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ABSTRACT 

Ryan Cole Widau 

 

PROTEIN PHOSPHATASE 2A (PP2A) HOLOENZYMES REGULATE DEATH 

ASSOCIATED PROTEIN KINASE (DAPK) IN CERAMIDE-INDUCED ANOIKIS 

 

 Modulation of sphingolipid-induced apoptosis is a potential mechanism to 

enhance the effectiveness of chemotherapeutic drugs. Ceramide is a pleiotropic, 

sphingolipid produced by cells in response to inflammatory cytokines, 

chemotherapeutic drugs and ionizing radiation. Ceramide is a potent activator of 

protein phosphatases, including protein phosphatase 2A (PP2A) leading to 

dephosphorylation of substrates important in regulating mitochondrial dysfunction 

and apoptosis. Previous studies demonstrated that death associated protein 

kinase (DAPK) plays a role in ceramide-induced apoptosis via an unknown 

mechanism. The tumor suppressor DAPK is a calcium/calmodulin regulated 

serine/threonine kinase with an important role in regulating cytoskeletal 

dynamics. Auto-phosphorylation within the calmodulin-binding domain at 

serine308 inhibits DAPK catalytic activity. Dephosphorylation of serine308 by a 

hitherto unknown phosphatase enhances kinase activity and proteasomal 

mediated degradation of DAPK.  

In these studies, using a tandem affinity purification procedure coupled to 

LC-MS/MS, we have identified two holoenzyme forms of PP2A as DAPK 

interacting proteins. These phosphatase holoenzymes dephosphorylate DAPK at
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Serine308 in vitro and in vivo resulting in enhanced kinase activity of DAPK. The 

enzymatic activity of PP2A also negatively regulates DAPK protein levels by 

enhancing proteasomal-mediated degradation of the kinase, as a means to 

attenuate prolonged kinase activation.  

These studies also demonstrate that ceramide causes a caspase-

independent cell detachment in HeLa cells, a human cervical carcinoma cell line. 

Subsequent to detachment, these cells underwent caspase-dependent apoptosis 

due to lack of adhesion, termed anoikis. Overexpression of wild type DAPK 

induced cell rounding and detachment similar to cells treated with ceramide; 

however, this effect was not observed following expression of a phosphorylation 

mutant, S308E DAPK. Finally, the endogenous interaction of DAPK and PP2A 

was determined to be required for ceramide-induced cell detachment and 

anoikis.  

Together these studies have provided exciting and essential new data 

regarding the mechanisms of cell adhesion and anoikis. These results define a 

novel cellular pathway initiated by ceramide-mediated activation of PP2A and 

DAPK to regulate inside-out signaling and promote anoikis. 

 

     Patricia J. Gallagher Ph.D., Chair 
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CHAPTER I: 

Introduction 

 

A. Mechanisms of Cell Adhesion 

 

In multicellular organisms, cells do not exist in isolation. Instead, they 

interact with neighboring cells and the extracellular environment (127). The 

extracellular matrix (ECM) is part of this environment that serves as a scaffold 

onto which cells adhere throughout the body. It serves not only as a scaffold but 

also integrates environmental cues regarding its context within a tissue or organ 

that are required for proliferation, migration, differentiation and survival (reviewed 

in (127)). Cell adhesion to the ECM occurs mainly through integrin containing 

complexes, while cell-cell adhesion occurs through cadherin containing 

complexes. Integrins are a family of receptor adhesion molecules that play a role 

in cellular signaling to regulate many physiological processes including 

cytoskeletal organization, motility, transcription, proliferation, and survival (47). 

Integrins are obligate heterodimers containing two distinct chains called alpha 

and beta subunits. In mammals, 18 alpha and 8 beta subunits have been 

characterized that bind ECM proteins such as collagen, laminin, vitronectin and 

fibronectin to maintain adhesion and to regulate ‘outside-in’ signaling cues 

obtained from the ECM (47). Integrin signaling is mediated through focal 

adhesion kinase (FAK), integrin-linked kinase (ILK) and Shc (8). Together, these 

proteins regulate integrin-mediated survival signaling by activating phosphatidyl 
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inositol 3-kinase (PI3K)/Akt, Raf/extracellular signal-regulated kinase (ERK), and 

c-Jun NH-terminal kinase (JNK) pathways (8, 14, 57). In addition to ‘outside-in’ 

signaling, integrins play a crucial role in ‘inside-out’ signaling. Inside-out signaling 

is a rapid event on a timescale of <1 s, initiated by intracellular changes that 

change the ability of integrin extracellular domains to bind extracellular ligands 

(115). It is unclear if integrin-mediated adhesion occurs by conformational shape-

shifting within a single receptor molecule (affinity) or by increased integrin 

clustering on the cell surface (avidity) (115). Regardless of increased affinity 

and/or avidity for integrins to their ligands, intracellular inside-out signaling plays 

a crucial role in controlling integrin-mediated adhesion (engagement) to the ECM, 

which in turn promotes survival signals. Disengagement of integrins from the 

ECM stops these survival signals and initiates cytoskeletal reorganization and 

cell death (91, 98). In cell culture, integrins are proteins involved in maintaining a 

cell’s ability to adhere to tissue culture dishes (80). The mechanisms by which 

cells maintain adherence through both outside-in and inside-out pathways are 

incompletely understood and of interest.  

 

B. Apoptosis 

 

A study on ischemic liver injury published in 1972 by Kerr et al. (56), 

described a novel form of cell death that differed from necrosis. Electron 

microscopy studies revealed that the structural changes that are seen during this 

type of cell death occurred in two stages. In the first stage, cells underwent 
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nuclear and cytoplasmic condensation and the breaking up of the cell into a 

number of membrane-bound bodies. In the second stage, these bodies were 

shed and taken up by other cells by phagocytosis (56). The authors termed this 

form of cell death as apoptosis, a Greek term to describe the “dropping off” or 

“falling off” of petals from flowers, or leaves from trees.  

Apoptosis is a genetically programmed cellular process that results in the 

elimination of unwanted or damaged cells according to the rule “better death than 

wrong” (60). It is a well-conserved process that is essential for both embryonic 

and postembryonic development in both unicellular and multicellular organisms.  

In embryonic development, apoptosis plays an essential role in sculpting parts of 

the body such as the formation of the digits, regression of vestigial structures, 

and removing dangerous or injured cells (50). Many pathological conditions arise 

due to defects in apoptosis. Inhibition of apoptosis often leads to neoplasia and 

oncogenesis (114). Whereas inappropriate apoptosis in postmitotic cells (i.e. 

neurons) can lead to neurodegenerative disorders such as Alzheimer’s or 

Parkinson’s disease (22, 88). Thus, tight control of apoptosis during all stages of 

life is essential to the health of an organism.  

Apoptosis is typically classified into two categories: the intrinsic and 

extrinsic pathways (Figure 1). The intrinsic apoptotic pathway is initiated by 

internal cellular stressors such as DNA damage, endoplasmic reticulum (ER) 

stress, defective cell cycle, loss of cell adhesion, hypoxia and loss of cell survival 

factors (reviewed in (60)). Depending on the intrinsic stressor, different pathways 

are initiated which converge at the mitochondria to induce mitochondrial 
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membrane permeablization (MMP). Members of the Bcl-2 family of proteins play 

a key role in MMP and apoptosis. This family contains pro-apoptotic (i.e. Bax, 

Bak, Bid, Bad and Bim) and anti-apoptotic members (i.e. Bcl-2, Bcl-XL, Bcl-W 

and Mcl-1) proteins (reviewed in (60). The anti-apoptotic proteins, such as Bcl-2 

(45), bind to pro-apoptotic proteins such as Bak and Bad (19, 137), to prevent the 

latter from oligomerizing and inserting into the outer membrane of the 

mitochondria. The insertion of these proteins into the mitochondria initiates MMP 

(30, 120). MMP causes the release of pro-apoptotic factors from the 

intermembrane space, including cytochrome c (cyt c). Cyt c then forms a death 

complex with apoptosis protease-activating factor 1 (APAF-1) and ATP/dATP, 

known as the apoptosome. The purpose of the apoptosome is to proteolytically 

cleave and active caspase-9. Caspase-9 is a member of a family of cysteine-

aspartic proteases known as caspases. Active caspase-9 cleaves the effector 

caspases, Caspase-3, -6, and -7, resulting in widespread cleavage of a multitude 

of substrates. Substrates of active caspases include proteins with roles in cell 

survival and proliferation such as the DNA fragmentation factor (DFF), which 

induced DNA fragmentation after it is activated by caspase-3 (72). Other 

substrates include poly-ADP-ribose polymerase (PARP), nuclear lamins, and 

p21-activated kinase 2 (PAK2) (64, 89, 105). Analyzing the cleavage of these 

substrates is often used as an indirect measure of apoptosis.  

The extrinsic apoptotic pathway (also known as “death receptor pathway”) 

occurs by ligand-induced activation of death receptors at the plasma membrane 

of a cell. These death receptors are a subset of the TNF receptor (TNFR) family, 
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including TNFR1, Fas/CD95, TRAIL-1 and-2, and TRAMP (reviewed in (60). 

Activation of these receptors causes the recruitment of Fas-associating death 

domain-containing protein (FADD) within the death-inducing signaling complex 

(DISC).  This results in the activation of Caspase-8 which in turn then cleaves the 

effector caspases, Caspase-3, -6, and -7, resulting in widespread cleavage of a 

multitude of substrates similar to the intrinsic pathway. Additionally, caspase-8 

cleaves Bid, a BH3 domain protein, leading to MMP and represents the main link 

between the extrinsic and intrinsic apoptotic pathways (67).  

Both the intrinsic and extrinsic pathways are further divided into three 

distinct phases: initiation, integration/decision, and execution/degradation (61). 

The initiation phase is complex and depends greatly on the death signal that 

occurs via the intrinsic or extrinsic pathway. The integration/decision phase is the 

activation of caspase and mitochondrial death effectors that push the cell to the 

“point of no return” leading to death (60). Finally, the execution/degradation 

phase is morphologically seen as cell shrinkage, chromatin condensation, 

nuclear fragmentation, blebbing, and phosphatidylserine exposure on the surface 

of the plasma membrane (Figure 1) (60, 77).  

 

C. Anoikis 

 

In adherent cells, such as epithelial cells, cell-matrix interactions mediated 

by integrins, and cell-cell interactions mediated by cadherins, together with actin 

organization and remodeling play a vital role in cell survival (49, 58, 133). ECM 
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adhesion is important for a cell to determine if it is in the correct location within 

the body. Apoptosis induced by loss of cell adhesion to the ECM or loss of cell-

cell attachments, is a specialized type of cell death termed anoikis, a Greek word 

meaning ‘homelessness’ (31). Inhibition of anoikis is expected to confer a 

selective advantage upon pre-cancerous cells, giving them anchorage 

independence and affording them an increased survival time in the absence of 

matrix attachment. This anchorage independence eventually results in 

reattachment and colonization of secondary sites (metastasis) (32).  

The biochemical events occurring during the execution phase of anoikis 

are similar to those in both intrinsic and extrinsic apoptosis. In contrast, initiation 

and integration phases of anoikis are mediated by different pathways, but 

converge to result in activation of caspases as in classical apoptosis. The 

initiation phase of anoikis can occur with disengagement of integrins from the 

ECM. This prevents the survival signaling mediated through integrin-mediated 

activation of FAK, ILK and Shc, previously discussed above (Figure 2). Loss of 

these survival signals initiates anoikis in multiple cell types (32). During the 

integration phase, as in classical apoptosis, members of the Bcl-2 family play an 

important role in promoting anoikis. Integrin mediated activation of ERK and 

PI3K/Akt results in the phosphorylation and subsequent proteasomal degradation 

of pro-apoptotic protein Bim. Loss of ECM contact inhibits ERK and PI3K/Akt 

signaling, thereby enhances Bim protein levels to promote MMP, caspase 

activation and anoikis (65, 99). The execution phase of anoikis is identical to 

classical apoptosis and morphologically seen as cell shrinkage, chromatin 
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condensation, nuclear fragmentation, blebbing, and phosphatidylserine exposure 

on the surface of the plasma membrane (60, 77). 

