
   

 

 

 

 

INTEGRATIVE SYSTEM BIOLOGY STUDIES ON HIGH THROUGHPUT 

GENOMICS AND PROTEOMICS DATASET 

 

 

 

 

Madhankumar Sonachalam 

 

 

 

 

Submitted to the faculty of the Bioinformatics Graduate Program 

in partial fulfillment of the requirements  for the degree 

Master of Science in Bioinformatics 

in the School of Informatics 

Indiana University 

May 2012 



  ii 

Accepted by the Faculty of Indiana University, in partial fulfillment of 

the requirements for the degree of Master of Science in Bioinformatics 

 

 

 

 

_________________________________ 

Dr. Jake Yue Chen, Ph.D., Chairperson 

 

 

 

 

 

__________________________________ 

Dr. Li Shen, Ph.D 

 

Master’s Thesis  

Committee 

 

 

__________________________________ 

Dr. Yaoqi Zhou, Ph.D 

 

 

 

 



  iii 

 

 

 

 

 

 

 

 

 

 

 

©2012 

Madhankumar Sonachalam 

ALL RIGHTS RESERVED 

 

 

 

 

 

 

 

 

 

 

 

 



  iv 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to  

 Amma & Appa 

  

 

 

 

 

 

 

 

 

 

 

 



  v 

Acknowledgements 

This thesis would not exist if not for the support and guidance of many of my friends and family. 

To each of them I would like to express my gratitude. Furthermore, I would like to explicitly 

mention a select few, whose help has been invaluable to me. 

I owe my most sincere gratitude to my research advisor, Dr. Jake Yue Chen, for his 

motivation, enthusiasm and immense knowledge. His energy, vision, and great efforts had been a 

constant source of inspiration. I am very grateful to him for the constant support and for playing 

a major role in honing my writing and presentation skills. 

Besides my advisor, I would like to thank the rest of my thesis committee Dr.Shen Li and 

Dr. Yaoqi Zhou for their encouragement and insightful comments. I would also like to extend 

my thanks to our collaborators Dr. Tim Ratliff and Dr. Shen Li for providing us an excellent 

dataset to explore various bioinformatics techniques.   

I am grateful to Dr.Xiaogang Wu for his friendly help, constructive criticism, and 

excellent advice during the preparation of this thesis. 

It gives me great pleasure in acknowledging the members of my research group, Ragini 

Pandey, Dr. Fan, Huang Hui for providing insight and encouragement throughout my research 

work. 

My thanks are due to Stephanie Burks and Teresa Hunter of Research and Technical 

Services and Kimberly Melluck of school of informatics for their timely help on computing 

resources. 

Finally, I would like to thank my parents, brother, sister and uncle for supporting me 

always, for having faith in me. Without their encouragement and understanding it would have 

been impossible for me to finish this work. 



  vi 

Chapter 2 in part, quotes from the materials published in Madhankumar Sonachalam, Jeffrey 

Shen, Hui Huang, Xiaogang Wu, Systems biology approach to identify gene network signatures 

for colorectal cancer, Frontiers in System Biology, Accepted. The dissertation author was the 

first author on this work, responsible for design and data analysis. Xiaogang Wu, Hui Huang, 

Madhankumar Sonachalam, Sina Reinhard, Jeffrey Shen, Jake Y. Chen, Reordering Based 

Integrative Expression Profiling for Microarray Classification, BMC Bioinformatics, Accepted. 

The dissertation author was the second author on this work, responsible for Integrative 

Expression Profiling model building and microarray classification. 

Chapter 3 in full, a re-editing of the materials submitted for the publication. Xiaogang Wu, 

Madhankumar Sonachalam, Sungeun Kim, Andrew J Saykin, Li Shen, Jake Y Chen, and 

Alzheimer's Disease Neuroimaging Initiative, Identifying Plasma-Based Subnetwork Signatures 

for Alzheimer's disease using a Multiplex Proteomic Immunoassay Panel in Alzheimer's Disease 

Neuroimaging Initiative cohort. The dissertation author was the first author on this work, 

responsible for design, data analysis and implementation. 

 

 

 

 

 

 

 

 



  vii 

ABSTRACT OF THE DISSERTION 

Madhankumar Sonachalam 

INTEGRATIVE SYSTEM BIOLOGY STUDIES ON HIGHTHROUGHPUT GENOMIC AND PROTEOMIC 

DATASET FOR BIOLOGICAL PATHWAY DISCOVERY 

The post genomic era has propelled us to the view that the biological systems are complex 

network of interacting genes, proteins and small molecules that give rise to biological form and 

function. The past decade has seen the advent of number of new technologies designed to study 

the biological systems on a genome wide scale. These new technologies offers an insight in to 

the activity of thousands of genes and proteins in cell thereby changed the conventional 

reductionist view of the systems. However the deluge of data surpasses the analytical and critical 

abilities of the researches and thereby demands the development of new computational methods. 

Gene expression microarrays can take a snapshot of all the transcriptional activity in a biological 

sample, while it also generates a huge amount of data with intrinsic noise (sample or instrument 

noise), which is still a quite challenging task to interpret it even by exploiting modern 

computational and statistical tools. The challenge no longer lies in the acquisition of gene 

expression profiles, but rather in the interpretation for the results to gain insights into biological 

mechanisms. Gene Set Enrichment Analysis (GSEA) is one of the widely used Gene Set 

Analysis (GSA) methods that aim to test the activity of gene clusters rather than individual 

genes.  

In Chapter 2, we integrated prior knowledge from gene signatures (curated gene sets from 

MSigDB and/or GeneSigDB); gene set enrichment analysis (GSEA), and gene/protein network 

modeling to identify gene network signatures from microarray data. We demonstrated how to 

apply this approach in discovering gene network signatures for colorectal cancer (CRC) from  
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microarray datasets. We compared the network generated from two different gene set sources 

and showed that the integrated network generated from both MSigDB and GeneSigDB can be 

used to identify novel pathways involved in colorectal cancer. 

In Chapter 3, we identified plasma based Subnetwork signatures for Alzheimer’s disease (AD) 

using proteomics dataset. Current plasma based AD signatures uses feature selection methods 

that was originally designed for microarray analysis. We evaluated various feature selection and 

classification approaches to select the best set of features for a specific proteomics dataset. Our 

combination of feature selection and classification techniques showed better performance than 

the existing results and we further provided biological validation by identifying relevant 

Subnetwork signatures. 

Finally, we applied the network based strategy to identify the role of MicroRNA in Myeloid 

Derived Suppressor Cells (MDSC) induced T-Cell Suppression. In Chapter 4, we used network 

based ranking algorithm to prioritize miRNA and genes by utilizing both network topology and 

differential information. We showed that the global and local topology characteristics of the 

miRNA-gene-gene/protein network along with the differential expression values obtained from 

microarray experiment can be used to identify biologically significant pathways. 
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1. INTRODUCTION 

1.1 Motivation 

The term omics refers to the comprehensive analysis of biological systems. A variety of 

omics disciplines have begun to emerge after the Human Genome Project. Genomics deals with 

the systematic use of genomic information and it includes investigations about the function of the 

genes. Transcriptomics examines the expression level of mRNAs of the genes in a given cell 

population. Proteomics focus on the large scale study of proteins while Metabolomics addresses 

the metabolites involved in the cellular process.  

System biology is the study of biology through the systematic perturbation, global read 

out of the multifaceted response through various omics studies and integration of those data to 

formulate predictive models. System biology investigates the behavior and relationships of all 

the elements in a biological system rather than focusing on a single gene or protein.  As a result, 

inputs from various disciplines such as statistics, computer science and mathematics are 

necessary to a “systems” approach of analyzing data. We employed system biology techniques to 

solve complex biological problems using genomics, proteomics and integrated MicroRNA and 

gene expression dataset.   

1.2 Messages 

The sheer volume of data generated in the post genomic era surpasses the analytical and 

critical abilities of a single researcher and demands the new computational methods to assist in 

the analysis of these data. In these projects, we devised new methodologies, integrated existing 

machine learning and network biology techniques to solve various complex biological problems. 

