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Abstract
Standards sequence as well as express 
priority. On what basis? Learning 
trajectories sequence through empirical 
investigation and theory. The sequence, 
as far as it goes, has empirical validity, 
but only some sequences have been 
developed. Standards, in contrast, must 
choose what students need to learn as a 
matter of policy. This article will discuss 
issues of sequence, focus and coherence 
in mathematics standards from the 
perspective of the Common Core State 
Standards (CCSS) for Mathematics in 
the United States of America. 

Decisions about sequence in standards 
must balance the pull of three 
important dimensions of progression: 
cognitive development, mathematical 
coherence, and the pragmatics of 
instructional systems. Standards are 
written as though students in the 
class have learned approximately 100 
per cent of preceding standards. This 
is wild fiction in any real classroom. 
This difference between the genre 
convention of ‘immaculate progression’ 
in standards and the wide distribution 
of student readiness in real classrooms 
is a dangerous difference to ignore. 
Each student arrives at the day’s lesson 
with his or her own mathematical 
biography, whatever the student 
learned on their personal trajectory 
through mathematics. A spectacular 
diversity of such personal learning 
trajectories (PLoTs) faces the teacher 
at the beginning of each lesson. There 
are two related manifolds in play 
during each lesson: the manifold of 
PLoTs (personal learning trajectories) 
in the classroom and the manifold of 
learning trajectories (LTs) that enable 
the learning of the mathematics being 
taught. As real as these trajectories 

may be, neither is in plain sight. What 
is in plain sight are standards, tests, 
textbooks and students. 

LTs are too complex and too 
conditional to serve directly as 
standards. Still, LTs point the way to 
optimal learning sequences and warn 
against hazards that could lead to 
sequence errors. Teachers and students 
need time within the lesson and across 
the unit to pull students from PLoTs 
along LTs to the SSTs. This requires 
standards to be within reach. 

The types of errors in the way 
standards might be sequenced are 
reviewed. 

Introduction

One sees the difficulty with this 
standards business. If they are 
taken too literally, they don’t go 
far enough, unless you make them 
incredibly detailed. You might give a 
discussion of a couple of examples, 
to suggest how the standards should 
be interpreted in spirit rather than 
by the letter. But of course, this is a 
slippery slope.

Roger Howe, Yale, �
March 15, 2010 �

input to common core standards

… the “sequence of topics and 
performances” that is outlined in 
a body of mathematics standards 
must also respect what is known 
about how students learn. As 
Confrey (2007) points out, 
developing “sequenced obstacles 
and challenges for students…
absent the insights about meaning 
that derive from careful study of 
learning, would be unfortunate and 
unwise.” In recognition of this, the 
development of these Standards 

Standards, what’s the difference?: A view 
from inside the development of the 
Common Core State Standards in the 
occasionally United States
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began with research-based learning 
progressions detailing what is 
known today about how students’ 
mathematical knowledge, skill, and 
understanding develop over time.

Common Core �
State Standards, �

2010

Sequence, Coherence and 
Focus in Standards and 
Learning Trajectories

Learning trajectories sequence levels of 
cognitive actions and objects through 
empirical investigation and theory. 
As result the sequence has empirical 
validity. However, the question of 
what is being sequenced is a matter 
of researcher choice, often driven by 
theoretical considerations related to a 
trajectory of interest to the researcher. 
Some researchers (Clements and 
Sarama, 2010 {this report}) suggest 
these choices include consultation with 
mathematicians and educators to obtain 
valid focus. Still, the choice of what 
mathematics gets research attention is 
not, in itself, a valid basis for deciding 
what to teach. Standards, in contrast, 
begin with choices about what students 
need to learn as a matter of policy.

Standards, perforce, sequence as 
well as express priority. On what 
basis? By design, at least, one hopes. 
To what extent can and has the 
design of mathematics standards 
been informed by research and 
empirically well founded theories of 
learning trajectories? This article will 
contemplate that question for the 
recently developed Common Core 
State Standards in mathematics, the 
closest this nation has ever come to 
national standards. It is an interesting 
tale that leads to fundamental, 
perhaps very productive, questions 
about standards and trajectories, and 
their consequences for instruction, 
curriculum, assessment and the 
management of instruction. 