Resistance to anoikis can be achieved by enhancing integrin-mediated 

survival signals (i.e. PI3K/Akt, MEK/ERK and NFkB), changing the pattern of 

integrin expression, and/or inhibiting apoptotic pathways (47). For example, 

overexpression of anti-apoptotic Bcl-2 proteins is a key step to achieving 

resistance (33). The constitutive activation of survival pathways can be achieved 

by a number of ways including overexpressing neurotrophic tyrosine kinase 

receptor (TrkB). This receptor is overexpressed in highly aggressive human 

tumors and confers resistance to anoikis by activating the PI3K/Akt pathway (26, 

141). Studies have also shown integrin mediated activation of FAK can suppress 

anoikis (34). Conversely, reducing or silencing the expression of tumor 

suppressor proteins, such as death associated protein kinase (DAPK), is a key 

step to conferring resistance to anoikis and promoting metastasis in animal 

models (48). Additional studies demonstrated that DAPK can transduce an 

inside-out signal to convert integrins into an inactive conformation, thereby 

disrupting matrix survival signals, resulting in loss of cell adhesion and apoptosis 

(132). 

In addition to cancer, anoikis plays a role in cardiovascular pathologies 

such as cardiac myocyte detachment in heart failure, plaque rupture in 

atherosclerosis and smooth muscle cell disappearance in aneurysms and 

varicose veins (18, 59, 129). The mechanism by which this may occur is through 

inflammatory cell secretion of proteases (e.g. elastase and cathepsin G) that are 
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able to degrade adhesive glycoproteins such as fibronectin, and induce anoikis 

(81).  In these examples, anoikis is seen as detrimental and probably occurs due 

to overcompensating for a dysfunctional healing process (18). Overall, the events 

that initiate anoikis by the inside-out signaling are unclear. Identifying the 

molecular pathways and proteins involved in this important process may lead to 

new therapeutics.  

 

D. Ceramide-Induced Apoptosis 

 

Sphingolipids are components of the lipid membrane that control various 

aspects of cell growth and proliferation (111). Ceramides are a product of 

sphingolipid metabolism and are generated in response to cellular stress and 

cytokine production. Ceramides are derived by formation of a peptide bond 

between sphingosine and a fatty acid during de novo synthesis. In addition, 

ceramide is generated by the activation of sphingomyelinases (SMases) that 

hydrolyze sphingomyelin to produce ceramide. The generation of ceramide is 

mainly associated with anti-proliferative responses and apoptosis and can be 

initiated by death receptors such as TNFR1, chemotherapeutics agents (i.e. 

daunorubicin, camptothecin, fludarabine, etoposide and gemcitabine) or ionizing 

radiation (35, 90, 111, 113). Ceramide directly binds to the inhibitor 2 of protein 

phosphatase 2A (I2PP2A), enhancing the activity of PP2A (84), leading to 

dephosphorylation of Bcl-2 and Bax to result in MMP and apoptosis (96, 108, 

135). Another well characterized ceramide target protein is ceramide kinase 
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(CerK) and its activation enhances ceramide-induced apoptosis (40). In addition 

to activating PP2A and CerK, ceramides may directly form large protein-

permeable channels that allow for the release of cyto c from the mitochondria 

(118). More recent laboratory studies have yielded new ceramide target proteins 

which include, DAPK, which promotes ceramide-induced apoptosis through an 

unknown mechanism.  

Although ceramide-induced apoptosis has been studied extensively in 

cultured neurons and other type of cells treated with cell-permeable analogs of 

ceramide, such as C6 ceramide, the ceramide signaling pathway that leads to 

the activation of effector caspases and apoptosis is not clear (13, 44, 94, 125). 

Ceramide has also been implicated in anoikis and is accompanied by 

fragmentation of the Golgi apparatus via an unknown mechanism (46). It has 

been proposed that modulation of sphingolipid-induced apoptosis by 

chemotherapeutic agents, may enhance the effectiveness of cancer therapy and 

thus a better understanding of these pathway(s) activated by sphingolipids is 

important (5, 83, 104).  

 

E. Death Associated Protein Kinase (DAPK)-Structure and Function 

 

Death-associated protein kinase (DAPK) is a calcium/calmodulin 

(Ca2+/CaM)-dependent serine/threonine kinase that regulates multiple signaling 

pathways including cell apoptosis, autophagy, survival, motility, and adhesion 

(12, 54, 62, 132, 143) (Figure 3). DAPK functions as a positive mediator of 
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apoptosis induced by a variety of stimuli including INFγ, TGFβ, ceramide, and the 

oncogenes c-myc and p53 (for a review see (12)), and as negative mediator of 

apoptosis induced by TNFα (54, 71). Forced expression of DAPK results in 

morphological changes including cell rounding, shrinking, detachment, and 

anoikis in multiple cell types (62, 132). In animal studies, the expression level of 

DAPK was inversely correlated with the metastatic potential of tumors and 

reintroduction of DAPK into the metastatic tumors initiated anoikis (48). DAPK 

has also been suggested to be a tumor suppressor and in human cancers, DNA 

methylation within the promoter of DAPK is a frequent event and strongly 

correlates with the rates of recurrence and metastasis (12). A point mutation 

within the promoter of DAPK reduces it’s expression and results in hereditary 

predisposition to chronic lymphocytic leukemia (CLL) (101).  

DAPK is a large multi-domain protein that forms many intracellular 

signaling complexes. These protein-protein interactions give DAPK distinct 

biological roles including autophagy, apoptosis and survival (121). DAPK has five 

functional domains, including the kinase, calmodulin, ankyrin repeats, 

cytoskeletal and death domains (Figure 4). The amino terminal kinase domain 

interacts with a member of the microtubule family, microtubule associated protein 

1B (MAP1B) to regulate autophagy (43). The calmodulin binding domain 

interacts with Ca2+/CaM to regulate the kinase activity (54, 117).  The ankryrin 

repeat domain interacts with Src, LAR protein phosphatase, E3-ligase DIP-

1/Mib1, and actin stress fibers (23, 53, 131) to regulate the activities and 

localization of DAPK. The cytoskeletal domain forms interactions with cathepsin 
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B (71) to negatively regulate DAPK and promote TNFα-mediated apoptosis. The 

carboxyl terminal death domain interacts with a number of proteins including the 

netrin-1 receptor UNC5H2, ERK, TNFR1, FADD, and TSC2, and these 

associated proteins regulate its apoptotic functions. 

Recent studies focusing on the posttranscriptional control of DAPK have 

identified a complex network regulating the protein levels of DAPK. Translational 

repression of DAPK occurs by the interferon-γ-activated inhibitor of translation 

(GAIT) complex (85). Posttranslational control of DAPK protein levels is 

regulated by at least two distinct E3 ubiquitin ligases, C-terminal HSC70-

interacting protein E3 ubiquitin ligase (CHIP) (145) and Mind bomb1 (Mib1) (53), 

which polyubiquitinate DAPK resulting in proteasomal degradation. In addition, 

the lysosomal protease Cathepsin B (71) negatively regulates protein levels of 

DAPK. Finally, a small alternatively spliced form of DAPK, sDAPK, was shown to 

cause decreased stability of full-length DAPK independent of the proteasome or 

lysosome (70).  

The catalytic activity of DAPK is regulated by Ca2+/CaM and by auto-

phosphorylation of serine308 (S308), which resides within the CaM-binding 

domain (54, 117). Auto-phosphorylation of S308 prevents calmodulin binding, 

which is necessary for the kinase activity of DAPK; thus, S308 phosphorylation 

negatively regulates DAPK activity (54, 117). Despite the obvious importance 

associated with dephosphorylation of S308, the phosphatase that 

dephosphorylates this site has not been extensively characterized. In addition, 

other recent studies have suggested that the catalytic activity of DAPK is 
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regulated by phosphorylation of additional sites. The kinase has been identified 

as a substrate for Src, Erk, and p90RSK. Phosphorylation of DAPK at Y491/Y492 

by Src reduces the catalytic activity and these phosphorylation sites are 

reciprocally regulated by leukocyte common antigen-related tyrosine 

phosphatase (LAR) (131). Phosphorylation of S289 by p90 ribosomal S6 kinase 

(RSK) 1 and 2 also suppress the catalytic activity of DAPK (4). However, 

phosphorylation of S735 by ERK leads to enhanced the catalytic activity (17). 

The mechanisms by which these newly identified phosphorylation sites regulate 

the kinase activity are unclear. 

The unphosphorylated, active form of DAPK is rapidly ubiquitinated and 

degraded by the proteasome (54). With this in mind, we propose that an 

unknown phosphatase controls the activation of DAPK in a two-step mechanism. 

First, the kinase is dephosphorylated by the activated phosphatase to enhance 

Ca2+/CaM binding, relax autoinhibition, and promote activation of DAPK. Second, 

dephosphorylation induces a conformational change, potentially exposing a 

ubiquitination site which attenuates the expression level of the activated pool of 

DAPK through targeting for proteasomal degradation, thereby providing an 

additional mechanism to limit DAPK activity. Thus, the S308 phosphatase not 

only controls DAPK activation, but also the cellular levels of DAPK. Recent 

evidence suggests that a “PP2A-like” phosphatase may control S308 

phosphorylation; however, the specific holoenzyme form(s) of PP2A involved in 

this event are unknown (39).  
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Ceramide is a potent activator of DAPK and this kinase is necessary for 

ceramide-induced cell death in multiple cell types, but the cellular mechanism 

leading to death is unclear (54, 93, 136). The activation of DAPK by ceramide is 

not thought to be through a direct association, but rather through a ceramide-

activated phosphatase; however, the identity of this phosphatase remains 

uncertain. Once active, DAPK phosphorylates substrates including myosin 

regulatory light chain at S19 to regulate cytoskeletal dynamics, cell adhesion, 

and migration (11, 54, 63, 117, 132) (Figure 3). In addition, activation of DAPK by 

an unknown mechanism was recently shown to regulate inside-out signaling to 

suppress β-integrin mediated cell adhesion likely through disrupting the 

association of talin and CDC42 (62, 132). These and other recent studies 

highlight the role for DAPK in multiple signaling pathways, all of which are 

dependent on its kinase activity. Clearly, identification of the S308 

phosphatase(s) and its mode of activation will greatly enhance our understanding 

of how this kinase is regulated in vivo.  

 

F. Protein Phosphatase 2A (PP2A)-Structure and Function 

 

As mentioned in the previous section, a PP2A-like phosphatase is 

proposed to dephosphorylate DAPK at S308. PP2A is a serine/threonine protein 

phosphatase and tumor suppressor that regulates numerous cellular processes 

including proliferation, differentiation and apoptosis (28). The native forms of 

PP2A consist as a core dimer and a heterotrimeric holoenzyme. The core dimer 
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(AC) consists of a scaffolding/structural subunit (A) and a catalytic subunit (C) 

which associate with a regulatory B subunit (B) to form a heterotrimeric 

holoenzyme (Figure 5). The heterotrimeric holoenzyme is the most predominant 

form of PP2A in the cell (51). 

The structural A subunit regulates holoenzyme composition and binds to 

both the catalytic and regulatory subunits. It exists in two non-redundant isoforms 

(α and β) and mutations in several types of human cancers interrupt binding to 

the catalytic subunit, thus resulting in an overall decrease in phosphatase activity 

(20, 106, 107, 134). Cell transformation by the simian virus 40 (SV40) small t 

antigen occurs by binding to the A subunit and prevents holoenzyme formation 

(92, 138). 

The catalytic C subunit also exists in two non-redundant isoforms (α and 

β) that share 97% identity (6, 37, 38). Endogenous catalytic inhibitors have been 

described for PP2A; cancerous inhibitor of PP2A (CIP2A), inhibitor 2 of PP2A 

(I2PP2A, also known as SET), and type 2A-interacting protein (TIP) (55, 68, 78). 