We adapted different strategies depending on the data sets that we are handling; genomics data 

sets are filtered using gene set enrichment techniques and integrated it with network biology to 

explore biological mechanism of colorectal cancer. While for proteomics data, we evaluated 
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various feature selection and classification algorithms to select best features which were then 

used to identify sub-network signatures.  Finally, we combined the miRNA and gene 

transcriptomics data to generate an integrated network which explains the molecular mechanism 

of T-cell suppression in cancer. 

1.3 Microarrays 

Gene expression microarrays can take a snapshot of all the transcriptional activity in a 

biological sample, while it also generates a huge amount of data with intrinsic noise (sample or 

instrument noise), which is still a quite challenging task to interpret it even by exploiting modern 

computational and statistical tools. These high-throughput genomics technologies have 

tremendously changed biomedical research, which allow researchers to simultaneously monitor 

the expression of tens of thousands of genes [1]. Microarray data analysis has also become a 

common practice in many experimental laboratories. Numerous literatures describe the 

innovative insights within microarray data analysis [2, 3]. It has been widely applied into many 

medical areas, including distinguishing disease subtypes [4], identifying candidate 

biomarkers[5], and revealing the underlying molecular mechanisms of disease [6] or drug 

response [7]. There are several repositories such as Gene Expression Omnibus (GEO) and Array 

Express that hosts Microarray dataset from various experiments. 

 

 

 

 

 

 



  3 

2. SYSTEMS BIOLOGY APPROACH TO IDENTIFY GENE NETWORK SIGNATURES FOR COLORECTAL 

CANCER 

2.1 Background 

In microarray analysis, crucial genes show relatively slight changes, and many genes selected 

are also poorly annotated [2]. From a biological perspective, functionally related genes often 

display a coordinated expression to accomplish their roles in the cell [8]. Hence, to translate such 

lists of differentially expressed genes into a functional profile will help us to understand the 

underlying biological phenomena, one approach to aid interpretation is to look for changes in a 

group of genes  with a common function (gene cluster) [2]. 

Accordingly, Gene Set Analysis (GSA) methods aim to test the activity of such gene clusters 

instead of testing the activity of individual genes - individual gene analysis (IGA) [9]. In recent 

years, GSA approach has received a great deal of attention, since it is free from the problems of 

the ‘cutoff-based’ methods. In this direction, GSA methods enable the understanding of 

cellular processes as an intricate network of functionally related components [8].Among these 

GSA methods, gene set enrichment analysis (GSEA) is one of the most widely used methods 

[10]. GSEA analyzes pre-defined gene sets based on prior biological knowledge to determine 

whether this gene set as a whole exhibits differential expression. GSEA has many advantages as 

it does not employ an arbitrary cutoff to select significant genes. Instead, it uses all the 

information about every gene involved in the experiment. However, GSEA does rely on pre-

defined gene sets (without gene interaction information); making IGA more beneficial when not 

much is known about the biological function being considered. Furthermore, GSEA still assumes 

that more differentially expressed genes are more crucial to the biology, which is not always true 

[11]. In many cases, extensive upstream data processing, comprehensive gene selection statistics, 

and downstream pathway/network analysis cannot be replaced by GSEA. Therefore, gene 
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expression signature analysis and pathway analysis (using tools such as DAVID [12]) remain 

two separate processes. 

Network-based gene expression analysis is proposed for candidate biomarker discovery by 

integrating disease susceptibility genes, their gene expressions, and their gene/protein interaction 

network [13, 14]. In 2007, Marc Vidal’s group at Harvard constructed a protein interaction 

network for breast cancer susceptibility using various ‘omics’ data sets, and identified HMMR as 

a new susceptibility locus for the disease[13]. Later, Trey Ideker’s group at UCSD integrated 

protein network and gene expression data to improve the prediction of metastasis formation in 

patients with breast cancer [14]. The two studies marked the exciting beginning of a new 

paradigm which suggests networks and pathways, although drafty, error-prone, and incomplete, 

can serve as a molecular-level conceptual roadmap to guide future microarray analysis. 

Recent advances in genomics, transcriptomics, proteomics, epigenomics, and metabolomics 

have begun to help discover DNA/RNA-based prognostic and predictive markers for early and 

advanced colorectal cancer (CRC) [15]. Systems biology results show that cancer genes and 

proteins do not function in isolation; instead, they work in interconnected pathways and 

molecular networks [16]. However, systematically building disease-specific network models, 

integrated at multiple Omics level - transcriptome (RNA-based markers from microarray data) 

and proteome (protein-based markers from network and pathway data), has not yet been done in 

CRC biomarker discovery. 

In this work, we integrated prior knowledge from GWAS studies or gene signatures (curated 

gene sets from MSigDB and/or GeneSigDB), gene set enrichment analysis (GSEA), and 

gene/protein network modeling together to identify gene network signatures from microarray 

data. We demonstrated how to apply this approach into discovering gene network signatures for 
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colorectal cancer (CRC) from microarray datasets at three levels - genome, transcriptome, and 

proteome. First, we use GSEA to analyze the microarray data through enriching differential 

genes in different CRC-related gene sets from two publicly-available up-to-date gene set 

databases - Molecular Signatures Database (MSigDB) and Gene Signatures Database 

(GeneSigDB). Second, we compare the enriched gene sets through enrichment score (ES), false-

discovery rate (FDR) and nominal p-value. Third, we construct an integrated protein-protein 

interaction (PPI) network through connecting these enriched genes by using a human annotated 

and predicted protein interaction (HAPPI) database, with a confidence score (CS) labeled for 

each interaction. Finally, we map differential expression values onto the constructed network to 

build a comprehensive network model containing visualized genome, transcriptome, and 

proteome data. The results show that although MSigDB is more suitable for GSEA analysis than 

GeneSigDB, the integrated PPI network connecting the enriched genes from both MSigDB and 

GeneSigDB can provide more complete view for discovering gene signatures. We also find 

several important sub-network signatures for colorectal cancer, such as TP53 sub-network, 

PCNA sub-network and IL8 sub-network, corresponding to apoptosis, DNA repair, and immune 

response respectively. 

2.2 Methods 

2.2.1 Microarray data 

From GEO (http://www.ncbi.nlm.nih.gov/geo/), we download a CRC-related microarray 

dataset - GSE8671, which compared the transcriptomes of 32 prospectively collected adenomas 

with those of the normal mucosa from the same individuals. Hence we have 32 CRC samples 

and 32 normal samples. We use maximal expression values for same proteins mapped from 
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different Probe IDs. We use Affy package in BioConductor for quantile normalization. For 

background correction, we use the built-in MicroArray Suite (MAS5).  

2.2.2 Gene sets 

Gene sets are obtained from MSigDB and GeneSigDB. MsigDB has almost 6769 gene sets 

and are divided in to five major collections, of which “C2” are curated gene sets collected from 

various sources such as online pathway databases, publications in pubmed, and knowledge of 

domain experts. We searched in that collection with keyword “colon” and obtained 73 gene sets. 

GeneSigDB is a manually curated database of gene expression signatures. And it shares 

minimum overlap between MSigDB C2 Category of around 8%. It provides the standardized 

gene list for different search criteria. Searching as “Colon” had retrieved 36 gene sets. 

2.2.3 Gene set enrichment analysis 

Though there are many variations on the GSEA method, we describe the version of the algorithm 

developed by Subramanian and colleagues [10], which will be called the standard 

implementation of the method, since it is the most widely used form of the GSEA method. 

Suppose that a microarray dataset is obtained from two different phenotypes, phenotype 1 and 

phenotype 2 (e.g. control vs. experimental). This microarray dataset has expression values for the 

genes across the samples and each row has been identified by unique probe identification. 

Consider also a given gene set S, usually derived from some common biological category. The 

objective of the GSEA method is to see if the gene set S shows differential expression between 

the two phenotypes. 

The Broad Institute provides an easy to use standalone Java implementation of the GSEA 

method on their website (http://www.broadinstitute.org/gsea/). All gene sets with more than 500 
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genes or less than 15 genes were automatically excluded. The difference between signal-to-noise 

ratios was used as the association score. The number of phenotype permutations involved in the 

nominal p-value calculation was 1000. For each analysis, we report the number of gene sets with 

FDR<25%. Along with these gene sets with FDR<25%, we report the number of gene sets 

whose nominal p-values are <1% or 5%.  