This article will look at the general 
issues of sequence, focus and 
coherence in mathematics standards 
from the perspective of the Common 
Core State Standards (CCSS) for 
Mathematics. I was a member of the 
small writing team for the CCSS. 
As such, I was part of the design, 
deliberation and decision processes, 
including especially reviewing and 
making sense of diverse input solicited 
and unsolicited. Among the solicited 
input were synthesised ‘progressions’ 
from learning progressions researchers.

Grade level vs. development

Standards sequence for grade levels; 
that is, the granularity of the sequence 
is year-sized. Standards do not explicitly 
sequence within grade level, although 
they are presented in some order that 
makes more or less sense. Sometimes 
this order within grade is compelling, 
thus luring users to over interpret the 
within grade presentation as teaching 
sequence. 

From the start, we encounter a 
problematic convention: standards are 
written as though students have learned 
everything (100% ) in the standards 
for the preceding grade levels.  No 
one thinks most students have learned 
100%, but this genre convention for 
standards seems a sensible approach 
to avoiding redundancy and excessive 
linguistic nuance. But how does this 
mere genre convention drive the 
management of instruction? Test 
construction? Instructional materials and 
their adoption? Teaching? Expectations 
and social justice? Ah…the letter or the 
spirit and the slippery slope.

Cognitive development, 
mathematical coherence and 
pedagogic pragmatics

Decisions about sequence in standards 
must balance the pull of three 
important dimensions of progression: 
cognitive development, mathematical 

coherence, and the pragmatics of 
instructional systems. The situation 
differs for elementary, middle and high 
school grades. In brief: elementary 
standards can be more determined 
by research in cognitive development 
and high school more by the logical 
development of mathematics. Middle 
grades must bridge the two, by no 
means a trivial span. 

For example, the Common Core 
State Standards (CCSS) incorporate a 
progression for learning the arithmetic 
of the base ten number system. A 
logical development mathematically 
would begin with sums of terms which 
are products of a single digit number 
and a power of ten, including rational 
exponents for decimal fractions. Yet no 
one thinks this is the way to proceed. 
Instead, the CCSS for grade 1 ask 
students to,

2.	 �Understand that the two digits 
of a two-digit number represent 
amounts of tens and ones. 
Understand the following as special 
cases:

	 a.	 �10 can be thought of as a 
bundle of ten ones—called a 
“ten.”

	 b.	 �The numbers from 11 to 19 
are composed of a ten and one, 
two, three, four, five, six, seven, 
eight, or nine ones. …

The relative weight to give cognitive 
development vs. mathematical 
coherence gets more tangled with 
multiplication, the number line and 
especially fractions. In third grade, the 
CCSS introduces two concepts of 
fractions:

1.	 �Understand a fraction 1/b as the 
quantity formed by 1 part when a 
whole is partitioned into b equal 
parts; understand a fraction a/b as 
the quantity formed by a parts of 
size 1/b. 
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2.	 �Understand a fraction as a number 
on the number line; represent 
fractions on a number line diagram. 

a.	 �Represent a fraction 1/b on 
a number line diagram by 
defining the interval from 0 to 
1 as the whole and partitioning 
it into b equal parts. Recognize 
that each part has size 1/b and 
that the endpoint of the part 
based at 0 locates the number 
1/b on the number line.

b.	 �Represent a fraction a/b on 
a number line diagram by 
marking off a lengths 1/b from 
0. Recognize that the resulting 
interval has size a/b and that its 
endpoint locates the number a/b 
on the number line.

The first concept relies on student 
understanding of equal partitioning. 
Jere Confrey (2008) and others have 
detailed the learning trajectory of 
children that establishes the attainability 
of this concept of fraction. Yet by itself, 
this concept is isolated from broader 
ideas of number that, for the sake of 
mathematical coherence, are needed 
early in the study of fractions. These 
ideas are established through the 
second standard that defines a fraction 
as a number on the number line. This 
definition has a lot of mathematical 
power and connects fractions in a 
simple way to whole numbers and, 
later, rational numbers including 
negatives (Wu, H., 2007). Simple 
looking forward, but mysterious coming 
from prior knowledge. 