Pharmacological inhibitors of PP2A include fostriecin, okadaic acid and calyculin 

A. Fostriecin is in phase I clinical trials and is showing promise as a potential 

anti-cancer therapy (66). Activation of the catalytic activity of PP2A can be 

stimulated with ceramide and the novel compound, FTY720 (also known as 

fingolimod). Ceramide is well known to activate PP2A and likely acts through 

ceramide directly binding to I2PP2A, thereby displacing the endogenous inhibitor 

of PP2A, enhancing its catalytic activity (15, 25, 84). FTY720, a novel PP2A 

activator, leads to cell cycle arrest and apoptosis in human B and T-cell 
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leukemias, including BCR/ABL-transformed myeloid and lymphoid cells and 

chronic myelogenous leukemia in blast crisis (86). FTY720 is in phase III clinical 

trials as a small molecule immunosuppressant. 

The regulatory B subunit is the substrate targeting subunit for PP2A and is 

categorized into four distinct families with several different nomenclatures. The B 

(B55 or PR55), B’ (B56 or PR61), B’’ (PR72) and B’’’ (1). Multiple isoforms exist 

within each family and they share significant amino acid homology as well as 

some of the same substrates, whereas regulatory B subunits in different families 

lack amino acid homology and have distinct functions (reviewed in (27). Overall, 

20 regulatory subunits have been identified giving diversity to the holoenzymes, 

enabling PP2A to have selectivity and a wide range of functions within the cell. 

The regulatory B subunit directs the subcellular localization and enzymatic 

kinetics of the catalytic subunit of PP2A (95, 123). Studying the regulatory B 

subunits has led to the identity of new PP2A substrates involved in various cell-

signaling pathways, including ceramide-induced apoptosis (108). Members of the 

B’ family dephosphorylate proto-oncogenes c-Myc and Pim-1 and negatively 

regulate their activity, resulting in the enhancement of ubiquitination and 

proteasomal degradation of these proteins (7, 76). Members of the B family (Bα 

and Bδ), have opposing roles in the TGFβ/Activin/Nodal pathway. The Bα subunit 

prevents lysosomal degradation of the ALK4 and ALK5 receptor whereas the Bδ 

subunit inhibits ALK4 activity (10). However, in another study Bα and Bδ played a 

redundant role in removing the inhibitory phosphorylation site S259 on Raf-1, 

leading to positive regulation of Raf1-MEK1/2-ERK1/2 signaling. These studies 
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highlight the complexity of specific PP2A holoenzymes and the complex roles 

they play in pathway activation, inactivation and in regulating protein turnover.  

Because PP2A plays roles in both proliferation and apoptosis, 

identification of holoenzyme specific targets is necessary to determine if a small-

molecule phosphatase inhibitor or small-molecule phosphatase activator should 

be utilized in anti-cancer therapies (79). 

 

G. Rationale 

 

It is widely accepted that one mechanism by which DAPK can induce 

many physiological changes in cells, including cell death and cell adhesion, is 

through pathway-specific protein interactions. In order to determine additional 

DAPK interactions, our laboratory conducted a tandem affinity purification 

coupled to mass spectrometry using DAPK as bait. In this screen, we identified 

the regulatory Bα subunit of protein phosphatase 2A (PP2A) as a candidate 

DAPK binding partner. Additional experiments indicated that the highly 

homologous Bδ regulatory subunit also associates with DAPK. As described 

above, PP2A is a multi-subunit complex and the regulatory subunits give it its 

substrate specificity. This dissertation, thus, focuses on these newly identified 

DAPK interacting proteins, PP2A-ABαC and ABδC, and determines their role in 

DAPK-induced cell death and cell adhesion.  
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Figure 1: Extrinsic versus intrinsic caspase activation cascades in 

apoptosis. Left: extrinsic pathway. Right: intrinsic pathways. (Adapted from 

Kroemer et al., 2007 Physiol Rev (60)) 
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Figure 2: Mechanisms of Anoikis. Top: Attachment to the extracellular matrix 

and stimulation of growth factor signaling cascades suppresses the activity of 

apoptotic factors. Bottom: Detachment from the matrix or growth factor 

deprivation shuts down these signaling cascades and promotes MMP. (Adapted 

from Reddig and Juliano, 2005 Cancer Metastasis Rev (102))  
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Figure 3: Regulation of DAPK. A) DAPK is regulated by multiple signals at the 

level of transcription and at the protein level. B) The DAPK death signaling 

network. (Adapted from Bialik and Kimchi 2006 Annu Rev Biochem (12)) 

 



 21 
 

 
 
 
Figure 4: Protein domains of DAPK. (Adapted from Bialik and Kimchi 2006 

Annu Rev Biochem (12)) 
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Figure 5: PP2A holoenzyme composition. PP2A isoforms of the structural A, 

regulatory B and catalytic C subunits. (Adapted from Sablina and Hahn 2008 

Cancer Metastasis Rev (110)). 
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CHAPTER II: 

PP2A Holoenzymes Regulate DAPK Activity and Stability 

 

A. Summary 

 

The tumor suppressor, Death-associated protein kinase (DAPK) is a 

Ca2+/CaM regulated Ser/Thr kinase with an important role in regulating 

cytoskeletal dynamics, apoptosis and cellular homeostasis. Auto-phosphorylation 

within the calmodulin-binding domain at S308 prevents Ca2+/CaM binding and 

inhibits DAPK catalytic activity. Dephosphorylation of S308 by a hitherto 

unknown phosphatase enhances the kinase activity and proteasomal-mediated 

degradation of DAPK. In this chapter, we utilized a protein affinity purification 

technique coupled to tandem mass spectrometry in an effort to identify novel 

DAPK interacting complexes. Subsequently, we identified two holoenzymes of 

protein phosphatase 2A (PP2A), ABαC and ABδC, as DAPK interacting proteins. 

These holoenzymes interact via the cytoskeletal binding domain of DAPK and 

dephosphorylate S308 in vitro and in vivo. Desphosphorylation of S308 

enhances Ca2+/CaM binding to DAPK, resulting in enhanced kinase activity in 

vitro. In addition to activating DAPK, we determined PP2A negatively regulates 

DAPK protein levels by enhancing its proteasomal-mediated degradation. 

Together, our results provide a mechanism by which PP2A holoenzymes control 

the kinase activity and protein stability of DAPK.  
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B. Introduction 

 

Complex signal transduction cascades control multiple physiological 

processes such as cellular growth, proliferation and apoptosis. Within these 

cascades exist protein-protein networks that are sensitive to biological stimuli 

and regulate a cell’s response to its environment. A common mechanism used by 

cells to respond to environmental cues is modification of these signal 

transduction cascades through reversible protein phosphorylation. The addition 

of a negatively charged phosphate group to a serine, threonine or tyrosine 

residue by a protein kinase, or removal of a phosphate by a protein phosphatase 

can alter the activity of targeted proteins. Protein phosphorylation and 

dephosphorylation reactions can affect the not only target protein’s activity, and 

function but also half-life, or subcellular localization of the substrate; therefore, 

the underlying molecular mechanisms controlling this reversible post-translational 

modification are of great physiological importance (79). 

Death-associated protein kinase (DAPK) is a Ca2+/CaM-dependent 

Ser/Thr kinase that regulates many cellular signaling cascades including cell 

apoptosis, autophagy, survival, motility, and adhesion (1-5). The mechanisms 

governing the activation of this important kinase are unclear. However, it is 

known that the catalytic activity of DAPK is regulated by Ca2+/CaM and by auto-

phosphorylation of S308, which resides within the calmodulin-binding domain 

(3,13). This auto-phosphorylation of S308 prevents calmodulin binding, which is 

necessary for the kinase activity of DAPK; thus, S308 phosphorylation negatively 
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regulates DAPK activity (3,13). The unphosphorylated, active form of DAPK is 

rapidly ubiquitinated and degraded by the proteasome (54), thereby providing an 

additional mechanism to limit DAPK activity. Thus, the S308 phosphatase is 

proposed to not only control DAPK activation, but also cellular DAPK levels. 

Despite the obvious importance associated with dephosphorylation of S308, the 

phosphatase that dephosphorylates this site has not been extensively 

characterized. Identification of novel DAPK-protein complexes, including a 

DAPK-phosphatase(s) complex, is needed to elucidate the mechanisms by which 

this kinase regulates many physiological processes.    

To identify novel DAPK-protein complexes we utilized tandem affinity 

purification (TAP), using DAPK as bait. Using this approach in conjunction with 

other biochemical techniques, we identified two specific holoenzymes of PP2A. 

PP2A is a Ser/Thr protein phosphatase that regulates numerous cellular 

processes including proliferation, differentiation and apoptosis (27). The 

predominant form of PP2A is a heterotrimeric holoenzyme consisting of a 

scaffolding/structural subunit (A), a regulatory subunit (B), and a catalytic subunit 

(C). The regulatory B subunit is the substrate targeting subunit for PP2A and is 

categorized into four distinct families B, B’, B’’ and B’’’ (19). Multiple isoforms 

exist within each family and they share significant amino acid homology as well 

as some of the same substrates, whereas regulatory B subunits in different 

families lack amino acid homology and have distinct functions (for a review see 

(27)). The diversity of holoenzymes enables PP2A to have selectivity and a wide 

range of functions within the cell.  
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In the current study we demonstrated that PP2A interacts with DAPK and 

determined the effects of PP2A on DAPK activity in HEK293 and HeLa cells. 

Results from these studies suggest that PP2A affects the activities and cellular 

levels of DAPK through protein dephosphorylation. 
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C. Experimental Methods and Procedures 

 

i. Materials and Reagents. 

 

MG132, chloroquine, doxycycline, protease inhibitor cocktail, phosphatase 

inhibitor cocktail-1, N-Hexanoyl-D-sphingosine (ceramide-C6), FLAG peptide 

(DYKDDDDK), anti-FLAG M2-agarose and Proteosilver Silver Stain kit were from 

Sigma (St. Louis, MO). Okadaic Acid (OA) was from EMD (Gibbstown, NJ). 

FTY720 was from ALEXIS Biochemical (San Diego, CA). Absolute QPCR Mixes 

were from ABgene (Rockford, IL). Fugene 6 transfection reagent was purchased 

from Roche Diagnostics (Indianapolis, IN). DharmaFect-1 siRNA transfection 

reagent was from Dharmacon (Lafayette, CO). DAPK substrate peptide was from 

TOCRIS (Ellisville, MO). PP2A immunoprecipitation Phosphatase Assay Kit was 

from Millipore (Temecular, CA). [γ32P]-ATP was from MP Biomedicals, Inc (Irvine, 

CA). zVAD-FMK was from BD Biosciences (San Jose, CA). Recombinant 

adenoviruses were produced at ViraQuest Inc. (North Liberty, IA).  

 

ii. Antibodies. 

  

Antibodies to DAPK (DAPK55), p-S308 DAPK, FLAG M2 and vinculin 

were purchased from Sigma (St Louis, MO). Anti-DAPK (DAP-3) was from BD 

Biosciences (San Jose, CA). PP2A catalytic C, structural A, and regulatory Bα 

subunit antibodies were from Cell Signaling (Beverly, MA). The generation and 
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characterization of affinity-purified Bα/Bδ antibody was as reported previously 

(122). Anti-Omni probe (D-8) and anti-PARP were from Santa Cruz 

Biotechnology, Inc. (Santa Cruz, CA). TrueBlotTM anti-mouse secondary 

antibody was from eBioscience (San Diego, CA).  

 

iii. Tissue Culture and Transient Transfection.  