2.2.4 Network modeling 

To optimize computation time and information generation, we use a combined network 

construction strategy, based on the enriched genes from both MSigDB and GeneSigDB. 

First, we connect the enriched MSigDB genes from GSE8671 in HAPPI 

(http://bio.informatics.iupui.edu/HAPPI) with confidence score (CI >=0.75, i.e. 4-star rating) for 

interactions, to obtain a protein-protein interaction (PPI) network. The local topological property 

(e.g. node degree, cluster coefficient, betweenness centrality, neighborhood connectivity etc. 

[17]) for each node is calculated based on this network. Then genes with absolute fold change 

|FC|>=1.5, equals to Log 2(FC)>=0.585, are kept. 

Second, we connect the enriched GeneSigDB genes from GSE8671 in HAPPI 

(http://bio.informatics.iupui.edu/HAPPI) with confidence score (CI >=0.75, i.e. 4-star rating) for 

interactions, to obtain another protein-protein interaction (PPI) network. In the same way, the 

local topological property for each node is calculated based on this network. Then genes with 

absolute fold change |FC|>=1.5, equals to Log 2(FC)>=0.585, are kept. 

Finally, we combine these two networks to build a node-weighted edge-scored CRC-specific 

PPI network model by using Cytoscape [18], with node color representing the fold change for 

each gene, node size representing the local topological property for each gene/protein, edge color 

and edge width representing confidence score for each protein interaction. 
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2.3 Results 

2.3.1 Enriched gene sets 

We run the GSEA analysis for the gene expression microarray data - GSE8671 with gene 

sets obtained from MSigDB and GeneSigDB separately. We use the default values in GSEA 

which filtered out 22 gene sets from MSigDB as the number of genes in those sets falls below 

the threshold value of 15 in GSEA. So we run the GSEA analysis on remaining 51 gene sets. Of 

those 51, 22 gene sets are up-regulated in normal and remaining 29 are up-regulated in cancer 

samples. Summary of the results are shown in Table 1. 

There are 22 gene sets that are significantly enriched in normal and 29 in Colorectal cancer, 

of which the gene set - GRADE_COLON_CANCER_DN tops the list with enrichment score of 

0.79 in Normal vs. Cancer, and  the gene set - SANA_RESPONSE_TO_IFNG_DN tops 

the list in Cancer vs. Normal with the enrichment score of -0.67.  

Table 1: Summary of CRC Gene Set Results enriched in MSigDB 

Enrichment Normal vs. Cancer Cancer vs. Normal 

Up-regulated 22 gene sets  29 gene sets 

Significant at FDR < 25% 8 gene sets  14 gene sets 

Nominal p-value for S from ESNULL < 5% 7 gene sets  12 gene sets 

Nominal p-value for S from ESNULL < 1% 5 gene sets  6 gene set 

As with the case of MSigDB, GSEA had filtered only 22 gene sets out of 34 based on the 

default filter criteria. Of these 22, 11 gene sets are enriched in normal and remaining 11 on 

cancer. Summary of the results are shown in table 2.  Of the enriched gene sets - 16091735-

TABLE1 tops the list in Normal vs. Cancer with the enrichment score of 0.52 and the gene set - 

11906190-TABLE2B-2 tops the list with enrichment score of -0.53 in Cancer vs. Normal.  
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Table 2: Summary of CRC Gene Set Results enriched in GeneSigDB 

Enrichment Normal vs. Cancer Cancer vs. Normal 

Up-regulated 11 gene sets  11 gene sets 

Significant at FDR < 25% 7 gene sets  8 gene sets 

Nominal p-value for S from ESNULL < 5% 4 gene sets  5 gene sets 

Nominal p-value for S from ESNULL < 1% 1 gene sets  2 gene set 

 

2.3.2 A PPI network based on enriched genes from MSigDB 

We construct a PPI network (325 genes and 686 interactions) with CI >=0.75 based on the 

694 enriched genes (mapped to 678 proteins) from MSigDB, and visualize the network layout by 

using spring embedded network layout in Cytoscape 2.8.1. After filtering out genes with 

|FC|<1.5, there are 244 genes and 422 interactions. We also map the differential expression 

values onto the genes in the network by representing them as node colors. Since we also simply 

represent node degree as node size, we can easily access the relationship between differential 

expression value and topological property for each gene in the network. As shown in Figure 1, 

the gene sets from MSigDB connected very well. Most important cancer genes, such as TP53 

and PCNA, related to apoptosis and DNA repair are included. It indicates that MSigDB is 

suitable for GSEA analysis, unsurprisingly, since MSigDB is generated by the same group which 

developed GSEA. 
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TP53 sub-network, PCNA sub-network and IL8 sub-network, corresponding to apoptosis, DNA 

repair, and immune response respectively [19-21]. 

However, gene-to-gene or gene-to-protein interaction may be even more accurately 

represented by a network. One limitation of our restrictive approach and of the GSEA method in 

general, is that it is not able to generate new hypotheses for unsuspected gene sets. This has 

proved to be a major limitation of the GSEA method in general, especially since one of the main 

goals of gene expression microarray analysis is to find new sets of relevant genes. Another 

disadvantage of the GSEA method is that genes that are more differentially expressed are 

assumed to be more crucial.  However, this assumption has not been thoroughly tested. 

Currently, it is important to realize that no single method of gene expression microarray 

analysis works best, but rather information generated by the different analyses should be 

integrated together with the knowledge from biological research. In future work, we aim to 

combine GSEA, gene ontology (GO) enrichment, network expanding/enriching methods 

together to identify biologically significant genes/proteins. We will use more gene expression 

microarray datasets to validate this integrated strategy. We will also use newly generated gene 

expression profiles by using RNA-sequencing (RNA-seq) technique to test our new hypothesis. 

 

3. IENTIFYING PLASMA-BASED SUBNETWORK SIGNATURES FOR ALZHEIMER’S DISEASE USING A 

MULTIPLEX PROTEOMIC IMMUNOASSAY PANEL 

3.1 Background 

Currently, the only way to confirm Alzheimer’s disease (AD) definitively comes from autopsy, 

with the presence of characteristic lesions in the brain caused by extracellular plaques of 

Amyloid β (Aβ) peptide and intracellular neurofibrillary tangles (NFTs) formed by 

hyperphosphorylated Tau protein [22]. Intensive research has been conducted for discovering 
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reliable AD biomarkers in peripheral blood. Although there are many publications on potential 

plasma-based AD biomarkers, follow-up studies by other research groups have often failed to 

show accurate, efficient and consistent diagnostic values [23]. There is an urgent need for 

benchmarks to be able to evaluate the performance of these biomarker panels/signatures. 

Moreover, it also remains unknown what relationships between proteins within each signature, 

and what relationships between these signatures are involved. 

In 2007, Ray et al. [24] screened 120 proteins involved in cell communication, and found a 18-

protein signature that can be used to classify blinded samples from Alzheimer’s and control 

subjects with close to 90% accuracy. Their analysis was based on a shrunken centroid algorithm 

called predictive analysis of microarrays (PAM), with 83 archived plasma samples as training set 

and 92 separate samples as testing set (AD against control). Biological interpretation based on 

these 18 signaling proteins indicates systemic dysregulation of hematopoiesis, immune 

responses, apoptosis and neuronal support in presymptomatic AD. This pilot study has made a 

significant contribution for discovering diagnostically useful plasma-based AD biomarkers. 

In 2008, using the same proteomic data, Gomez and Moscato [25]  reported a 5-protein signature 

(which is a subset of the 18-protein signature) that achieves, on average, a 96% total accuracy in 

predicting clinical AD (80 for training and 92 for testing). This 5-protein signature (the 

abundance of IL-1α, IL-3, EGF, TNF-α and G-CSF) was chosen by using their spectacular 

feature selection approach based on Fayyad and Irani's entropy minimization algorithm, which 

was originally designed for microarray analysis [26]. The 5-protein signature demonstrated the 

same performance with the original 18-protein signature when using the same classifiers, such as 

Simple Logistic or Logistic Model Trees. The performance was verified by using over 20 

different classifiers available in the widely-used Weka software package [27]. In 2011, by using 
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methods from combinatorial optimization and information theory, Moscato’s team reanalyzed 

the same proteomic data, and uncovered novel biomarkers, which confirms ANG-2, IL-11, 

PDGF-BB, CCL15/MIP-1δ; and supports the joint measurement of other signaling proteins not 

previously discussed: GM-CSF, NT-3, IGFBP-2 and VEGF-B [28]. 