The Writing Team of CCSS received 
wide and persistent input from 
teachers and mathematics educators 
that number lines were hard for 
young students to understand and, 
as an abstract metric, even harder 
to use in support of learning other 
concepts. Third grade, they said, is 
early for relying on the number line 
to help students understand fractions. 
We were warned that as important 

as number lines are as mathematical 
objects of study, number lines confused 
students when used to teach other 
ideas like operations and fractions. In 
other words, include the number line 
as something to learn, but don’t rely on 
it to help students understand that a 
fraction is a number. 

The difference in advice on fractions 
on the number line was not easy to 
sort through. In the end, we placed 
the cognitively sensible understanding 
first and the mathematical coherence 
with the number line second. We 
included both and used both to 
build understanding and proficiency 
with comparing and operations with 
fractions.

Does the number line appear out of 
the blue in third grade? No. We looked 
to the research in learning trajectories 
for measurement and length to see 
how to build a foundation for number 
lines as metric objects (Clements, 
1999c; Nührenbörger, M., 2001; Nunes, 
T., Light, P., and Mason, J.H. 1993). The 
Standards from Asian countries like 
Singapore and Japan were also helpful 
in encouraging a deeper and richer 
development of measurement as a 
foundation for number and quantity. 

Clements and Sarama (2009) 
emphasize the significance of 
measurement in connecting geometry 
and number, and in combining skills 
with foundational concepts such 
as conservation, transitivity, equal 
partitioning, unit, iteration of standard 
units, accumulation of distance, and 
origin. By around age 8, children can 
use a ruler proficiently, create their own 
units, and estimate irregular lengths 
by mentally segmenting objects and 
counting the segments. 

The CCSS foundation for the use of 
the number line with fractions in 3rd 
grade can be found in the 2nd grade 
Measurement standards:

Measure and estimate lengths in 
standard units.

•	 Measure the length of an 
object by selecting and using 
appropriate tools such as rulers, 
yardsticks, meter sticks, and 
measuring tapes. 

•	 Measure the length of an object 
twice, using length units of 
different lengths for the two 
measurements; describe how 
the two measurements relate to 
the size of the unit chosen. 

•	 Estimate lengths using units of 
inches, feet, centimeters, and 
meters.

•	 Measure to determine how 
much longer one object is 
than another, expressing the 
length difference in terms of a 
standard length unit.

Relate addition and subtraction to 
length.

•	 Use addition and subtraction 
within 100 to solve word 
problems involving lengths that 
are given in the same units, 
e.g., by using drawings (such 
as drawings of rulers) and 
equations with a symbol for the 
unknown number to represent 
the problem.

•	 Represent whole numbers as 
lengths from 0 on a number 
line diagram with equally 
spaced points corresponding 
to the numbers 0, 1, 2, …, and 
represent whole-number sums 
and differences within 100 on a 
number line diagram. 

This work in measurement in 2nd 
grade is, in turn, supported by 1st grade 
standards:

•	 Express the length of an object 
as a whole number of length 
units, by laying multiple copies 
of a shorter object (the length 
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unit) end to end; understand 
that the length measurement 
of an object is the number of 
same-size length units that span 
it with no gaps or overlaps. 
Limit to contexts where the 
object being measured is 
spanned by a whole number of 
length units with no gaps or 
overlaps.

This sequence in the CCSS was guided 
by the learning trajectory research. This 
research informed the CCSS regarding 
essential constituent concepts and skills, 
appropriate age and sequence. Yet the 
goal of having number line available 
for fractions came from the need for 
mathematical coherence going forward 
from 3rd grade, rather than from 
learning trajectory research.

Instructional Systems and 
Standards

Perhaps the most important 
consequence of standards is their 
impact on instruction and instructional 
systems. This impact is often mediated 
by high stakes assessments which 
will be dealt with later. Two crucial 
instruction issues will be discussed that 
are too often buried in comforting 
cushions of unexamined assumptions.  
The first issue is, how do the structure, 
properties and behavior of mathematics 
knowledge interact with instruction? 