 

Human embryonic kidney (HEK) T-Rex cell lines harboring pcDNA5/TO 

(EV), pcDNA5/TO-Bα-FLAG or pcDNA5/TO-Bδ-FLAG were generated previously 

(1). Expression of Bα-FLAG and Bδ-FLAG was accomplished by treating with 2 

µg/mL doxycycline for 48 h at 37oC as previously described (1). HeLa and 

HEK293 cells were obtained from ATCC (Bethesda, MD). HEK T-Rex, HeLa, and 

HEK293 cells were cultured in Dulbecco's modified Eagle's medium 

supplemented with 10% fetal bovine serum. Transient transfection of HeLa and 

HEK293 cells was carried out using equal amounts of total plasmid DNA 

(adjusted with the corresponding empty vectors) together with Fugene 6 

transfection reagent according to the manufacturer's guidelines. Short-interfering 

RNAs (siRNAs) for Bα were obtained from Dharmacon (target sequence 

5’UGUAGUAGGAUCUCUAUAC-3’) as well as a SMARTpool for Bδ. 

Nontargeting siRNAs were purchased from Dharmacon and used as negative 

control.  DharmFect 1 was used for the siRNA transfection.  
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iv. Tandem Affinity Purification.  

  

Full length human DAPK was cloned into TAP vector (Stratagene) using a 

standard PCR-based cloning strategy. HEK293 cells were seeded in 15-cm 

plates and then transiently transfected with DAPK-TAP (15 µg of plasmid/plate). 

TAP protocol was essential as described by the manufacturer’s protocol. The 

final eluted bound samples were concentrated and submitted to the Indiana 

Center for Applied Proteomics (INCAPS) for analysis, including tryptic digestion, 

high performance liquid chromatography separation, and tandem mass 

spectrometry (MS/MS) to determine peptide sequences. 

 

v. Western Blotting and Immunoprecipitation.  

 

Western blotting and immunoprecipitation were performed as described 

previously (52). Cell extracts were prepared in a lysis buffer containing 0.1% 

Nonidet P-40 (NP40), 1% sodium deoxycholate, 0.1% SDS, 0.15 M NaCl, 10 mM 

sodium phosphate, pH 7.2, 2 mM EDTA, 50 mM sodium fluoride, protease 

inhibitor mixture, and phosphatase inhibitor mixtures including microcystin LR, 

cantharidin, (−)-p-bromotetramisole, and OA (Sigma phosphatase inhibitor 

cocktail-1), where appropriate. For immunoprecipitation, lysates were prepared in 

lysis buffer (50 mM Tris-HCl, pH 7.4, 0.1% NP40, 1% Triton X-100, 10% glycerol, 

1 mM EGTA, 1 mM EDTA, 0.15 M NaCl, 10 mM sodium fluoride, 2 mM sodium 

vanadate and protease inhibitors). Cell lysates were clarified by centrifugation, 
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and the supernatant was pre-cleared by incubation with Trueblot IgG 

(eBioscience) beads. For each immunoprecipitation, 1 mL aliquots of lysates (1 

mg protein) were incubated with 4–8 µg of DAP-3 antibody at 4oC for 3 h. The 

immune complexes were then isolated by the addition of 40 µL of protein G 

beads and incubation for 2 h. Flag-tagged proteins were isolated by incubating 1 

mL aliquots of lysates (1 mg protein) with 40 µL of a 50% slurry of anti-FLAG 

agarose at 4oC for 3 h. Immune complexes were washed three times with lysis 

buffer to reduce nonspecific binding. The immune complexes were resolved by 

electrophoresis and analyzed by western blotting.  

 

vi. Reverse Transcription-PCR.  

 

RNA was extracted with TRIzol reagent (Invitrogen) and 0.5 µg of RNA 

was used as template for reverse transcription (RT) using Superscript first strand 

cDNA synthesis kit (Invitrogen). The resulting cDNAs were resuspended in 20 µL 

H20. The cDNA levels of specific genes were measured by quantitative real time 

PCR using Absolute QPCR Mixes (ABgene) and an ABI 7500 Real Time PCR 

system (Applied Biosystems). The gene-specific primers used for QPCR were 

sense hHPRT1 5’-CCT TGG TCA GGC AGT ATA ATC CA-3’ and antisense 

hHPRT1 5’-GGT CCT TTT CAC CAG CAA GCT-3’, hDAPK1 sense 5’-CCC GGA 

AAA AAA TGG AAA CAA-3’ and antisense hDAPK1 5’-TGG ACA GGA ATG 

ACC TGG ATA AT-3’. All samples were amplified in duplicate and every 

experiment was repeated independently at least 2 times. Relative gene 
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expression was converted using the 2-ΔΔCt method against the internal control 

HPRT1 housekeeping gene as previously described (146). 

  

vii. Purification of PP2A Holoenzymes 

 

PP2A ABαC and ABδC holoenzymes were prepared as previously 

described (2). Briefly, HEK T-Rex cell lines harboring pcDNA5-TO (EV), Bα-

FLAG-pcDNA5-TO, or Bδ-FLAG-pcDNA5-TO were treated with the tetracycline 

analog, doxycycline (2 µg/mL), for 48 h to induce protein expression. Cells were 

lysed in buffer containing 20 mM Tris-HCl, pH 7.6, 0.1% Igepal CA-630, 150 mM 

NaCl, 3 mM EDTA, 3 mM EGTA, and protease inhibitor cocktail. The clarified cell 

lysates were incubated with 20 µL of a 50% slurry of anti-FLAG agarose for 4 h. 

Bound proteins were washed twice with PAN buffer (10 mM PIPES, pH 7.0, 17 

µg/mL aprotinin, and 100 mM NaCl) containing 0.5% Igepal CA-630, once with 

PAN buffer, and once in phosphatase assay buffer (25 mM Tris-HCl, pH 7.5, 1 

mM EDTA, 1 mM EGTA, 1 mM dithiothreitol, and 0.25 mg/ml bovine serum 

albumin). Bound proteins were eluted by incubation for 1 h at 4oC in 100 µl of 

phosphatase assay buffer containing 100 µg/ml FLAG peptide. The amount of 

PP2A catalytic subunit in the purified PP2A holoenzymes was determined by 

SDS-PAGE and silver staining using serial dilutions of bovine serum albumin as 

standards as previously described (2). These values were used to calculate the 

protein concentration of purified PP2A holoenzymes based upon stoichiometric 

levels of the A, B, and C subunits in each preparation. Aliquots of the purified 
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holoenzymes were either assayed for phosphatase activity or subjected to SDS-

PAGE followed by silver stain or immunoblot analysis. 

 

viii. Phosphatase and Kinase Assays  

 

Protein phosphatase assays were performed essentially as previously 

described (1). HEK293 cells were transfected with FLAG-DAPK for 48 h, DAPK 

was immunoprecipitated from clarified cell lysates (1 mg of protein) using 40 µL 

anti-FLAG agarose for 4 h in lysis buffer (0.1% NP40, 1% sodium deoxycholate, 

0.1% SDS, 0.15 M NaCl, 10 mM sodium phosphate, pH 7.2, 2 mM EDTA, 50 mM 

sodium fluoride, protease inhibitor cocktail and phosphatase inhibitor cocktails). 

The FLAG-DAPK immune complexes were washed once in lysis buffer 

containing both protease and phosphatase inhibitors and twice in phosphatase 

assay buffer (25 mM Tris-HCL, pH 7.5, 1 mM EDTA, 1 mM EGTA, 1 mM 

dithiothreitol, and 0.25 mg/ml bovine serum albumin) and then resuspended in 40 

µL of the same buffer. The washed immune complexes were incubated with 

purified ABαC and ABδC holoenzymes (~100 ng); FLAG peptide eluates for EV-

expressing cells were used as a control. Following a 30 min incubation (with 

agitation) at 37oC, the phosphatase reactions were terminated by washing twice 

in phosphatase assay buffer containing 100 nM okadaic acid and subjected to 

immunoblot analysis using antibodies recognizing p-S308-DAPK. For the 

experiments coupled to an in vitro kinase assay, twenty percent of the reaction 

products from the phosphatase assay were analyzed by immunoblotting and the 
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remaining 80% was used in a kinase assay. For the kinase assay, the beads 

were washed extensively in kinase assay buffer (50 mM MOPS, pH 7, 10 mM 

magnesium acetate, 1 mM dithiothreitol, 10mM CaCl2, 10 µM calmodulin and 100 

nM okadaic acid). The kinase reactions were carried out as previously described 

(76) with minor modifications. In each kinase reaction (40 µL), 100 µM of DAPK 

peptide substrate (TOCRIS), and [γ-32P]-ATP (200 cpm/pmol) diluted in 1 mM 

ATP. Incubation was carried out for 30oC for up to 22.5 min with agitation, 

collecting 10 µL of the reaction at each time point. The amount of [γ32P]-ATP 

incorporation into the synthetic DAPK peptide substrate was analyzed as 

previously described using a scintillation counter (85).  

 

 ix. Calmodulin Overlay Assay 

 

The calmodulin overlay assay was performed as previously described 

(54). Briefly, immunoprecipitated DAPK was treated with PP2A holoenzymes in 

an in vitro phosphatase assay. Following SDS-PAGE, DAPK was Western-

blotted and incubated with biotinylated CaM (Sigma) in a buffer containing 50 

mM Tris-HCl, pH 7.4, 150 mM NaCl, 10 mM Ca2+
 and 5% nonfat dry milk. 

Calmodulin was detected with streptavidin-conjugated horseradish peroxidase 

(The Jackson Laboratory). 
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x. Statistical Analysis and Quantification. 

 

All experiments were carried out using independent cell transfections, in 

triplicate. Statistical analysis was performed using Students t-test and graphs 

were created using GraphPad Prism software (GraphPad Software Inc., San 

Diego, CA). Western blotting images are representative of the repeated 

experiments. All densitometry analysis of western blotting data was normalized to 

vinculin levels.  
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D. Results 

 

i. Identification of regulatory Bα subunit of PP2A as a DAPK binding 

protein. 

 

To identify novel DAPK interacting proteins in HEK293 cells, we exploited 

a tandem affinity purification (TAP) approach that consists of two specific binding 

and elution steps that are designed to minimize non-specific interactions (Figure 

6). Shelley Dixon, a technician in the lab, generated a fusion protein consisting of 

full-length human DAPK and the TAP tag (DAPK-TAP) that was expressed in 

HEK293 cells to form endogenous protein interactions and complexes. The TAP 

tag contains protein A, a tobacco etch virus (TEV) cleavage site and a calmodulin 

binding peptide (CBP) derived from skeletal muscle myosin light chain kinase. In 

the first step, the DAPK-TAP protein complexes are purified on IgG sepharose, 

which binds to protein A within the TAP tag. To eliminate non-specific proteins 

bound to protein A, the protein A tag is cleaved with tobacco etch virus (TEV) 

enzyme. In the second step, DAPK-TAP protein complexes are purified with the 

calmodulin binding peptide in the presence of calcium on calmodulin sepharose.  

DAPK-TAP protein complexes are eluted by calcium chelation with EGTA. 

Finally, the affinity-purified proteins were sent to the Indiana Center for Applied 

Proteomics (INCAPS) for identification using LC-MS/MS. Several proteins were 

identified by LC-MS/MS using this TAP screen (data not shown). One of these 



 36 
 

identified proteins, the regulatory Bα of PP2A, and was selected for further 

examination.  

 

 ii. PP2A-Bα and PP2A-Bδ holoenzymes associate with DAPK.  