Although the accuracy reported for these two plasma-based AD signatures are high enough, the 

consistency for their stable clinical application still remains unknown, especially when 

evaluating these signatures in new cohorts. In 2009, Soares et al. tested the reproducibility of 

another subset of the 18-protein signature by using quantitative multiplex proteomic 

immunoassay, which suggest diagnostic accuracy using this subset can only achieved 61%. By 

using multivariate analysis for feature selection and linear discriminant and random forest 

analysis for classification, an 89-protein signature was found, which can yield a diagnostic 

accuracy of 70%. This result suggests that the current plasma-based AD signatures may be useful 

as AD screening tools, but are still far from AD diagnostic purpose. 

Another major concern on the view of bioinformatics is that the current plasma-based AD 

signatures are all selected by the feature selection approaches originally designed for microarray 

analysis. The performance of these approaches is doubtful when applying to proteomic studies 

(typically 120-250 protein analytes) with much less feature than in high-throughput 

transcriptomic studies (generally 20,000 genes or 50,000 probes). Feature selection is used as a 

preprocessing step before building models for classification. It aims to limit the amount and 

dimensionality of the data and thereby selecting significant features that correlate well with the 

target class [29-31]. Feature selection methods are often categorized as filters, wrappers, or 

embedded methods depending on how they combine the feature selection search with the 

construction of the classification model [32].  
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Filter methods evaluates each feature by looking only at the intrinsic properties of the data.  Most 

methods works by assigning a score value for each feature and set a threshold as a criterion to 

evaluate performance. If the score values of a feature is greater than the threshold, then the 

feature will be selected otherwise it will be removed. Filter methods can rely on univariate and 

multivariate statistics [33].  Univariate methods such as chi square and Pearson correlation 

assumes each attribute as independent and assess the relevance of individual attributes for a 

specific class at a time [34]. In this kind of analysis, attributes that are not individually relevant 

but become significant in the context of other attributes will be missed out. Since univariate 

features selection methods are not able to capture feature interactions, it can result in redundant 

features which have high score with the class. Multivariate methods such as ReliefF overcome 

this constraint by considering feature interactions [33]. 

The wrapper approach uses search algorithms to select various subsets of features in the space of 

possible subsets, and evaluates the specific subset of features using a specific classification 

model [29, 30]. Wrapper methods consider the feature dependencies and since there is an 

interaction between the feature subset and the model selection, it helps to select best subset. 

Embedded methods also involve classification models, but unlike wrapper methods, the search 

for an optimal subset of features is built in to the classifier construction. Since it perform feature 

selection as a part of the classifier training process it takes computationally less time than 

wrapper[33]. SVM Attribute Evaluator and Elastic Net are some well-known embedded methods 

[35]. These methods are very effective in dealing with genomics and proteomics dataset in 

various bioinformatics approach. The main drawback with these methods is they do not integrate 

any external knowledge source to explain the biology behind the interactions. 
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In this work, we developed five criteria – accuracy, efficiency, consistency, significance and 

connectivity, to evaluate different feature selection approaches for identifying protein biomarkers 

under varied conditions. We compared 15 feature selection approaches and 20 classification 

methods in Weka [27] on a new dataset generated from the samples (AD vs. health control) 

collected by Alzheimer's Disease Neuroimaging Initiative (ADNI). We chose five feature 

selection approaches – ReliefF, SVM, OneR, Elastic Net and lasso for thorough evaluation on 

the presented five criteria, according to their overall performance on accuracy. Based on the top 

32 protein analytes selected by each of these five feature selection approaches, we finally built a 

64-protein network consisting of four subnetworks, which are defined as subnetwork signatures 

here. We also compared the protein analytes in the network with those analytes in the existing 

plasma-based AD signatures, and found these four plasma-based AD subnetwork signatures 

corresponding to G-Protein coupled receptor (GPCR) ligand pathway activation, complement, 

immune response, and apoptosis respectively. In these functions, GPCR ligand pathway 

activation is newly reported for plasma-based AD signatures, especially the important role of an 

analyte –follicle stimulating hormone (FSH), which bridges the functional subnetworks of 

hemostasis and apoptosis. 

3.2 Methods 

3.2.1 ADNI multiplex proteomic immunoassay data collection 

We used the ADNI dataset providing expression values for 146 analytes in 108 Alzheimer 

disease patients and 53 healthy controls which we call as master dataset. We randomly permuted 

the master dataset to create 20 partitions with same number of Alzheimer and healthy samples. 

Then we approximately halved each partition in to training and testing set thereby maintaining 
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equal samples for both class in training and testing set say 53-54 samples of Alzheimer and 26-

27 samples of Healthy control. 

3.2.2 Feature selection and Classification 

Waikato Environment for knowledge analysis suite (Weka, version 3.6) was used for applying 

classification and feature selection methods to our datasets [27]. Weka is a java based tool that 

provides implementations for various machine learning algorithms. Weka has been used for 

various genomics and proteomics studies in Bioinformatics [36]. The default parameters set 

within Weka has been used for all the attribute selection and classification method. We are aware 

that the results can be optimized by tuning the parameters for classification algorithm, since we 

are interested in selecting possibly best features for downstream analysis rather than the 

classification accuracy we used only default parameters and moreover it ensures the 

reproducibility of results. 

Weka provides implementation for various feature selection belongs to different categories such 

as Filter methods based on univariate statistics (CFSSubsetEval, ChiSquaredAttributeEval), 

based on multivariate statistics (ReliefF), meta-evaluators (CostSensitiveAttributeEval, 

CostSensitiveSubsetEval, FilteredAttribute and SubsetEval), Embedded methods 

(SVMAttributeEval) and other filter methods ConsistencySubsetEval, GainRatioAttributeEval, 

OneRAttributeEval and SymmetricalUncertAttributeEval. We used all the implementations in 

Weka version 3.6 except principal component analysis and latent semantic analysis which 

transforms the set of attributes. Hence, these methods are not widely used for constructing 

classification model. Elastic Net and Lasso (Least Absolute Shrinkage and Selection Operator) 

are two well-known embedded methods that use penalty functions to select the best features.   
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Both these methods have been used for various bioinformatics studies [35]. Glmnet package, 

MATLAB implementation of Elastic Net and Lasso was used for feature selection [37]. 

ReliefF 

ReliefF is one of the widely used instance based attribute ranking scheme [38]. The main idea of 

ReliefF is to iteratively estimate feature weights according to their ability to discriminate 

between neighboring patterns. Each time, random samples are drawn from the dataset and for 

this instance the neighbors of the same class and the opposite class are determined. Based on 

these neighboring cases the weights of the attributes are adjusted [39, 40]. ReliefF doesn’t 

remove statistically dependent attributes but relies on a multivariate relevance criterion that ranks 

the attributes in context of other attributes. 

SVM Attribute Evaluator 

SVM Attribute Evaluator uses recursive feature elimination (RFE) method in combination with 

linear support vector machine (SVM). The algorithm builds a model using linear support vector 

machines and ranks the attributes based on the size of the coefficients. During iteration, it 

computes the attribute ranking criterion for each attribute and removes the attribute with the 

smallest ranking criterion. Finally we will have ranked attributes as output. 

Logistic Model Tree (LMT) 

A Logistic Model Tree (LMT) is an algorithm for supervised learning tasks which combines both 

linear logistic regression and tree induction. Linear logistic regression tries to fit a simple stable 

model to the data with low variance and high bias while the tree induction searches a less 

restricted space of models and capture nonlinear patterns in the data with high variance and low 

bias. LMT combines the best features from both the methods. It creates a model tree with a 
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It combines both the sensitivity and specificity in to one measure and the values lie in the range 

of -1 to +1, while 1 means complete prediction accuracy and 0 means every prediction was 

random [43]. 