The second issue arises from the 
way standards are written, as though 
students in the middle of grade 5 have 
learned approximately 100% of what is 
in the standards for grade k-4 and half 
of 5. This is never close to true in any 
real classroom. This difference between 
the genre convention of “immaculate 
progression” in standards and the 
wide distribution of student readiness 
in real classrooms has important 
consequences. It means, for one thing, 
that standards are not a literal portrayal 
of where students are or can be at 
a given point in time. And, for me, 

the negation of ‘can’ negates ‘should’. 
Standards serve a different purpose. 
They map stations through which 
students are lead from wherever they 
start. 

Immaculate progression literalism has 
contributed to confusion about what 
“proficient” means as a test result. Most 
state tests have “proficient” cut scores 
at 60% or less (with guessing allowed 
on multiple choice, [usually 4 choices], 
items that make up close to all of the 
test). Thus even the distribution of 
‘proficient’ students lacks large chunks 
of learning of the standards, at least as 
assessed by the standards based test. 

The rough terrain of prior 
learning where lessons live

The standards based curriculum is a 
sequence through the calendar: year 
to year, month to month, day to day. 
Think of this as a horizontal path 
of concepts and skills. Such a path 
can match textbooks and tests, but 
never the distribution of students in a 
classroom. Beneath the surface of the 
standards sequence trajectory (SST) 
is the underwater terrain of prior 
knowledge. Each student arrives at 
the day’s lesson with his or her own 
mathematical biography, whatever 
the student learned on their personal 
trajectory through mathematics. A 
spectacular diversity of such personal 
learning trajectories (PLoTs) faces the 
teacher at the beginning of each lesson 
(Murata, A., & Fuson, K. C., 2006). 

The teacher, on the other hand, 
brings to this diversity an ambition 
for some mathematics to be learned. 
The mathematics has a location in yet 
another trajectory: the logical sequence 
of ideas which reflects the deductive 
structure of mathematics (MTs). Thus, 
there are three related manifolds in 
play: the PLoTs (personal learning 
trajectories) in the classroom, the MTs 
and the learning trajectories (LTs). As 

real as these trajectories may be, none 
are in plain sight. 

…teaching is like riding a unicycle  
juggling balls you cannot see or count.

What is in plain sight are standards, 
tests, textbooks and students. A 
teacher cannot actually know the 
students’ PLoTs. Nor has research 
mapped  the territory of the standards 
with LTs.. And the MTs are themselves 
a matter of considerable choice in 
starting point, and often beyond the 
mathematical education of the teacher. 
What is real is hard to see, while 
standards flash brightly from every test, 
text and exhortation that comes the 
teacher’s way. 

Learning trajectory research develops 
evidence and evidence based 
trajectories (LTs). Evidence establishes 
that LTs are real for some students, 
a possibility for any student and 
possibly modal trajectories for the 
distribution of students. LTs are too 
complex and too conditional to serve 
directly as standards. Still, LTs point 
the way to optimal learning sequences 
and warn against hazards that could 
lead to sequence errors (see below). 
The CCSS made substantial use of 
LTs, but standards cannot simply be 
LTs; standards have to include the 
essential mathematics, MTs, whether 
we know anything about its location 
in an LT or not, and standards have to 
accommodate the variation in students, 
if not teachers, at each grade level. 

How do and could these four 
trajectories (LTs, MTs PLoTs, and SSTs) 
interact? A system could just leave it 
to individual teachers to reckon the 
optimization among them. It could 
impose strong SSTs as pressure in an 
accountability system, without providing 
for PLoTs or taking advantage of LTs. 
It could name the territory between 
what students bring (PLoTs) and the 
what standards demand (SST) the 
“achievement gap”, a dark void that 
only explains steps not taken rather 
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than which way to go.  It could tell 
teachers to keep turning the pages 
of the textbook based on standards 
according to the planned pace, and rely 
on the shear force of expectation to 
pull students along. At least this would 
create the opportunity to learn, however 
fleeting and poorly prepared students 
might be to take advantage of it. While 
this is better than denial of opportunity, 
it is a hollow, if not cynical, response to 
the promise standards make to students. 
Shouldn’t we do better?