 

 To validate the TAP results, we examined the ability of DAPK to co-

immunoprecipitate with Bα and the highly homologous (90% identity) Bδ isoform 

subunit of PP2A. Although Bδ is a non-redundant protein, it has been determined 

to share some of the same substrates as Bα (1). Thus, we examined the ability of 

Bδ to bind to DAPK. Co-immunopreciptation (coIP) experiments were performed 

using HEK T-REX stable cell lines expressing either empty vector (EV), FLAG-

Bα (Bα), or FLAG-Bδ (Bδ) described in Methods. Western analysis of the FLAG 

immune complexes confirmed endogenous DAPK immunoprecipitates with Bα 

and the closely related isoform Bδ; no DAPK was detected in the control immune 

complexes (Figure 7A). Additionally, both the structural (A) and catalytic (C) 

subunits of PP2A were detected in the FLAG-B subunit eluates, whereas no 

PP2A subunits were observed in FLAG immune complexes isolated from lysates 

of control cells. Similarly, western analysis of FLAG-DAPK immune complexes 

revealed that endogenous Bα subunit co-immunoprecipitated with FLAG-DAPK 

(Figure 7B). Unfortunately, no commercial antibody specifically to Bδ exists, thus 

we were unable to determine if endogenous Bδ immunopurified with FLAG-

DAPK. To determine if DAPK binds other PP2A holoenzymes, we tested its 

ability to interact with B’β, a member of the B’ family that shares little homology to 
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members of the B family. HEK293 cells were transiently transfected with FLAG-

Bα, Bδ, or B’β. Western analysis of the FLAG immune complexes confirmed 

endogenous DAPK immunoprecipitates with Bα and Bδ but not B’β, indicating in 

vivo specificity for the targeting subunits of PP2A (Figure 7C). Together, these 

data indicate that the two closely related PP2A holoenzymes, ABαC and ABδC, 

interact with DAPK. 

 

 iii. PP2A-Bα and PP2A-Bδ holoenzymes associate with DAPK at the 

cytoskeletal domain.  

 

 To determine the region of DAPK that mediates its interaction with PP2A, 

fragments of DAPK corresponding to its known domains (Figure 8A) were 

transfected into HEK T-Rex cell lines that express either FLAG-Bα, FLAG-Bδ or 

an empty vector (EV). Immunoprecipitation of these DAPK domains revealed that 

only the DAPK cytoskeletal domain (Cyto), encompassing residues 628-1215, 

was sufficient for binding to ABαC and ABδC holoenzymes (Figure 8B). 

Collectively, these results indicate the PP2A holoenzyme associates with the 

cytoskeletal domain of DAPK through the regulatory Bα and Bδ subunits.   

 

 iv. PP2A negatively regulates the cellular levels of DAPK. 

 

As our previous studies suggested that the dephosphorylated form of DAPK 

is ubiquitinated and degraded (53, 54, 145), we examined the effects of a well-
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characterized PP2A inhibitor, okadaic acid, (OA) and a PP2A activator (FTY720) 

on DAPK protein levels. We treated HeLa cells with low concentrations (1-5 nM) 

of OA to inhibit PP2A activity and examined the cellular levels of DAPK using 

western blotting. This concentration of OA has been shown to be relatively 

specific for inhibiting PP2A while not affecting the other OA sensitive 

phosphatases PP1 and PP2B (124). Inhibition of PP2A by OA slightly enhanced 

the cellular levels of endogenous DAPK (Figure 9A). A recent study by Neviani et 

al. (86) identified a novel activator of PP2A, FTY720. To determine if enhanced 

activation of PP2A altered endogenous DAPK protein levels, we treated HeLa 

cells with increasing amounts of FTY720 in the presence or absence of OA. 

FTY720 reduced the cellular levels of endogenous DAPK in the absence of OA 

but this effect could be reversed by co-treating cells with 1 nM OA (Figure 9B). 

The maximum concentration of FTY720 that we were able to use in these 

experiments was 5 µM as rapid cell detachment and cell death occurred at higher 

dosages. These data indicate a “PP2A-like” enzyme negatively regulates the 

protein levels of DAPK. 

To determine if directly targeting PP2A to DAPK would alter its cellular 

levels, HEK293 cells were transiently transfected with the targeting subunits Bα, 

Bδ or B’β. With forced expression of the Bα or Bδ regulatory subunits, we 

observed a decrease in the endogenous protein levels of DAPK (Figure 9C). No 

reduction in endogenous DAPK protein levels was observed in control cells (EV) 

or cells overexpressing B’β, a result consistent with our co-immunoprecipitation 

studies (Figure 9C). These findings further validate the in vivo specificity of the 
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Bα and Bδ subunits in targeting PP2A to DAPK. Finally, siRNA mediated 

knockdown of Bα or Bδ separately, or in combination (Bα/δ), resulted in an 

increase in endogenous protein levels of DAPK (Figure 9D). Since the effects of 

siRNA-mediated knockdown of Bα and Bδ on DAPK levels were 

indistinguishable, only Bα was used in subsequent experiments. Collectively, 

these data indicate the enzymatic activity of specific holoenzymes of PP2A 

negatively regulate DAPK protein levels.  

 

v. PP2A targets DAPK for proteasomal degradation. 

 

Previous studies have shown activation (dephosphorylation of p-S308) of 

DAPK leads to enhanced degradation by the proteasome (53, 54, 145) and 

lysosome (71). To distinguish between proteasomal and lysosomal degradation, 

we induced the expression of Bα or Bδ in HEK-TRex cells using the tetracycline 

analog, doxycycline (2 µg/mL) and then treated the cells with either the 

proteasome inhibitor, MG132 [10 µM] or the lysosomal inhibitor, chloroquine [100 

µM] for 6 h. Cells treated with proteasomal inhibitor MG132 could rescue the Bα- 

or Bδ-induced decrease in DAPK protein levels, whereas the lysosomal inhibitor 

could not (Figure 10A). No change in the steady state level of DAPK1 mRNA was 

observed when overexpressing Bα or Bδ either in absence or presence of 

MG132 or chloroquine, indicating that the observed PP2A-induced decrease in 

DAPK occurs at the posttranslational level and not at the transcriptional level 

(Figure 10B). Together, these results indicate that the association of PP2A with 
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DAPK negatively regulates the cellular levels of DAPK via a proteasome-

dependent process.  

 

vi. Regulation of DAPK phosphorylation by PP2A holoenzymes. 

 

A recent study by Gozuacik et al. (39) implicated a “PP2A-like” enzyme in 

the control of p-S308 dephosphorylation. While these investigators demonstrated 

that the AC core dimer of PP2A could dephosphorylate p-S308, no evidence was 

presented as to if PP2A could be targeted to DAPK to facilitate this process. To 

determine if PP2A targeted to DAPK by either the Bα or Bδ subunits could 

dephosphorylate DAPK at S308, ABαC or ABδC holoenzymes were 

immunopurified using a previously described method (Figure 11A) (1, 2). The 

relative purity of the isolated PP2A holoenzymes was examined with SDS-PAGE 

followed by silver stain and western blotting (Figures 11B and 11C). Our 

analyses confirmed that the purified complexes contain the three PP2A subunits 

(A, B, and C) with only minor amounts of contaminating proteins. To determine if 

the purified holoenzymes were active, they were tested for their phosphatase 

activity using a generic phospho-peptide in an in vitro phosphatase assay in the 

presence or absence of OA. The results of this assay confirmed that both purified 

PP2A complexes could dephosphorylate the phospho-peptide in an OA-sensitive 

manner (Figure 11D). To determine if DAPK could be dephosphorylated by the 

purified PP2A holoenzymes, FLAG-DAPK immune complexes were isolated from 

lysates of HEK293 cells prepared in the presence of the phosphatase inhibitors 
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as described in Methods. After washing to remove the phosphatase inhibitors, 

the immunopurified DAPK was incubated with purified PP2A-Bα or PP2A-Bδ that 

had been pre-incubated with or without the PP2A inhibitor OA. Immunoblot 

analysis of the reaction mixtures revealed that PP2A-Bα and PP2A-Bδ 

holoenzymes exhibited appreciable phosphatase activity towards p-S308; no 

dephosphorylation was observed in the control reactions (i.e. FLAG peptide 

eluates from FLAG immune complexes of cells expressing empty vector) and in 

the reactions containing OA (Figure 11E). To determine if phosphorylation of 

S308 in DAPK could be altered by siRNA-mediated knockdown of endogenous 

Bα subunit, HeLa cells were first transfected with siRNA for Bα (siBα) or a 

control siRNA and then DAPK was immunoprecipitated. These results revealed a 

a significant increase in the ratio of p-S308 to total DAPK protein levels 

compared to cells treated with a control siRNA (siScr) (Figure 11F). Together, 

these data confirm that PP2A ABαC and PP2A ABδC are cellular phosphatases 

that dephosphorylate p-S308 on DAPK.   

 

vii. PP2A activates DAPK. 

 

Given that previous studies have shown that dephosphorylation of S308 

results in increased kinase activity of DAPK (54, 117, 145), we next sought to 

determine if dephosphorylation of DAPK by PP2A-Bα and PP2A-Bδ 

holoenzymes would increase the activity of DAPK. DAPK immune complexes 

were dephosphorylated using the purified ABαC and ABδC holoenzymes and 
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kinase activity was subsequently measured using a synthetic DAPK substrate 

peptide as illustrated (Figure 12A). The results of this assay show that DAPK 

treated with ABαC and ABδC prior to the kinase assay exhibited increased 

activity towards the DAPK substrate (Figure 12B). Consistent with this enhanced 

kinase activity the PP2A-treated (dephosphorylated) DAPK bound Ca2+/CaM with 

higher affinity (Figure 12C).  These findings demonstrate that DAPK is activated 

by both PP2A holoenzymes (ABαC and ABδC). 

 

E. Discussion 

 

Previous studies established that the activities of DAPK can be regulated 

by Ca2+/CaM, autophosphorylation of S308 within its calmodulin-binding domain, 

and ubiquitin-mediated degradation (54, 117, 145). Activation of the catalytic 

activities of DAPK is initiated by dephosphorylation of S308 by a PP2A-like 

phosphatase (39), and subsequent to its dephosphorylation and activation, 

DAPK protein levels are modulated by ubiquitin-mediated proteasomal 

degradation (53, 54, 145). These studies suggest a network of protein 

modifications and protein-protein interactions act to regulate the activities of this 

Ser/Thr protein kinase. In this chapter, we extend these studies by identifying 

and characterizing two novel S308 phosphatases that control the activation and 

stability of DAPK. 

Protein-protein interactions can be identified using affinity purification 

techniques such as TAP coupled to tandem mass spectrometry. Previous studies 
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utilizing this approach were successful in identifying novel phosphatase-substrate 

interactions such as the association of transcription factor TRIP-Br1 with PP2A-

ABαC holoenzyme (144). Using this methodology, we identified a potential DAPK 

interacting protein, PP2A regulatory subunit Bα. We extended these findings and 

confirmed a physical interaction between DAPK and PP2A ABαC holoenzyme as 

well as a closely related (>90% shared amino acid homology) PP2A holoenzyme, 

ABδC. This interaction occurs via the Bα and Bδ targeting subunits of PP2A and 

the cytoskeletal domain of DAPK. PP2A regulatory subunits share little homology 

between families; however isoforms within a family are highly homologous. We 

determined the in vivo specificity for PP2A ABαC and ABδC holoenzymes by 

showing that PP2A AB’βC, of the B’ family, did not interact with endogenous 

DAPK. Consistent with this, Bα and Bδ containing PP2A holoenzymes were 

shown to dephosphorylate Raf1, whereas B’β could not (1).  

Manipulation of the cellular levels of regulatory B subunits is helpful in 

identifying signaling pathways and substrates of PP2A due to the inability to 

overexpress or knockdown the catalytic subunit of PP2A in mammalian cells (9, 

128). Pharmacological inhibition of PP2A, as well as siRNA-mediated depletion 

of the Bα or Bδ regulatory subunits of PP2A results in increased cellular levels of 

DAPK. Consistent with these observations, pharmacological activation or 

overexpression of Bα or Bδ regulatory subunits led to decreased cellular levels of 

DAPK while not affecting the steady state mRNA transcript. Moreover, treating 

cells with MG132 to inhibit proteasomal degradation rescued PP2A induced 
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degradation of DAPK, whereas treatment with chloroquine to inhibit lysosomal 

proteases had no effect on the cellular levels of DAPK.  