3.3 Results 

 3.3.1 Accuracy based on selected analytes 

Accuracy for evaluating a feature selection approach is defined as the overall classification 

performance here, including not only percent agreement with clinical diagnosis (accuracy rate), 

but also area under ROC curve (AUC) and Mathew’s correlation coefficient (MCC), by using 

only the features selected or top-ranked by that feature selection approach. Although this 

definition has been widely used, there’re three key points need to be considered in classification 

processes. First, which classifier is used? Second, how many features are using? Third, highest 

accuracy rate with poor AUC or MCC will NOT be considered as the best accuracy. 

We used training set from partition coverage 1 to select the best features from various methods 

listed above. For fair comparison we choose only the top 12 features which is the least number of 

features selected by most of the methods on partition coverage 1. We know that it is impossible 

to find a classification algorithm that performs well with all feature selection algorithm as every 

classification algorithm has its own learning bias. So in order to find the best combination of 

feature selection and classification algorithm for this kind of proteomics data we choose 20 

different classifiers available in Weka. 

Logistic Model Tree (LMT) performs consistently well for the features selected by different 

set of feature selection algorithm with highest accuracy of 84% and AUC 0,94 for the features 

selected using ReliefF. LMT has been proven to be performing well with the proteomics data 
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with small set of features earlier [25]. So we decided to use LMT as a classifier for further 

analysis. 

Table 3: Results of best classifiers with Top 12 analytes selected using ReliefF and SVM 

Classifier ReliefF SVMAttributeEval 

Accuracy MCC AUC Accuracy MCC AUC 

BaysianLogistic Reg 0.80 0.55 0.77 0.84 0.67 0.85 

Naive Bayesian 0.84 0.63 0.90 0.85 0.66 0.90 

LibSVM 0.83 0.60 0.78 0.85 0.66 0.82 

Logistic 0.80 0.55 0.85 0.81 0.62 0.92 

SMO 0.80 0.54 0.75 0.86 0.71 0.87 

ClassViaRegress 0.83 0.60 0.90 0.78 0.47 0.90 

JRIP 0.80 0.54 0.75 0.77 0.46 0.73 

LMT 0.84 0.63 0.94 0.85 0.67 0.93 

 

Once the classifier was fixed, we tried to identify the best feature selection method by repeating 

the above analysis with all the partitions. The number of attributes selected for classification 

varies between the partitions, depending on the minimum number of features selected by the 

feature selection algorithm for that particular partition. And the results showed that ReliefF and 

SVMAttributeEval classify with better accuracy and AUC for different partitions followed by 

Elastic Net and CostSensitiveAttributeEval. ReliefF achieves highest accuracy of 80% with AUC 

0.90 for partition coverage 1 and SVM achieves 80% accuracy with AUC 0.86 for partition 4.  
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Table 4 Results of top six feature selection methods for partition coverage 4 

Feature Selection method Accuracy MCC AUC 

ReliefFAttributeEval 0.80 0.54 0.90 

SVMAttributeEval 0.75 0.44 0.81 

CostSensitiveAttributeEval 0.70 0.29 0.73 

Elastic Net 0.73 0.36 0.80 

Lasso 0.73 0.36 0.80 

OneRAttributeEval 0.68 0.26 0.69 

 

3.3.2 Efficiency of selected analytes 

Efficiency for evaluating a feature selection approach is defined as the least number of selected 

or top-ranked features used for classification that can achieve the best accuracy.  

Apart from the methods that give the minimum number of features for each partition, there are 

five methods viz... CostSensitiveAttributeEval, ReliefF, SVMAttributeEval, ElasticNet and 

Lasso provide either weights or ranks for all the 146 features. There is a possibility that 

information contained in the top features produced by this algorithm may be lost when we 

compare all the feature selection with the minimum number of features in each partition. So we 

compared the 10 fold classification accuracy and AUC of the top 80 features selected by the five 

methods in the master data set and the results are shown below. 
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Figure 4: Comparison of Accuracy of five feature selection methods 

 

Figure 5: Comparison of AUC of five feature selection methods 

 

As we infer from the figure, all the five methods achieves the highest possible accuracy with 

features not more than 32. Top 32 features selected using SVMAttributeEval classifies the 
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samples with accuracy of 92.5% and AUC 0.98. Both ReliefF and Lasso shows accuracy of 

about 89% and AUC 0.94. OneR is the least performing method in case of both accuracy and 

AUC. As we used 10 fold cross validation accuracy to compare the results, it is no surprise that 

SVMAttributeEval perform better in this case. Since it is an embedded feature selection method 

which uses linear SVM classifier weights to rank the attribute, it may over fit the model.  To 

overcome this problem, we run our analysis in partition coverage using separate training and 

testing set. We compared the predictive power of top features from both ReliefF and 

SVMAttributeEval by reducing the number of features in the multiples of 3. Results shows that 

top 15 features performs better in most of the partitions with ReliefF achieving a maximum 

accuracy of 89% with AUC 0.93 in the case of partition coverage1. 

Table 5: Classification accuracy of Top 30 analytes using LMT 

Classifier ReliefF SVMAttributeEval 

Accuracy MCC AUC Accuracy MCC AUC 

Top 30 features 0.80 0.59 0.89 0.77 0.49 0.83 

Top 27 features 0.84 0.65 0.92 0.80 0.56 0.86 

Top 24 features 0.80 0.56 0.88 0.74 0.41 0.80 

Top 21 features 0.86 0.70 0.92 0.75 0.46 0.81 

Top 18 features 0.86 0.70 0.94 0.74 0.43 0.83 

Top 15 features 0.89 0.75 0.93 0.80 0.57 0.87 

Top 12 features 0.83 0.61 0.90 0.72 0.37 0.81 

Top 09 features 0.80 0.54 0.90 0.75 0.44 0.81 
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3.3.3 Consistency of selected analytes 

We earlier assessed the consistency of the five feature selection algorithm by their prediction 

accuracy with LMT classifier in all the partition. In the five methods, SVMAttributeEval ranks 

the features while all the other four methods assign weight to them. We decided to compare the 

consistency of these methods in selecting analytes across the partition. Since the weight values 

produced by the algorithms are heterogeneous with weights ranging from -1 to 1, 0-100, a 

unified weighting schema was devised.  

First we ranked the features based on their weight values for all the feature selection method 

except SVMAttributeEval for which we already have the ranks available from Weka for all the 

partition. When more than one analyte has same weight, they were alphabetically sorted.  

Once we have the standardized weight for each analyte, the average standard deviation is 

calculated which we call as consistency score. Lower the score, higher the consistency. 

Consistency score for the five methods were shown in table 6. As we infer from the table 6, 

ReliefF has low score of 0.13 with higher consistency in selecting the features across 20 

partitions. It was followed by Lasso and ElasticNet with scores 0.15 and 0.15 respectively. 

   3.3.4 Significance of selected analytes 

We identified that top 32 features selected by the five feature selection methods contributes more 

for the classification. To explore the association between these features and Alzheimer’s disease 

we performed a literature analysis for all the top 32 analytes. We searched the pubmed with 

search criteria ("Analyte" OR "Full Name" OR "Gene Symbol") AND "Alzheimer" and get the 

number of records. A significant score was calculated for each method by taking average of log 

transformed count. Higher the score, more significant are the features selected by the approach. 

The significance here means the agreement between the analytes selected by the feature selection 
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We identified that top 32 features selected by the five feature selection methods contributes more 

for the classification. We expanded the top features in HAPPI with confidence score (CI >=0.75, 

i.e. 4-star rating) for interactions, to obtain a protein-protein interaction (PPI) network. 

3.4 Discussion 

Sub network 1 shows the GPCR Signaling pathway induced by Follicle Stimulating Hormone 

(FSH), Luteinizing Hormone (LH) and pancreatic polypeptide (PPY). Both FSH and LH has 

been linked to Neuroactive ligand receptor interaction pathway too. G Protein Coupled 

Receptors (GPCRs) are involved in the process of cleavage of amyloid precursor proteins and 

also in various key neurotransmitters system. There are various studies which supports the notion 

that GPCRs and activation of their downstream signal cascades increases the non-amyloidogenic 

processing of APP [44, 45]. GPCRs are also involved in neuroinflammation and plays role in 

Amyloid β mediated toxicity. Class A receptors of GPCRs seen in the hippocampus and cortex 

of the brain are abundantly expressed in the microglial cells of AD patients. Several attempts had 

been made to use this adenosinergic system as a potential therapeutic target for managing 

cognitive dysfunction in AD [46]. Though the involvement of these hormones with AD has been 

reported earlier, role of hormone induced GPCR signaling in AD is quite a fascinating one. 