What would be better? Some nations, 
including high performing nations, 
assume in the structure of their 
instructional systems that students 
differ at the beginning of each lesson. 
Asian classrooms, K-5, and mostly 
6-9, follow a daily trajectory of initially 
projecting the divergence of students’ 
development (refracted through the 
day’s mathematics problem/s) into 
the classroom discourse and pulling 
the divergence toward a convergent 
learning target. The premise is: each 
lesson begins with divergence and 
ends with convergence. Such a system 
requires enough time to achieve 
convergence each day, enough time 
on a small number of problems. A 
hurried instructional system cannot 
‘wait’ for students each day. Standards 
must require less to learn rather than 
more each year to make time for daily 
convergence. A system which optimises 
daily convergence will be more robust 
and accumulate less debt in the form of 
students unprepared for the next lesson. 
Such debt compounds. Unlike the 
national debt, it does not compound 
quietly, but makes all the noises of 
childhood and adolescence scorned. 

Start by understanding the task and then 
the people in place who can do their 
parts to accomplish the task. The task is 
to take the domain of PLoTs, the given 
rough terrain of what the distribution of 
students bring, and transform the PLoTs 
to SSTs, give or take. The function that 
can take PLoTs to SSTs is mapped by 

the LTs and MTs. That is, LTs and MTs 
can provide the map from PLoTs to 
SSTs . The map, alas, is of a territory 
that is only partially explored.  There 
are still unknown seas and fears of sea 
monsters and dreams of gold to frighten 
and distract us from the voyage. Still, we 
know enough in elementary grades to 
do what is needed to make LTs a part 
of teacher knowledge and a feature in 
tools for teachers. 

Teachers need knowledge of how 
LTs work and the specifics of LTs that 
will help them understand the most 
common PLoTs they will find among 
their students (Murata, A., & Fuson, K. 
C., 2006). They need knowledge of 
the relevant MTs. And they need tools 
that illuminate rather than obscure 
the PLoTs. They need instructional 
programs and lesson protocols that 
pose SSTs as the finish line, but 
accommodate PLoT variation. They 
need time within the lesson and across 
the unit to pull students from PLoTs 
along LTs to the SSTs. This requires 
standards to be within reach. 

The crucial issue in this situation is 
how well the standards driven texts 
and tests improve the performance 
of the instructional system in moving 
the PLoTs along the LTs. It is quite 
possible for standards to be out of 
whack with LTs and PLoTs so that they 
diminish performance. Standards are 
only a good idea when they usefully 
map underlying LTs and MTs so they 
can help teachers see and respond to 
PLoTs. If the sequence in the standards 
conflicts seriously with LTs or are too 
far removed from PLoTs, they can 
steer the instructional systems away 
from teaching and learning, toward 
statuesque poses facing out and the 
same waste of chances inside.

For example, the CCSS at grade 7 
have a standard for proportional 
relationships.

2.	 �Recognize and represent 
proportional relationships between 
covarying quantities.

a.	 Decide whether two quantities 
are in a proportional 
relationship, e.g., by testing for 
equivalent ratios in a table or 
graphing on a coordinate plane 
and observing whether the 
graph is a straight line through 
the origin.

b.	 Identify the constant of 
proportionality (unit rate) 
in tables, graphs, equations, 
diagrams, and verbal 
descriptions of proportional 
relationships. 

c.	 Represent proportional 
relationships by equations. 
For example, total cost, t, is 
proportional to the number, n, 
purchased at a constant price, 
p; this relationship can be 
expressed as t = pn. 

d.	 Explain what a point (x, y) on 
the graph of a proportional 
relationship means in terms 
of the situation, with special 
attention to the points (0, 0) and 
(1, r) where r is the unit rate.

This standard is the culmination of a 
manifold of progressions and, itself, 
the beginning of more advanced 
progressions. Pat Thompson has 
remarked (2010, advice to standards) 
that proportionality cannot be a single 
progression because it is a whole city 
of progressions. This standard, which 
stands along side other standards 
on ratios and rates, explicitly draws 
on prior knowledge of fractions, 
equivalence, quantitative relationships, 
coordinate graph, unit rate, tables, 
ratios, rates and equations. Implicitly, 
this prior knowledge grows from 
even broader prior knowledge. The 
sequence supporting this Standard 
in the SST barely captures the peaks 
of a simplification of the knowledge 
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structure.  The complexity of the 
manifold of LTs guarantees that the 
distribution of PLoTs in a classroom will 
have splendid variety. 