It was proposed that the autophosphorylation at S308 imposes charge-

dependent interaction of the CaM regulatory segment of DAPK with the catalytic 

cleft and the ATP binding site, and lowers the susceptibility of the enzyme to 

activation by CaM by reducing the binding capacity of the enzyme to its activator, 

CaM (117). In the basal state DAPK is phosphorylated at S308 and is rapidly 

dephosphorylated in response to proapoptotic stimuli such as ceramide and 

TNFα (54, 117). Dephosphorylation at S308 by an unknown phosphatase(s) 

attenuates autoinhibition by releasing the calmodulin-binding region from the 

catalytic cleft and allows binding of Ca2+/CaM to DAPK. We were able to show 

that purified and active PP2A holoenzymes PP2A-Bα and -Bδ could 

dephosphorylate S308, enhance Ca2+/CaM binding as well as the kinase activity 

of DAPK in vitro.  

Consistent with our results, studies have linked the phosphorylation status 

of proteins to protein turnover via the lysosome or ubiquitin-proteasome system 

(10, 69). Distinct holoenzymes of PP2A have been shown to affect the protein 

stability and turnover of multiple substrates. PP2A-AB’αC and AB’βC 

dephosphorylate oncogenes c-Myc and Pim-1, respectively. This 

dephosphorylation enhances their proteasomal-mediated turnover (7, 76). PP2A 

does not exclusively enhance degradation but can also stabilize proteins. For 

example, dephosphorylation of TRIP-Br1, ALK4 and ALK5 by PP2A ABαC is 

protective against degradation (10, 144). The unphosphorylated form of DAPK is 
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targeted for polyubiquitination by at least two recently discovered E3-ligases, 

CHIP and Mib1 (53, 145). One possible mechanism by which dephosphorylation 

of DAPK may enhance proteasomal degradation is that dephosphorylation may 

cause a conformational change in DAPK to expose a once hidden ubiquitination 

site. Proteasomal-mediated degradation of DAPK occurs rather than inactivation 

of DAPK by re-autophosphorylation (54). This paradigm is analogous to those 

that have been identified for temporally regulating other apoptotic regulatory 

proteins such as p53 and retinoblastoma and may be a common mechanism 

used to rapidly modulate the activities of these important factors (116, 139).  

 Overall, these studies are the first to identify distinct holoenzymes of PP2A 

that regulate the cellular activities and protein levels of DAPK. The activation of 

these protein phosphatases and the physiological response to activation of 

DAPK are further explored in Chapter III.  
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Figure 6: Identification of PP2A regulatory subunit Bα  as a potential DAPK 

binding protein by TAP. A) Schematic of DAPK-TAP tagged fusion protein 

containing full-length human wild type DAPK fused to the TAP tag consisting of a 

calmodulin binding peptide, TEV cleavage site and Protein A. B) Schematic of 

TAP method in five sequential steps (i) purification of protein A tag on IgG 

sepharose, (ii) cleavage of Protein A tag with TEV, (iii) purification of calmodulin 

binding peptide in the presence of calcium on calmodulin sepharose, (iv) elution 

by calcium chelation, (v) identification by LC MS/MS. (Modified from Gingras et 

al. 2005 J. Physiol. (36)) 
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Figure 7: DAPK interacts with PP2A holoenzymes ABαC and ABδC  

A) HEK T-Rex doxycycline inducible stable cell lines: empty vector (EV), FLAG-

Bα or FLAG-Bδ were lysed 48 h post-doxycycline induction, and FLAG-tagged 

subunit complexes were isolated from the lysates using anti-FLAG agarose. 

Bound proteins were analyzed by western blotting. B) HeLa cells expressing 

FLAG-DAPK were lysed after 48 h transduction, and DAPK complexes were 

isolated from lysates using anti-DAPK or control IgG. C) HEK293 cells 

expressing FLAG-EV, -Bα, -Bδ, or B’β were lysed after 48 h post transfection, 

and FLAG complexes were isolated from lysates using anti-FLAG agarose. 
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Figure 8: The cytoskeletal domain of DAPK is required to interact with Bα 

and Bδ . A) Schematic of Omni-tagged DAPK domain plasmids and 

corresponding amino acid numbers. B) Omni-DAPK domain plasmids shown in 

(A) were transiently transfected into HEK T-rex cells. Cell lysates prepared 48 h 

post doxycycline induction and immunoprecipitated with anti-FLAG agarose and 

analyzed by western blotting. 

 

 

 

 



 49 
 

 

Figure 9: PP2A negatively regulates DAPK protein levels. 

A) HeLa cells were treated with increasing amounts of PP2A inhibitor, okadaic 

acid (OA) for 24 h. Cells were lysed and analyzed for total endogenous DAPK 

levels. B) HeLa cells treated with increasing amounts of PP2A activator, FTY720 

for 48 h in the presence or absence of OA (1 nM). C) HEK293 cells transiently 

transfected with pcDNA5/TO (EV), Bα-FLAG/pcDNA5/TO (Bα), Bδ-

FLAG/pcDNA5/TO (Bδ), or B’β-FLAG/pcDNA5/TO (B’β). Cells were lysed 48 h 

post-transfection and analyzed by western for endogenous DAPK levels. 

Quantification of DAPK to vinculin is shown (*p<0.05).  D) HeLa cells transfected 

with siRNA for scrambled control (siScr), siBα, siBδ, or siBα/δ for 72 h. Cells 
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were lysed and analyzed by western. Quantification of DAPK to vinculin is shown 

(*p<0.05).  
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Figure 10: PP2A enhances proteasomal-mediated degradation of DAPK. 

A) HEK T-Rex cells stably transfected with pcDNA5/TO (EV), Bα-

FLAG/pcDNA5/TO (Bα), or Bδ-FLAG/pcDNA5/TO (Bδ) were treated with 

doxycycline to induce PP2A regulatory subunit expression. After 48h doxycline, 

cells were treated with vehicle, chloroquine [100 µM] or MG132 [10 µM] for 6 h 

and subjected to analysis by immunoblot. B) qRT-PCR of steady state mRNA 

level of DAPK and housekeeping gene HPRT in HEK T-Rex cells in parallel with 

(A).  
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Figure 11: Dephosphorylation of DAPK by PP2A holoenzymes. 

A) Schematic of experimental procedure used to isolate ABαC and ABδC 

holoenzymes and then perform in vitro phosphatase assays. HEK T-Rex cells 

stably transfected with pcDNA5/TO (EV), Bα-FLAG/pcDNA5/TO (Bα), or Bd-

FLAG/pcDNA5/TO (Bδ) were treated with doxycycline to induce PP2A regulatory 

subunit expression for 48 h and lysed. FLAG-tagged B subunit complexes were 

isolated from the lysates using anti-FLAG-agarose. Bound proteins were washed, 

eluted with FLAG peptide resolved by SDS-PAGE, and subjected to silver stain 
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analysis or immunoblot. B) Silver stain analysis of FLAG eluates; the positions of 

PP2A-A (A), FLAG-B, and PP2A-C (C) subunits are denoted. C) Western blot 

analysis of FLAG eluates. D) The isolated PP2A holoenzymes were assessed for 

activity in the absence or presence of okadaic acid (OA) using a generic 

phospho-peptide as the substrate. E) HEK293 cells were transfected with FLAG-

DAPK. After 48 h transfection, the FLAG-DAPK proteins were isolated using anti-

FLAG-agarose. The immunoprecipitates were incubated with purified active 

PP2A ABαC (Bα), ABδC (Bδ), or mock (EV) holoenzyme in an in vitro 

phosphatase reaction in the presence or absence of okadaic acid. Quantification 

of S308-DAPK to total DAPK is shown (*p<0.05). F) HeLa cells transfected with 

siRNA for Scrambled control (siScr) or siBα for 72 h. Cells were lysed and DAPK 

was isolated by anti-DAPK antibody and analyzed by western. The ratio of S308-

DAPK to total DAPK is shown and representative of repeat experiments.  
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Figure 12: PP2A enhances the kinase activity of DAPK. 

A) Schematic of experimental procedure used to perform in vitro 

phosphatase/kinase assays. B) HEK293 cells were transfected with FLAG-

DAPK. After 48 h transfection, the FLAG-DAPK proteins were isolated with anti-

FLAG-agarose. The immunoprecipitates were incubated with purified active 

PP2A ABαC (Bα), ABδC (Bδ), or mock (EV) holoenzyme in an in vitro 

phosphatase reaction. For western blotting, 20% of the immunoprecipitate was 

utilized for total p-S308 and total DAPK levels. The remaining 80% of the 

immunoprecipitate was washed extensively in the presence of okadaic acid [100 

nM] in kinase assay buffer. The washed immunoprecipitate was incubated in the 
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presence of a synthetic DAPK substrate peptide in an in vitro kinase reaction 

using [γ32P]-ATP. Samples collected at time points and [γ32P]-ATP incorporation 

into the synthetic peptide was quantitated using a scintillation counter. Western 

of p-S308 and total DAPK levels is shown. C) Western blotting and CaM overlay 

of immunoprecipitated endogenous human DAPK treated with PP2A ABαC (Bα), 

ABδC (Bδ), or mock (EV) holoenzyme in an in vitro phosphatase reaction. The 

CaM overlay was carried out using biotinylated CaM (100 nM) in Tris buffer 

containing 10 mM Ca2+. 
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Chapter III: 

 PP2A and DAPK Regulate Ceramide-Induced Anoikis 

 

A. Abstract 

 

Previous studies have demonstrated that the tumor suppressor death 

associated protein kinase (DAPK) plays a role in ceramide-induced apoptosis via 

an unknown mechanism. DAPK is a calcium/calmodulin regulated 

serine/threonine kinase with an important role in regulating cytoskeletal dynamics 

and cell adhesion. Auto-phosphorylation within the calmodulin-binding domain at 

serine308 inhibits DAPK catalytic activity. Dephosphorylation of serine308 by 

PP2A ABαC and ABδC holoenzymes enhance kinase activity and proteasomal 

mediated degradation of DAPK (Chapter II). We determined that ceramide 

causes a capsase-independent cell detachment in HeLa cells, a human cervical 

carcinoma cell line. Subsequent to detachment, these cells undergo caspase-

dependent apoptosis due to lack of adhesion, termed anoikis. Overexpression of 

wild type DAPK induced cell rounding and detachment similar to cells treated 

with ceramide; however, this effect was not observed following expression of 

phosphorylation mutant, S308E DAPK. Finally, the endogenous interaction of 

DAPK and PP2A was determined to be required for ceramide-induced cell 

detachment and anoikis. Together these studies provide interesting and new 

insight into the mechanisms by which ceramide regulates cell adhesion and 

anoikis. We have defined a cellular pathway initiated by ceramide-mediated 
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activation of PP2A and DAPK to regulate inside-out signaling and promote 

anoikis.  
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B. Introduction 

 

Apoptosis is a highly coordinated cellular process that is important in the 

development and maintenance of tissue homeostasis in multicellular organisms 

(126). Apoptosis can be triggered by a variety of stimuli including a loss of cell 

adhesion to the extracellular matrix, a process called anoikis (31). In adherent 

cells, such as epithelial cells, cell-matrix interactions through integrin adhesions 

play a vital role in cell survival (49, 133). Integrin adhesion regulates the 

organization and remodeling of actin cytoskeleton and actin cytoskeleton 

dynamics also plays an important role in maintaining the cell-matrix interaction 

through integrin adhesion (58). Loss of integrin-mediated adhesion through 

inside-out mechanisms initiates cellular cascades leading to mitochondrial 

membrane permeablization and anoikis (18, 32, 60, 61).  

Ceramide is a pleiotropic, sphingolipid produced by cells in response to 

radiation, inflammatory cytokines and chemotherapeutic drugs (35, 90, 111, 113). 

Modulation of sphingolipid-induced apoptosis is a potential mechanism to 

enhance the effectiveness of chemotherapeutic drugs. Ceramide is a potent 

activator of protein phosphatases including PP2A leading to dephosphorylation of 

substrates important in regulating mitochondrial dysfunction, apoptosis and 

anoikis (5, 15, 25, 46, 108). Ceramide is a potent activator of DAPK and this 

kinase is necessary for ceramide-induced cell death in multiple cell types, but the 

cellular mechanism leading to death is unclear (3, 15, 16). The activation of 

DAPK by ceramide is thought to be mediated by a ceramide-activated 
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phosphatase; however, the identity of this phosphatase remains uncertain (39). 

