ω

G(u, v) dx ≤ C
( ∫

{σ−k≤|u|≤σ+1}
|F ||∇u| dx +

∫
{σ−k≤|v|≤σ+1}

|F ||∇v| dx
)
,

which implies from Lemma 2.1, Lemma 2.2 and (i) in Definition 1.3 that

lim
σ→+∞

|J5| = 0.

Therefore, sending σ → +∞ in (3.22) and recalling (3.23), we have∫
{|u|≤ k

2 ,|v|≤ k
2 }

(|∇u|p(x)−2 − |∇v|p(x)−2∇v) · ∇(u− v) dx = 0,

which implies ∇u = ∇v a.e. on the set
{
|u| ≤ k

2
, |v| ≤ k

2
}
. Since k is arbitrary, we conclude

that ∇u = ∇v a.e. in Ω.
Moreover, it follows from Lemma 2.4 that

|Tk(u− v)|p(x) ≤ C|∇Tk(u− v)|p(x) = 0, for all k > 0,

and hence u = v a.e. in Ω. Therefore we obtain the uniqueness of renormalized solutions.
This completes the proof of Theorem 1.5. �
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