What could help the teacher 
confronted with the variety of 
readiness? Certainly not pressure to 
“cover” the standards in sequence 
(SST), keep moving along at a good 
pace to make sure all students 
have an ‘opportunity’ to see every 
standard flying by. Perhaps some 
knowledge of the LTs would help 
teachers understand the variety of 
PLoTs and what direction to lead the 
students from wherever they begin 
the lesson. Even hypothetical LTs can 
do more good than harm because 
they conceptualize the student as a 
competent knower and learner in 
the process of learning and knowing 
more (Clements, 2004a). Perhaps a 
system of problems and assignments 
with the diagnostic value of revealing 
how different students see the 
mathematics…how they think about 
it…where they are along the LT. A 
teacher needs the thinking itself, not a 
score that evaluates the thinking.

How do standards express the 
form and substance of what 
students learn?

What is the nature of the ‘things’ 
students learn? Sometimes what is 
wanted is a performance, as in learn 
to ride a bike. Standards, instruction 
and assessment can happily focus on 
the visible performance in such cases. 
But often, in mathematics anyway, is 
a mental action on a mental object, 
reasoning maneuvers and rules, 
representational systems and languages 
for mathematical objects and relations, 
cognitive schema and strategies, webs 
of structured knowledge, and social 
representations, and so on. Many of 
these learned things are systems that 
interact with other systems in thinking, 
knowing and doing. Standards cannot 

express this kind of complexity; they 
refer to some observable surface of 
learning. But this linguistic convenience 
can lead to logical fallacies when we 
attribute unwarranted ‘thinginess’ 
properties to what we actually want 
students to learn. 

The important point is that learned 
things are not things or topics (names) 
and not just standards. A sequence of 
topics or standards skims the surface 
and misses the substance and even 
the form of a subject. Compare, for 
example, the Standard,

•	 Add and subtract fractions with 
unlike denominators (including 
mixed numbers) by replacing 
given fractions with equivalent 
fractions in such a way as to 
produce an equivalent sum or 
difference of fractions with like 
denominators. For example, 2/3 
+ 5/4 = 8/12 + 15/12 = 23/12. (In 
general, a/b + c/d = (ad + bc)/bd.) 

to what the student must actually 
know and do to “meet” the standard 
(for example, Steffe, 2004,2009; 
Confrey et al, 2008, 2009; Wu, 2007; 
Saxe et al, 2005). The standard gives 
a goal, but does not characterize the 
knowledge and competencies needed 
to achieve the goal. While this point 
may seem obvious, it gets lost in the 
compression chambers where systems 
are organized to manage instruction for 
school districts. Devices are installed to 
manage “pacing” and monitor progress 
with “benchmark assessments”. 
These devices treat the grade level 
standards as the form and substance of 
instruction. That is, students are taught 
grade level “standards” instead of 
mathematics. This nonsense is actually 
widespread, especially where pressures 
to “meet standards” are greatest.  

Standards use conventional names and 
phrases for topics in a subject. To what 
do these refer?

If the field had a well understood 
corpus of cognitive actions, situations, 
knowledge etc. then these names 
could refer to parts of this corpus. 
But the field, school mathematics, 
has no such widely understood 
corpus (indeed, it is an important 
hope that common standards will 
lead to common understandings like 
this). What the names refer to, in 
effect, are the familiar conventions 
of what goes on in the classrooms. 
The reference degenerates to the old 
habits of teaching: assignments, grading, 
assessment, explanation, discussion. 
The standards say, ‘Do the usual 
assortment of classroom activities for 
some content that can be sorted into 
the names in the standards. We will 
call this “covering the standards” with 
instructional activity. 

“Covering” has a very tenuous 
relationship with learning. First, there 
are many choices within a topic about 
focus, coherence within and between 
topics, what students should learn to do 
with knowledge, how skillful they need 
to be at what, and so on endlessly. 
Teachers make these choices in many 
different ways. Too often, the choices 
are made in support of a classroom 
behavior management scheme relied 
on by the teacher.  Second, different 
students will get very different learning 
from the same offered activity. Third, 
the quality of the discussion, the 
assigned and produced work, the 
feedback given to students will vary 
widely by teacher working under the 
blessing of the same standard.