Once active, DAPK phosphorylates substrates including myosin regulatory light 

chain at Ser19 to regulate cytoskeletal dynamics, cell adhesion, and migration (3-

5,13,17). In addition, activation of DAPK has been shown to suppress β-integrin 

mediated cell adhesion through disrupting the association of talin and CDC42 (4).  

In these studies the mechanisms of ceramide-induced apoptosis were 

examined. It was determined that ceramide treated cells lose cell adhesion in a 

caspase-independent manner. Prolonged loss of cell adhesion leads to caspase 

activation and anoikis. Finally, it was determined that ceramide activates PP2A 

leading to dephosphorylation of serine308 and activation of DAPK that is 

required for ceramide induced cell detachment and anoikis.  
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C. Experimental Procedures 

 

i.  Adenoviral Transduction 

 

HeLa cells were transduced with recombinant adenovirus directing 

expression of either DAPK (Ad-DAPK), green fluorescent protein (Ad-GFP), a 

control scrambled shRNA (Ad-shScr), or an shRNA for depletion of endogenous 

DAPK (AD-shDAPK) for 48 h. Cells were washed with PBS, trypsinized and 

collected in 1% paraformaldehyde for analysis using a Beckman Coulter cell 

counter or in RIPA lysis buffer for SDS-PAGE.  

 

ii.  Cell Detachment Assays 

 

Cell detachment was quantified by counting only adherent cells. Briefly, cells 

were washed twice in PBS to remove detached cells. Adherent cells were then 

trypsinized and counted with a Beckman Coulter cell counter. The extent of cell 

detachment is defined as (the number of control cells – the number of treated 

cells)/(the number of control cells). For the HEK293 detachment assay, control 

cells were transiently transfected with EV. Treated cells were transfected with 

Wt-DAPK, S308A or S308E. In the ceramide-induced anoikis experiments, HeLa 

cells were transduced with adenovirus for 48 h and then incubated in the 

presence of DMSO (control) or C6-Ceramide (treated) for 16 h.  
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iii.  Statistical Analysis 

 

All experiments were carried out using independent cell transfections, in 

triplicate. Statistical analysis was performed using Students t-test and graphs 

were created using GraphPad Prism software (GraphPad Software Inc., San 

Diego, CA). Western blotting and DIC images are representative of the repeated 

experiments. All densitometry analysis of western blotting data was normalized to 

vinculin levels.  
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D. Results 

 

i. DAPK Autophosphorylation Prevents DAPK-Induced Cell Detachment 

 

DAPK was reported to suppress β-integrin signaling and cell adhesion 

through disruption of talin and CDC42 interactions (62, 132). To determine if 

dephosphorylation of p-S308 and activation of DAPK resulted in altered levels of 

cell detachment, HEK293 cells were transiently transfected with wild type DAPK 

(WT) or two phospho-site mutant forms of DAPK (S308A and S308E). The 

S308A DAPK mutant represents an active, dephosphorylated form of DAPK, 

whereas the S308E mutant is inactive (117). Cell rounding and detachment was 

visualized by DIC microscopy (Figure 13A). The transfected HEK293 cells were 

analyzed to determine the relative levels of cell detachment, which was 

quantitated by counting the number of attached cells as described in the 

Methods. The relative levels of DAPK expression in the transfected cells were 

examined using immunoblotting (Figure 13B). Expression of WT-DAPK resulted 

in 40% cell detachment, while expression of the active form of DAPK (S308A) 

increased this to 60% overall cell detachment, a result consistent with previous 

studies showing increased kinase activity of this mutant (117) (Figure 13C). In 

contrast, expression of the inactive form of DAPK (S308E) completely attenuated 

the ability of DAPK to induce cell detachment; no significant cell detachment was 

observed when compared to empty vector transfected cells. These data are 
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consistent with previous studies highlighting a role for DAPK in inhibiting cell 

adhesion (62, 132).  

 

ii.  Ceramide induces caspase-independent cell detachment leading to 

anoikis.  

 

Ceramide is a potent activator of some phosphatases including PP2A and 

PP1 (15, 25). Ceramide also activates DAPK via dephosphorylation at S308 and 

DAPK is required for ceramide-induced apoptosis in multiple cell types (54, 93, 

136). As we have shown that PP2A dephosphorylates DAPK at serine308 to 

activate it, we sought to determine if this is the mechanism whereby ceramide 

might induce apoptosis. Firstly we determined if ceramide induces cell 

detachment prior to apoptosis. A control experiment in which HeLa cells were 

treated with C6 ceramide (50 µM) for up to 24 h showed that ceramide induces a 

caspase-dependent apoptosis, as evidenced by the progressive cleavage of the 

caspase substrate, poly-ADP-ribose polymerase (PARP), within 8 hrs of 

ceramide treatment (Figure 14A). As expected, addition of z-VAD-FMK (100 µM), 

a cell permeable, pan-caspase inhibitor, blocked ceramide-induced PARP 

cleavage (Figure 15A). In parallel experiments, both floating and adherent cells 

were counted after ceramide treatment to quantify cell detachment. After 8 hrs of 

ceramide treatment, HeLa cells began to detach from the tissue culture plates 

with nearly 60% of the cells floating after 16 hrs (Figure 14B). Addition of z-VAD-

FMK did not reduce the number of floating cells, suggesting that cell detachment 
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induced by ceramide treatment is independent of caspase activation. To 

determine whether the cells treated with ceramide were able to reattach, 

ceramide-detached HeLa cells treated either in the presence or absence of z-

VAD-FMK were collected and washed to remove ceramide and then reseeded 

onto dishes in medium containing the inactive ceramide analog, 

dihydroceramide. Following 8 h incubation, both re-attached and floating cells 

were counted. As shown in Figure 14C, more than 75% of the floating cells were 

viable and could reattach when collected after 8 hrs of ceramide treatment. 

However, after more than 8 hrs of ceramide treatment, the floating HeLa cells 

progressively lost their ability to reattach and by 24 hrs of ceramide treatment, 

the percentage of cells capable of reattaching had decreased to 2%. Although 

inclusion of z-VAD-FMK did not prevent ceramide-treated HeLa cells from 

detaching (Figure 14B), it significantly increased the proportion of detached cells 

that were capable of reattachment after 24 hrs of ceramide treatment from 2% to 

35% (Figure 14C). These results suggest that prolonged cell detachment in the 

presence of ceramide induces an irreversible loss of cellular adherence, probably 

due to induction of anoikis. 

Ceramide treated HeLa cells do not exhibit typical morphological 

characteristics of classical apoptosis, such as membrane blebbing, cytoplasmic 

condensation or nuclear fragmentation prior to their detachment from tissue 

culture plates. To determine whether ceramide induces caspase activation prior 

to cell detachment, detached or adherent cells were collected separately at the 

indicated times after ceramide treatment and then analyzed by western blotting 
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to detect caspase activity by monitoring the cleavage of PARP (Figure 14D). 

Surprisingly, the adherent population of HeLa cells, even in the presence of 

prolonged ceramide treatment (24 hrs), had nearly undetectable levels of PARP 

cleavage. In contrast, within the population of detached cells there was a 

progressive increase in the levels of PARP cleavage, which begins within 8 hours 

of ceramide treatment (Figure 14D). Detached cells collected after 16 hrs of 

ceramide treatment were found to be mostly apoptotic with less than 25% of the 

cells capable of reattachment (data not shown). The finding that caspase-

dependent apoptosis occurs only in HeLa cells that have lost cellular adhesion 

contacts due to ceramide treatment together with the viability of cells soon after 

detachment (Figure 14C) suggests that ceramide-treated cells are not committed 

to apoptosis prior to detachment from the tissue culture plate and the observed 

apoptosis is induced by the loss of cell adhesion (anoikis). 

 

iii.  DAPK is required for ceramide-induced anoikis in human cervical carcinoma 

cells. 

 

Ceramide was previously shown to inhibit β-integrin-mediated cell 

adhesion to extracellular matrices in HeLa cells to promote cell detachment and 

anoikis by an unknown mechanism (46). Interestingly, forced expression of 

DAPK in HEK293T cells also caused inactivation of β-integrins and resulted in 

cell detachment and anoikis (132). This finding, together with our knowledge that 

ceramide activates both PP2A and DAPK (54, 117, 136), prompted us to 
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determine if PP2A mediated activation of DAPK is required for ceramide-induced 

anoikis.  

We first confirmed that treatment of cells with ceramide caused 

dephosphoryation of p-S308 in DAPK. As shown in Figure 15A, treatment of 

HeLa cells with 50 µM C6-ceramide induced a time dependent 

dephosphorylation of DAPK as well as a decrease in its cellular levels. Next, 

HeLa cells were transduced with recombinant adenovirus directing expression of 

either DAPK (Ad-DAPK), green fluorescent protein (Ad-GFP), a control 

scrambled shRNA (Ad-shScr), or an shRNA for depletion of endogenous DAPK 

(Ad-shDAPK). At 48 h post-infection, the relative expression levels of DAPK in 

the infected cells was analyzed by western blotting, which clearly indicated 

overexpression and effective depletion of DAPK using the appropriate viruses 

(Figure 15B). In parallel, at 48 h post-transduction ceramide was added and the 

infected cells were incubated for an additional 16 h before analysis to determine 

the levels of cell detachment in the infected cells. As shown in Figure 15C, 

ceramide induced nearly 65-68% cell detachment in the control cell populations 

expressing either Ad-GFP or Ad-shScr, respectively. In contrast, HeLa cells 

infected with Ad-DAPK significantly increased cell detachment to 78%, while cells 

with reduced expression of DAPK (Ad-shDAPK) had significantly reduced cell 

detachment to 51%. These data suggest ceramide-mediated activation of DAPK 

promotes cell detachment and anoikis.  
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iv.  PP2A is required for activation of DAPK and anoikis. 

 

Ceramide is a potent activator of PP2A, however no studies have 

highlighted a role for PP2A in regulating anoikis. Based on our findings, PP2A 

ABαC and ABδC are S308 DAPK phosphatases. We hypothesized that 

regulatory Bα subunit of PP2A is required for ceramide-mediated activation of 

DAPK and anoikis. To test our hypothesis, HeLa cells were transiently 

transfected with Bα-targeted siRNA (siBα) for depletion of endogenous Bα or a 

control, scrambled siRNA (siScr). After 48 h post-transfection, cells were treated 

with ceramide for 8 to 24 h as indicated (Figure 16A). Cells were then analyzed 

by western blotting to examine the levels of DAPK and DAPK phosphorylated at 

S308 (pS308-DAPK) as well as the relative levels of cell detachment. Depletion 

of PP2A-Bα significantly reduced dephosphorylation of DAPK at S308 and 

prevented ceramide-induced degradation of DAPK (Figure 16A). Consistent with 

reduced levels of active, dephosphorylated DAPK, cell detachment was also 

reduced by 20% in cells treated with siBα (Figure 16B). These data suggest 

ceramide-mediated activation of the PP2A ABαC holoenzyme regulates the 

endogenous activities and cellular levels of DAPK to promote cell detachment 

and anoikis.  
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E. Discussion 

 

Studies examining the mechanism by which ceramide induces apoptosis 

have focused on the ability of this compound to activate ceramide-activated 

protein phosphatases (CAPPs). The CAPPS, principally PP2A but also PP1, are 

thought to induce apoptosis by dephosphorylating specific target proteins that 

include the mitochondrial apoptosis regulators Bcl-2 and Bax (15, 16, 109). 

However, the potential significance of the dephosphorylation of protein kinase 

DAPK in the regulation of ceramide-induced apoptosis signaling has not been 

considered.  

Enhanced enzymatic activity of DAPK negatively regulates cell adhesion 

to substratum including tissue culture dishes, collagen and fibronectin (132). 