Surprisingly both FSH and LH induce GPCR signaling through Class A receptors. This provides 

an interesting insight in to the pathways involved in AD which could be a potential therapeutic 

target and complement the current treatment approaches that focus mainly on secretase inhibitors 

and amyloid immunotherapy.  

Analytes from sub network 2 involved in four pathways viz. lipid metabolism, Complement 

activation, Renin Angiotensin System and Hemostasis. Role of Lipid metabolism in AD has been 

well known with central obesity is related to a high risk of Late Onset Alzheimer’s disease 
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(LOAD) [47]. Apart from this, the majority of the analytes from this sub network involves in 

complement and coagulation pathways. The interactions between the components in complement 

activation pathways and hemostasis is well established [48]. Both the complementation cascade 

and the blood clotting were activated by same kind of stimuli. Multiple regulatory loops between 

these two systems provide an effective host response against infection. Complement system 

activation due to accumulation of Amyloid β and the involvement of other key analytes in 

hemostasis was captured in sub network 2.  

Sub network 3 connected to network 2 through C3 has around 8 analytes that involves in 

Cytokine – cytokine receptor interaction and Chemokine signaling. Cytokines plays crucial role 

in innate and adaptive inflammatory responses, cell growth, differentiation, angiogenesis and 

homeostasis. There are considerable evidences to suggest that an inflammatory response is 

involved in the AD neurodegenerative cascade. A detailed review on the cytokine AD 

association highlighted the elevated levels of several key analytes that was shown in sub network 

2 such as TNF-α, IL-6r, IL-16 and IL-1847. 

Sub network 4 shows analytes that involves in various pathways such as Cytokine – cytokine 

receptor interaction, various cancer pathways (Pancreas and Bladder cancer), Hemostasis and 

mTOR Signalling pathway. Analytes that participates in cancer related pathways are involved in 

two key processes, while Epidermal Growth Factor (EGF) involves in evading apoptosis, 

Vascular Endothelial growth factor (VEGF) and Matrix metallopeptidase 1 (MMP1) involves in 

VEGF Signaling which eventually helps in Angiogenesis. Moreover, mTOR signaling pathway 

plays a central role in various neuronal functions and maintains hemostasis, it also regulates 

different forms of learning and memory. 
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Another promising feature in the integrated network is the coherence between the sub networks 

achieved through bridge analytes. Sub network 1 connects to sub network 4 through Insulin-like 

growth factor binding protein 2 (IGFB2). Insulin signaling plays a role in learning and memory 

and deregulated insulin signaling occurred in the brains of patients with AD[46]. Hence Type 2 

diabetes has been identified as a major risk factor for AD, and the onset of diabetes worsens 

cognitive disorders even in the absence of amyloid plaques. Cognitive decline associated with 

neuronal cell death (apoptosis) has been targeted in AD treatment using anti diabetic medicine. 

IGFB2 involves in insulin signaling pathway which controls vital brain functions such as cell 

survival, energy metabolism and neuroregeneration [49]. Similarly, sub network 2 connects with 

GPCR Signaling sub network 4 through AAT and with Sub network 2 through analytes that in 

complement system activation.  

We also confirmed the results from sub network by Gene Ontology (GO) analysis. Results from 

GO performed with DAVID and pathway analysis with Kyoto Encyclopedia of Genes and 

Genomes (http://www.genome.jp/kegg/) and Reactome 

(http://www.reactome.org/ReactomeGWT/entrypoint.html) also confirmed the involvement of 

the selected analytes in Chemokine Signalling pathway, Hematopoetic Cell Lineage, 

Complement Activation pathway and Focal Adhesion. 
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4. INTEGRATIVE NETWORK ANALYSIS OF MICRO RNA AND MRNA 

4.1 Background 

4.1.1 MDSC and T-cell suppression 

Myeloid derived suppressor cells (MDSC) constitute a unique component of immune system that 

expand during cancer, inflammation, and infection, and capable of suppressing T-cell responses. 

In addition to T-cell suppression, MDSCs have also been linked to innate immune response 

regulation through cytokines. MDSCs were described more than 20 years ago in patients with 

cancer and found to play significant roles in tumor angiogenesis and metastasis [50]. They are 

heterogeneous group of cells that consists of myeloid progenitor cells and immature myeloid 

cells (IMCs). In normal conditions, these IMCs matures in to granulocytes, macrophages and 

dendritic cells, while in pathological conditions such as cancer, auto immune disorders, sepsis 

and in some infectious disease, a partial block in the differentiation of IMCs in to mature 

myeloid cells results in the expansion of this population. It results in upregulation of immune 

suppressive Arginase 1 (ARG1), inducible Nitric oxide synthase (iNOS), Nitric oxide (NO) and 

Reactive oxygen Species. 

In Mouse, MDSCs are characterized by the co-expression of myeloid cell differentiation antigen 

(GR-1) and CD11b (α integrin). Subtypes of MDSC have been defined in the mouse based on the 

antibody specificity of GR1’s two epitopes LY6G and LY6C. Granulocytic MDSCs have a 

CD11b+Gr1+ phenotype, whereas MDSCs with monocytic morphology are CD11b+Gr1-. These 

two subsets have different functions in cancer, infectious and auto immune diseases and employs 

different mechanism to suppress T cell function. Mouse bone marrow has 20-30% of these cells, 

while spleen has 2-3% and absent completely in Lymph nodes. Previous studies had observed 
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significant functional activity in freshly isolated cells at the site of infection (functional MDSC) 

while it is completely absent in peripheral cells (MDSC precursors) [51].  

4.1.2 MicroRNA and Immune system 

Micro RNAs are small, single stranded non-coding RNAs that are involved in the regulation of 

protein expression in many biological systems. They are about 22 nucleotides long and they 

predominantly bind to the 3’ untranslated region (3’UTR) of messenger RNAs (mRNAs) to 

inhibit translation or to induce cleavage. So far more than 700 miRNAs have been identified in 

human genome and each have the potential to suppress the expression of thousands of genes. 

More than 100 different miRNAs are expressed by cells of the immune system; they have the 

potential to broadly influence the molecular pathways that control the development and function 

of innate and adaptive immune responses. Depending on the nature of the target, miRNAs have 

tumor suppressive or tumor promoting effect on various cancers of immunological origin [52]. 

In this study, we identified and validated crucial miRNA-gene associations that can be used to 

study the difference in the molecular mechanism between functional MDSCs and MDSC 

precursor. We have compiled all the existing Micro RNA resources and used a knowledge 

guided approach to build an integrated miRNA-gene network to identify the significant genes. 

miRNAs and pathways through which functional MDSCs differ from their precursors. 

4.2 Approach 

4.2.1 Differential expression analysis 

We isolated both the granulocytic (Ghigh) and monocytic (G low) subtypes of MDSC cells from 

spleen and peritoneal cavity (PC) that has a peritoneal tumor. Spleen cells are Ghigh or G low.  

Peritoneal cavity cells are Glow, Gmid and Ghigh. Totally, there are six contrast groups: PC Ghigh vs. 
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Sp Ghigh, PC Gmid vs. Sp Ghigh, PC Glow vs. Sp Ghigh, PC Ghigh vs. Sp Glow, PC Gmid vs. Sp Glow, PC 

Glow vs. Sp Glow. We have mRNA arrays (GeneChip® Mouse GENE 1.0 ST) and micro-RNA 

arrays (GeneChip® miRNA array) from the same RNA samples. 

 Data preprocessing, including quality control and normalization, will be implemented by using 

standard packages in Bioconductor. Filters based on fold changes, p-values, and detection 

numbers will be applied to obtain differential miRNAs for each contrast group. Criteria of 

miRNA array filters will be determined based on existing literatures [53]. 

For the same six contrast groups, data preprocessing, including quality control and 

normalization, will also be implemented by using standard packages in Bioconductor. Filters 

based on fold changes, p-values, and presence/absence calls of mRNA probe IDs will be applied 

to obtain differential genes for each contrast group. In many cases, crucial genes show relatively 

slight changes, and many genes selected are also poorly annotated [2]. So criteria of mRNA 

array filters will be determined according to how many genes are finally obtained.  