Covering is at best weak. When 
combined with standards that are too far 
from the prior knowledge of students, 
and too many; the chemistry gets nasty 
in a hurry. Teachers move on without 
the students; students accumulate 
debts of knowledge (knowledge 
owed to them) and opportunities for 
understanding the next chapter, the next 
course are undermined. 



Research Conference 2010

14

The foregoing discussion of instructional 
systems illustrates the importance (and 
potential for mayhem) in sequencing 
standards. What constituents are 
necessary and sufficient as prior 
knowledge for a given concept or 
action, and how can the constituents 
be arranged to lead up to the target 
concept? This question has many 
local answers that have to be fitted 
together into regions that make some 
sense, if not harmony. Standards are 
further constrained by how much can 
be learned at any one grade level, and 
by the coherence within a grade level. 
These questions are not only design 
choices, but potential sources of error 
with consequences for the viability of 
instruction. The next sections examine 
the types of errors that could menace a 
standards based system.

Types of Sequence Errors 

There are several types of errors with 
serious consequences for students and 
teachers in the way standards might be 
sequenced. For example, a common 
type of sequence error occurs when a 
concept, B depends on A2 version of 
concept A, more evolved than the A1 
version; Standards have only developed 
A1. Student tries to learn B using 
A1 instead of A2. Rate, proportional 
relationships and linearity (B) depend 
on understanding multiplication as a 
scaling comparison (version A2), but 
students may have only developed 
version A1 concept of multiplication, 
the total of things in a groups of b each.

In the CCSS, multiplication is defined in 
grade 3 as a x b = c means a groups of 
b things each is c things. In grade 4, the 
concept of multiplication is extended to 
comparison where c = a x b means c 
is a times larger than b. In grade 5, the 
CCSS has:

5.	 �Interpret multiplication as scaling 
(resizing), by:

a.	 Comparing the size of a product 
to the size of one factor on the 

basis of the size of the other 
factor, without performing the 
indicated multiplication. 

b.	 Explaining why multiplying 
a given number by a fraction 
greater than 1 results in a 
product greater than the 
given number (recognizing 
multiplication by whole 
numbers greater than 1 as a 
familiar case); explaining why 
multiplying a given number by 
a fraction less than 1 results 
in a product smaller than the 
given number; and relating the 
principle of fraction equivalence 
a/b = (n×a)/(n×b) to the effect of 
multiplying a/b by 1.

In grade 6 and 7 rate, proportional 
relationships and linearity build upon 
this scalar extension of multiplication. 
Students who engage these concepts 
with the unextended version of 
multiplication (a groups of b things) 
will have PLoTs that do not support 
the required MTs. This burdens the 
teacher and student with recovering 
through LTs. This will be taxing enough 
without ill sequenced standards 
causing instructional systems to neglect 
extending multiplication.

Major types of sequence errors follow: 

1.	 Unrealistic:

a.	 Too much too fast so gaps in 
learning create sequence issues 
for students, system cannot 
deliver students who are in 
sequence.

b.	 Distribution of prior 
mathematics knowledge and 
proficiency in the student and 
teacher population is too far 
from the standards; no practical 
way to get students in a good 
enough sequence.

2.	 Missing ingredient: 

a.	 A is an essential ingredient of B, 
Standards sequence B before A. 

b.	 Coherence requires progression 
ABC, but standards only have 
AC

c.	 Term is used that has insufficient 
definition for that use.

3.	 Cognitive prematurity: 

a.	 B depends on cognitive actions 
and structures that have not 
developed yet.

b.	 B is a type of schema or 
reasoning system, learner has 
not developed that type of 
schema or system.

c.	 Student develops immature 
version of B and carries it 
forward (see 4)

4.	 Contradiction: 

a.	 Cognitive development entails 
ABC, mathematical logic entails 
CBA.

5.	 �Missing connection: B is about or 
depends on connection between 
X-Y , but X-Y connection not 
established.