4.2.2 Data integration for miRNA-gene associations 

Table 7 shows some of the primary databases that provide a comprehensive view of microRNAs.  

Table 7: Primary microRNA databases and feature comparisons 

Database 

 

Features 

miRBase HMDD miRecords TarBase miR2Disease miRGator miRo 

Target Gene 

Information 

 

Only 

Predicted 

genes 

NA 

Predicted 

and 

Validated 

genes 

Only 

Validated 

genes 

Yes Yes Yes 

Disease NA Yes NA NA Yes Yes NA 
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Association 

Gene 

Ontology 
NA NA NA NA NA NA Yes 

Download Yes Yes Yes Yes Yes Yes Yes 

Statistics for 

Human 

1048 

records 

450 miRNA 

genes, 258 

diseases,  

548 

miRNAs, 

1579 target 

genes 

1300 

validated 

targets 

349 miRNA, 

134 Disease 

Expression 

profile  
NA 

Comments 

Central 

Repository 

of miRNA  

Tissue & 

Gene wise 

disease 

association 

Largest 

source of 

validated 

target 

Second 

largest of  

validated 

targets 

HMDD with 

Additional 

features 

Expression 

Profile 
GO info 

 

There are around 12 prediction tools (Table 8 shows main 8 tools of them) are available which 

can predict the miRNA-targeted genes. These algorithms uses various structural features such as 

hairpin length, hairpin loop length, thermodynamic stability of miRNA-mRNA duplex, base 

pairing, and distance of microRNA from the loop of its hairpin precursor; and sequence features 

such as nucleotide content and location, 3`UTR sequence complementarity, and nucleotide 

repeats [54]. However, for the most part, all these target prediction methods generate a large 

number of false positives. Several algorithms addressed this problem by considering 

conservation of sequences across the species which eliminates poorly conserved sites [55]. 
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Table 8: Tools for microRNA-targeted gene prediction and feature comparisons 

Database 

 

 

Features 

miRDB TargetScan picTar 

	

microRNA 

 

RNAhybrid 
Diana 

MicroT 
PITA 

Search 

Features 

miRNA, 

Gene 

Name and 

batch  

Gene Name 

miRNA 

and Gene 

Name 

miRNA 

name 

miRNA 

sequence(s) 

miRNA, 

Gene Name 

miRNA 

sequence 

Download Yes Yes No Yes Yes Yes Yes 

Statistics 

2295 

microRNA 

17821 

Human 

Genes 

NA 

1100 

Human 

miRNA  

 

NA NA 
NA 

 

Update 
April 2009 

Release 5.2, 

June 2011 

March 26, 

2007 

August 

2010 
2006 April 2009 NA 

Comments 
SVM 

based 

target 

prediction 

method. 

Sequence 

similarity 

and 

conservation 

Mouse 

based, 

looks for 

conservati

on in 

Human 

Official 

source of 

expression 

profile 

Free energy  

Has 

miRPath and 

miRExtra 

tools 

Seq. 

similiarit

y 

A recent review paper [56] shows that three computational algorithms - TargetScan, 

DianaMicroT and miRanda/mirSVR can provide miRNA target gene prediction with higher 

precision. TargetScan 5.2 [57]  is one of the most widely used microRNA prediction algorithm. 

It predicts the microRNA binding sites through the identification of 7 nucleotide seed matches on 

the 3`UTR of mRNAs and the assessment of their evolutionary conservation across several 

species. It uses RNA Fold to calculate thermodynamic free energy of the binding, and scores 

both the single and multiple binding sites. DianaMicroT [58] is an algorithm based on several 

parameters calculated individually for each microRNA and it combines conserved and non-

conserved microRNA recognition elements (MRE) in to a final prediction score. The total 
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predicted score of a miRNA-gene association is the weighted sum of conserved and unconserved 

MREs of a gene. Both DianaMicroT and TargetScan estimated to achieve a precision level of 

66% and 60% respectively in a recent study, outperforming most other prediction algorithms. 

Algorithm miRanda [59] uses a position weighted matrix to emphasize binding on microRNA 

5`end segment, uses RNA Fold for free energy calculation and relies on evolutionary 

conservation of binding sites. Algorithm mirSVR [55] is a most recent machine learning method 

that ranks microRNA target sites by a down regulation score. The algorithm trains a regression 

model using the sequence and contextual features extracted from the target sites predicted by 

miRanda, thereby combining the efficiency of two methods. Algorithm miRanda/mirSVR is 

competitive with other target prediction methods and in addition it has a unique ability to predict 

the extent of downregulation by specific miRNA at mRNA or protein level. Importantly, this 

method identifies a significant number of experimentally determined non-canonical and non-

conserved sites. All these three algorithms will be used to predict the genes targeted by specific 

miRNAs in our project. 

4.2.3 Correlation analysis between miRNA and mRNA arrays 

Both Pearson’s correlation and Spearman’s correlation (non-parametric) will be calculated to 

correlate the expressions of all miRNAs with all mRNAs through all samples. According to the 

distributions of miRNA arrays and mRNA arrays, filters based on correlation coefficients and p-

values will be applied to obtain statistically significant miRNA-gene correlations. Then the 

filters based on fold changes, p-values, and detection numbers of miRNAs will also be applied to 

obtain statistically significant miRNA-gene correlations for differential miRNAs. These 

differential miRNA-gene correlations will be used as a supplementary data for miRNA-gene 
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associations retrieved from databases and computational prediction after a functional enrichment 

validation. 

4.2.4 Validation for miRNA-gene associations at pathway-level 

Since miRNA-gene association data retrieved from databases is far from complete, while 

miRNA-gene association data predicted by computational algorithms is very noisy (high FPR - 

false positive rate), it is not easy to validate miRNA-gene correlations from miRNA and mRNA 

array correlation analysis at molecule-level. Hence, functional enrichment for miRNA target 

genes will be processed for miRNA-gene association validation first. For functional enrichment, 

both pathway analysis and Gene Ontology (GO) analysis will be applied. 

As shown in Table 9, there are six online tools which can be used for miRNA target gene 

functional enrichment and pathway analysis. Of these tools, Diana miRPath uses only list of 

miRNAs to predict target genes and enrich these predicted genes in KEGG pathways, while 

other tools requires array datasets. We will mainly use miRPath for microRNA-targeted gene 

functional enrichment analysis at pathway-level. 

Table 9: Tools for miRNA target gene functional enrichment and annotation 

Database 

 

Features 

miRPath miTALOS Magia miRGen mirAct 

Target Gene 

Information 

Uses DianaMicroT 

to predict gene 

Uses 

TargetScan 

miRanda, 

PITA & 

TargetScan 

From miRanda, 

picTar, 

TargetScan & 

DianaMicroT 

miRanda, 

picTar, 

TargetScan & 

PITA 

Functional KEGG KEGG, tissue GO, Network Maps to UCSC Clustering 
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Annotation specific 

expression 

enrichment genome 

browser 

Expression 

Profiling 
No Yes 

Based on user 

input 
No 

User Input 

data 

Comments 
Both single and 

batch processing 

Tissue specific 

enrichment 

method 

Analyze user 

input exp. 

Data 

Positional 

relationships & 

Cluster info 

Using 

expression 

data 

First, miRNAs will be input into miRPath (and other tools will be also tested) for target gene 

prediction and functional enrichment, which will generate a list of pathways ranked by -log(p-

value) [60]. Second, experimentally-validated miRNA target genes will be enriched in a 

comprehensive human pathway database (HPD) [61], which has integrated heterogeneous 

pathways from five data sources - NCI-Nature curated Pathway Interaction Database (PID), 

Reactome, BioCarta, KEGG and ProteinLounge. An online pathway analysis tool based on HPD 

will also generate a list of pathways ranked by similarity scores [62]. Third, two ranked pathway 

lists will be compared to assess whether predicted miRNA target genes have same enriched 

functions with experimentally-validated miRNA target genes at pathway-level. Finally, 

differential miRNA-gene correlations will also be validated by the same way of pathway 

enrichment analysis, but using both experimentally-validated and computationally-predicted 

miRNA target genes. 

4.2.5 Network of differential miRNAs and genes  

An integrated network will be constructed to connect miRNAs and genes differentially-

expressed in miRNA arrays and mRNA arrays respectively. First, differential miRNAs will be 

connected to target genes from the above integrated miRNA database and also computational 

predictions. Validated miRNA-gene correlations will be also added into connections. Second, 
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differential genes will be connected to the genes targeted by differential miRNAs by using high-

quality interactions from the human annotated and predicted protein interaction  (HAPPI) 

database [63]. One or two intermediate proteins will be used to bridge the connections. Third, we 

will integrate miRNA-gene associations and gene/protein-gene/protein interactions together, to 

build the network connecting differential miRNAs and differential genes. Finally, the 

comprehensive network will not only provide a systems-level view for the study on functional 

activities of MDSCs, but will also serve as a molecular interaction network model to identify 

significant miRNAs and genes, which could be used as biomarkers to distinguish functional 

MDSCs from MDSC precursors. 

4.3 Results 

Of the six contrast groups in this preliminary study on mRNA arrays for MDSC, we focused on a 

result of 2-way ANOVA analysis on PC Glow vs. SP Glow contrast in mRNA arrays. From a 

recent review [50], we selected 11 MDSC-related genes - ARG1, NOS2, IL1RL2, VDR, 

SLC7A2, TLR4, FOLR2, HIF1A, S100A9, CEBPB, and S100A8, which are all differentially 

expressed in PC Glow vs. SP Glow contrast from mRNA arrays (each group has 4 samples). 

4.3.1 Experimentally validated miRNA-gene association network 

We focused on a result of 2-way ANOVA analysis on PC Glow vs. SP Glow contrast in miRNA 

arrays (each group has 4 samples). From differential analysis, 153 miRNAs, of which 13 are 

duplicates (Same miRNA from different species), have been selected by using the filter (p-value 

<=0.05 and |Fold Change| >= 1.5). We combined 153 experimentally-validated miRNA-gene 

associations from two databases (miRecords and Tarbase) and 42 protein-protein interactions 

with 4-5 star quality retrieved from HAPPI to build a differential miRNA targeted gene network, 

shown in Figure 5. The network contains 35 differential miRNAs having target genes (validated 



 

by exper

miRNAs

network 

network,

gene asso

Figure 

database

experime

miRNAs 

Glow vs.

filtered) 

contrast 

the same

Genes wi

while elli

 

riments from

. Although s

that built fr

 many MDS

ociation data

7: Differen

es. The netw

ents from tw

(p-value <=

 SP Glow co

in mRNA a

in mRNA ar

e color map

ithout expre

ipse node rep

m two datab

some interes

from only ex

SC-related g

a is quite inc

ntial miRN

work contain

wo database

=0.05 and |F

ontrast in mi

array out of 

rray for these

p as for miR

ession values

presents gen

bases – miR

sting differen

xperimentall

genes are not

complete. 

NA target 

ns 35 differe

es – miRec

Fold Chang

iRNA array,

f 140 targete

e107 targete

RNA. Node 

s are labeled

ne/protein. 

40 

Records and 

ntial genes a

ly-validated 

t involved, w

gene netw

ential miRN

ords and T

e| >= 1.5) f

 and 107 tar

ed genes. F

ed genes are 

color here 

d with gray f

Tarbase) ou

are found, su

data shows

which impli

work from

NAs having t

Tarbase) ou

from the 2-w

rgeted genes

Fold changes

also represe

represents L

font. Vee no

ut of totally

uch as VEGF

s limited inf

es that high

m experime

targeted gen

t of totally 

way ANOVA

s with expre

s on PC Gl

ented as nod

Log2-transf

ode shape re

y 140 differe

FA and MYC

formation. I

-quality miR

entally-valid

nes (validate

140 differe

A analysis o

ession values

low vs. SP 

de color, by 

ferd fold cha

epresents miR

ential 

C, the 

n the 

RNA-

 

dated 

ed by 

ential 

n PC 

s (not 

Glow 

using 

ange. 

iRNA, 



 

4.3.2 

We conn

Figure 1)

from HA

connectio

associatio

more inte

 

Figure 8

contains 

vs. SP Gl

here rep

node rep

 

Computation

nected the 11

), by using c

APPI. If there

ons. Anoth

ons is shown

eresting info

8: Different

15 different

low contrast

resents Log

resents gene

nally predict

1 significant

computation

e is no direc

her network

n in Figure 

ormation than

tial miRNA

tial miRNAs 

t in miRNA a

g2-transferd f

e/protein. 

ted miRNA-g

t genes and t

nally-predicte

ct interaction

k integrate

8, from whi

n the one in 

A targeted g

and 97 gene

and mRNA a

fold change

41 

gene associat

the 5 differe

ed miRNA-g

n, one interm

ed with co

ich, we can 

Figure 7. 

gene and s

es. Fold cha

arrays are a

e. Vee node 

tion network

ential miRNA

gene associa

mediate prote

omputationa

see that the

significant g

anges for miR

all represente

shape repr

k 

As to the ne

ations and 5

ein will be u

ally-predicte

e integrated n

gene netwo

RNAs and ge

ed as node c

resents miRN

etwork (show

5-star interac

used to bridg

ed miRNA-

network con

rk. The net

enes on PC 

color. Node 

NA, while e

wn in 

ctions 

ge the 

-gene 

ntains 

 

twork 

Glow 

color 

llipse 



  42 

4.3.3 Validation of computationally predicted association 

Based on the three computational miRNA-gene association prediction algorithms - TargetScan, 

DianaMicroT and miRanda/mirSVR, 153 miRNAs (after removing duplicates, 115 unique 

miRNAs) have potentials to target these 11 significant MDSC-related genes. By using the filter 

(p-value <=0.05, |Fold Change| >= 1.5, and Max detection number > 0), 5 differential miRNAs 

(4 of which are in the network shown in Figure 1) are selected: 

 mmu-miR-106a → HIF1A, NOS2 

 mmu-miR-125a → VDR, SLC7A2 

 mmu-miR-19b  → HIF1A 

 mmu-miR-204  → S100A9 

 mmu-miR-351  → SLC7A2, VDR 

By using miRPath, top-10 KEGG pathways associated with these 5 miRNAs are listed below:  

(a) Axon guidance (b) MAPK signaling pathway  (c) Long-term potentiation (d) Insulin 

signaling pathway (e) mTOR signaling pathway (f) Renal cell carcinoma (g) Melanogenesis 

(h) Glioma (i) Chronic myeloid leukemia (j) Focal adhesion 

Most of the pathways (highlighted with fold font) are overlapped with the pathways enriched in 

HPD from the 5 differential miRNA-targeted genes, which implies that computationally-

predicted miRNA-gene associations can be trusted at pathway-level. 

We used an online gene set analysis toolkit Web Gestalt [64] for Gene Ontology (GO) analysis. 

Significant genes overrepresentation was found by hypergeometric statistical. Genes were 

enriched in the following three sub categories which are strongly associated with signal 

transduction pathways in immune response.   
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data. Currently, gene expression signature analysis and pathway analysis remains two separate 

processes, since in many cases, extensive data preprocessing, comprehensive gene selection 

statistics, and downstream pathway/network analysis cannot be replaced by GSEA. Having a 

single repository for comprehensive disease associated gene and network/pathway enrichment 

analysis will be of great use to the scientific community. As a future study, we decided to build 

an integrated online database - Pathway and Gene Enrichment Database (PAGED), to enable 

comprehensive search for phenotype-associated gene sets, network modules, and pathways, by 

integrating gene set based molecular patterns at three dimensions – DNA/genome, 

RNA/transcriptome, and Protein/proteome. First, disease-gene association data are curated and 

integrated from Online Mendelian Inheritance in Man (OMIM) database and Genetic 

Association Database (GAD). Second, functionally-grouped gene sets are evaluated and 

integrated by using gene signatures in Molecular Signatures Database (MSigDB) and Gene 

Signatures Database (GeneSigDB). Third, signaling pathways/protein interaction networks and 

transcription factors/gene regulatory networks are retrieved from Human Pathway Database 

(HPD) and Human Annotated and Predicted Protein Interaction (HAPPI) database. This 

integrated database will be of great use to the system biology studies on high throughput data 

sets. 
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