6.	 �Interference: 

a.	 B depends on A2 version of A, 
more evolved than A1 version; 
Standards have only developed 
A1. Student tries to learn B using 
A1 instead of A2.

b.	 B belongs nestled between A 
and C, but D is already nestled 
there. When learning B is 
attempted, D interferes.

7.	 Cameo: 

a.	 B is learned but not used for 
a long time. There is no C 
such that C depends on B for 
a long time. B makes a cameo 
appearance and then gets lost in 
the land of free fragments.

8.	 Hard Way:

a.	 C needs some ideas from B, 
but not all the difficult ideas and 
technical details that make B 
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take more time than it is worth 
and make it hard for students to 
find the needed ideas from B, so 
C fails.

b.	 There are multiple possible 
routes to get from A to E, 
standards take an unnecessarily 
difficult route

9.	 Aimless:

a.	 Standards presented as lists that 
lack comprehensible progression.

Types of Focus and Coherence 
Errors

The issues of focus and coherence in 
standards deserves more attention 
than we will give it here. Nonetheless, 
learning trajectories interact with 
coherence and focus in standards. The 
following are critical types of error of 
focus and coherence:

1.	 Sprawl:

a.	 Mile wide, inch deep. Collection 
of standards dilutes the 
importance of each one.

b.	 Standards demand more than 
is possible in the available time 
for many students and teachers, 
so teachers and students forced 
to edit on the fly. This is the 
opposite of focus.

c.	 Standards are just lists without 
enough organisational cues in 
relation to hierarchy of concepts 
and skills

2.	 Wrong grain size

a.	 The granularity is too specific 
or too general. The important 
understanding is at a certain 
level of specificity where the 
structure and the cognitive 
handles are, more specific or 
more general; grain size will not 
match up to prior knowledge, 
mental objects and actions on 
them (see Aristotle Ethics: the 
choice of specificity is a claim 

that should be explicit and 
defended.)

b.	 Too fine: complex ideas are 
chopped up so the main idea 
is lost; the coherence may be 
evoked, but not illuminated. 
Alignment transactions in 
test construction, materials 
development miss the main 
point but ‘cover’ the incidentals. 
Students can perform the 
vertical line test but do not 
know what a function is or how 
functions model phenomena.

c.	 Too broad: includes whatever 
and focuses on nothing in 
particular. 

3.	 Wrong focus

a.	 Focus on answer getting 
methods, often mnemonic 
devices, rather than 
mathematics.

4.	 Narrow focus

a.	 Just skills, or just concepts or 
just process; or just two out of 
three.

5.	 Priorities do not cohere:

a.	 Fragments that have large gaps 
between them; 

b.	 grain size too fine

6.	 Congestion: 

a.	 Some grade levels are congested 
with too much to be learned; 
density precludes focus

b.	 B, C, D are all being learned 
at once, but cognitive actions 
needed for learning can only 
handle one or two at a time. 
Only BC and CD are learned, 
but the essential point is learning 
BCD and the system BC-BD-CD.

7.	 Inelegance:

a.	 AXBYCZ is equivalent to ABC 
and wasted time and cognition 
on –X-Y-Z.

8.	 Waste: 

a.	 Invest time and cognition on B 
and B is not important.

9.	 Resolution of hierarchy: 

a.	 The hierarchal relationship 
between standards is not 
explicated. Details are confused 
with main ideas. 

b.	 The hierarchy of standards does 
not explain relationships among 
ideas, it just collects standards 
into categories.

10.	Excessively literal reading:

a.	 This error is in the reading as 
much as the writing; it leads to 
fragmented interpretation of the 
subject, losing the coherence 
between the standards.

b.	 Reading individual standards as 
individual ingredients of a test. 
when the explicit goal is to 
have the ingredients cook into 
a cake, tasting the uncooked 
ingredients is a poor measure of 
how the cake tastes (although it 
is related). The goal, as stated in 
the grade level introductions and 
the practices standards is for the 
students to cook.

What are Standards? 

Standards are promises. Standards 
promise the student, “Study and learn 
what is here, do your assignments and 
we promise you will do well on the 
test.” We need tests and examinations 
designed to keep that promise. We 
need school systems designed to keep 
the promises.
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