Wang et al. demonstrated that DAPK-induced loss of adherence was attributed 

to inhibition of β-integrin signaling and either forcibly activating β-integrins or 

plating cells on poly-L lysine could block the anti-adhesion effects. Forced 

expression of DAPK does not induce apoptosis or alter surface expression of 

integrins responsible for attachment ((132), and data not shown). This finding led 

to the proposal that for cells dependent on adhesion to the extracellular matrix for 

viability, DAPK’s ability to interfere with integrin function could directly contribute 

to cell death (anoikis). A possible mechanism by which DAPK regulates cell 

adhesion is through phosphorylation of an unidentified substrate and/or 

modulating cytoskeletal dynamics by phosphorylating myosin regulatory light 
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chain (RLC) at Ser19. Altogether, this previous study has provided interesting 

results that largely coincide with our overall hypothesis.  

In our current study, we show that the phosphorylation status of DAPK-

S308 is crucial for adhesion of cells to tissue culture plates. Expression of wild 

type or an active DAPK mutant DAPK-S308A (117), rapidly caused apoptotic cell 

morphological changes, whereas expression of an inactive, phosphomimetic 

form of DAPK (S308E) had no effect. Although the exact mechanism by which 

DAPK may modulate cell attachment is unknown, its ability to phosphorylate 

myosin II RLC to activate myosin motor activity (11, 52), its association with the 

cytoskeleton (23, 62), and its ability to regulate integrin function (62, 132) are all 

consistent with a role for DAPK in regulation of cell attachment to substrates.  

Finally, these studies demonstrate that the dephosphorylation of 

endogenous DAPK by PP2A to activate its catalytic activity in cells treated with 

ceramide is intimately associated with regulating the balance between cell 

adhesion and detachment induced anoikis. Importantly, we have discovered that 

caspase activation by ceramide does not occur until after the ceramide treated 

cells detach from the substratum. In adherent cells such as HeLa cells, loss of 

cell adhesion to the substratum leads to anoikis (31). These results suggest a 

novel pathway by which ceramide can lead to anoikis in adherent cells by 

inducing cell detachment from the substratum. These results are complementary 

and an extension to a study linking ceramide-induced disruption of the Golgi 

complex to anoikis (46). These findings reveal that there is a relationship 

between DAPK activity and cell detachment, suggesting that in response to 
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ceramide treatment the rapid dephosphorylation of S308 by PP2A leading to 

activation of DAPK correlates with loss of cell adhesion. Downregulation of either 

endogenous DAPK or PP2A regulatory subunit Bα blocked ceramide-induced 

cell detachment and anoikis, thus providing physiological evidence for a crucial 

role for PP2A to activate DAPK. 

In summary, our data not only provide new evidence to extend previous 

studies (62, 132) showing DAPK plays a role in anoikis, but also reveal a 

physiological stimulus and signaling pathway through which DAPK is activated. 

Based on the results of this study, the following model describing how DAPK 

regulates ceramide-induced apoptosis is proposed (Figure 17). Activation of 

PP2A ABαC and ABδC holoenzymes by ceramide results in dephosphorylation 

of the autophosphorylation site, S308, within the calmodulin-binding region of the 

ser/thr protein kinase DAPK and increased cytoplasmic calcium (73, 74). 

Dephosphorylation of DAPK-S308 serves to enhance calcium/calmodulin binding 

and activation of DAPK (52, 54, 117). Active DAPK can phosphorylate myosin II 

RLC to activate myosin motor activities as well as inactivate β-integrin signaling 

(54, 62). These events promote cell detachment from the substratum and 

subsequent apoptosis (anoikis). Active DAPK is also targeted by two distinct E3 

ubiquitin ligases (CHIP and Mib1) for proteasomal degradation, which serves to 

reduce cellular levels of DAPK and terminate phosphorylation of substrates (53, 

54, 145). Future studies aimed at identifying the DAPK substrate(s) involved in 

mediating anoikis will aid in our understanding of the complex mechanisms 
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governing cell adhesion and the ability of DAPK to induce indirect apoptosis 

through the anoikis pathway.  
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Figure 13: Dephosphorylation at S308 promotes loss of adhesion. 

A) HEK293 cells transfected with FLAG-DAPK Wt, S308A, or S308E for 48h. 

Cell rounding and detachment are visible by DIC microscopy. B) Western of 

relative expression of DAPK Wt and mutant plasmids. C) Quantification of 

detached HEK293 cells following forced expression of DAPK Wt and 

phosphorylation mutants. The percentage of cell detached was determined as 

described in the Methods. 
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Figure 14: Ceramide induces caspase-independent cell detachment.  

A) Western blotting to detect cleavage of poly-ADP-ribose-polymerase (PARP) 

by caspases in lysates of HeLa cells treated with ceramide (50 µM) for indicated 

times in the absence or presence of the cell-permeable pan-caspase inhibitor, z-

VAD-FMK (100 µM). B) Quantification of detached HeLa cells following treatment 

with ceramide. The percentage of cell detached was determined as described in 

the Methods. C) Quantification of ceramide detached HeLa cells that become 

reattached following washing and culture in culture medium containing the 

inactive ceramide analog, dihydroceramide. D) Western blotting to detect full 

length (116 kDa) and cleaved (85 kDa) PARP in total cell lysates from attached 

or detached (floating) HeLa cells collected after ceramide treatment for indicated 

times. 
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Figure 15: DAPK is required for ceramide-induced anoikis. 

A) Levels of total DAPK and DAPK phosphorylated at S308 were measured by 

western blotting after immunoprecipitation in Hela cells treated with 50 µM 

ceramide for 0-24 h. B) HeLa cells transduced with adenovirus (Ad) for Ad-GFP, 

Ad-DAPK, Ad-ShScr or Ad-shDAPK were treated with or without ceramide for 16 

h and analyzed by western. C) HeLa cells transduced with adenovirus (Ad) in (B) 

were assayed for cell detachment.  
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Figure 16: PP2A is required for activation of DAPK and Anoikis. 

A) HeLa cells transfected with control Scr siRNA or siRNA directed against Bα. 

At 48hrs post-transfecton cells were treated with ceramide for 0, 8, 16, 24 h. 

Lysates were prepared and DAPK immunoprecipitated and analyzed by western 

blotting. B) HeLa cells transiently transfected with siScr or siBα were assayed for 

cell detachment in response to 16 h ceramide. 
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Figure 17: Schematic representation of the activities of DAPK and PP2A in 

regulation of ceramide-induced anoikis. See text for details. Ca2+/CaM, 

calcium-calmodulin; PP2A-Bα, PP2A-Bδ, protein phosphatase 2A associated 

with the regulatory subunits Bα or Bδ; Mib1, Mind bomb1 E3 ubiquitin ligase; 

CHIP, C-terminal HSC70-interacting protein E3 ubiquitin ligase. 
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Chapter IV: 
 

 Conclusions and Future Studies 
 
 

A. Conclusions 
 
 

These studies demonstrate that two distinct holoenzymes of PP2A (ABαC 

and ABδC) are novel regulators of DAPK. These phosphatases not only control 

the activation but also the steady state protein levels of DAPK as a means to limit 

prolonged activation (Chapter II). The proteins involved and mechanisms 

regulating inside-out signaling during anoikis remain elusive to this day. Using an 

in vitro model of ceramide-induced anoikis in human cervical carcinoma cells, the 

functional relevance of the endogenous interaction of PP2A and DAPK in cell 

adhesion was examined. We determined that both PP2A and its downstream 

substrate DAPK were required for cells to lose cell adhesion and die by anoikis 

(Chapter III). Together these studies provide exciting and essential new data 

regarding the mechanisms regulating cell adhesion. These studies are significant 

in their expansion of our understanding of the proteins involved in both ceramide-

induced cell death and the process of anoikis. The studies in this thesis also 

provide fundamental information to understand the mechanisms of the tumor 

suppressor proteins PP2A and DAPK.  
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B. Future Studies 

 
 

i. Determine the detailed mechanism of PP2A-induced ubiquitination of  

DAPK. 

 

The steady state levels of DAPK are regulated posttranslationally by the 

ubiquitin-proteasome and the lysosomal degradation pathways (53, 54, 71, 145). 

My studies have highlighted that two distinct holoenzymes of PP2A negatively 

regulate the protein levels of DAPK, posttranslationally. I further determined the 

ubiquitin-proteasome but not the lysosomal degradation pathway is likely induced 

by these PP2A holoenzymes. I hypothesize that dephosphorylation of DAPK by 

PP2A induces a conformational change exposing an unidentified ubiquitination 

site(s), leading to polyubiquitylation and degradation of the kinase. Two DAPK 

E3-ubiquitin ligases were discovered by our lab, CHIP and Mib1 (53, 145). It is of 

interest to determine if either of these known ubiquitin ligases are responsible for 

PP2A-induced degradation of DAPK. Experiments using siRNA-mediated 

knockdown of these E3-ligases in cells expressing recombinant EV, Bα and Bδ 

(i.e. Figure 9C) should elucidate if either plays a role. It will also be of interest to 

identify the lysine residue(s) in DAPK that are ubiquitinated. To narrow down the 

region on DAPK that is targeted by ubiquitin, domain deletion plasmids of DAPK 

could be transfected in cells expressing recombinant EV, Bα and Bδ. The 

proteasomal inhibitor MG132 would then be used to determine if any of the 

DAPK domain deletion plasmids are targeted for PP2A-induced degradation. The 
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deletion plasmids containing the cytoskeletal binding domain would be required 

for this experiment, as my studies have shown the cytoskeletal region of DAPK is 

required for binding the Bα and Bδ (Figure 8B). Loss of the cytoskeletal domain 

would most likely prevent the ubiquitination of DAPK even if the ubiquitination 

site does not reside in the cytoskeletal-binding domain of DAPK. Studies 

highlighting the E3-ligase and ubiquitination site for PP2A-induced degradation of 

DAPK will give helpful insights into the mechanisms that limit prolonged 

activation of the kinase. Small molecules or peptides designed to mimic the 

region of DAPK that is ubiquitinated or at the E3-ligase responsible for targeting 

DAPK may be a strategy to prolong the activities of this tumor suppressor 

protein.  

 
 

ii. Determine if myosin light chain phosphorylation plays a role in DAPK-

induced cell detachment. 

 

Studies in Chapter II and III demonstrate that PP2A targets DAPK for 

dephosphorylation at S308 resulting in enhanced kinase activity and cell 

detachment. The role of endogenous PP2A and DAPK was further highlighted in 

a novel model of ceramide-induced anoikis in which we determine both proteins 

were necessary for cells to lose adhesion by an unidentified inside-out signaling 

mechanism, possibly involving the actin cytoskeleton.  

Actin cytoskeletal dynamics includes actin polymerization, 

depolymerization, and filament reorganization and these dynamic processes are 
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controlled by a number of actin binding proteins including myosin II (29). Myosin 

II motor activity is determined by the phosphorylation state of the 20-kDa myosin 

regulatory light chain (RLC) on serine 19. Kinase phosphorylation of serine 19 

(i.e. MLCK and DAPK) stimulates actin-activated myosin II ATPase activity to 

cause movement of actin filaments and generation of force (3). Activation of 

myosin II motors is reversed by the activity of myosin RLC phosphatase. 

Alterations in RLC phosphorylation and myosin II motor activity have been linked 

to depolymerization of actin cytoskeleton and cell detachment, resulting in 

apoptosis (anoikis) (82, 112). Consistent with this, I hypothesize that DAPK 

enhances the phosphorylation of myosin regulatory light chain, causing a loss of 

cell adhesion in ceramide treated cells. To determine if alterations in RLC 

phosphorylation induced by ceramide treatment is responsible for anoikis, RLC 

could be manipulated in experiments with adenoviral transduction and a 

pharmacological inhibitor. Adenoviral myosin RLC constructs have already been 

generated for constitutively active (S19E), inactive (S19A) or wild type proteins. 

An inhibitor for myosin II motor activities, blebbistatin, will be used in separate 

experiments and given prior to ceramide treatment. Myosin RLC adenoviral 

infected or blebbistatin treated HeLa cells will be quantitated to determine the 

percent (%) cell detachment following ceramide treatment. If myosin RLC 

phosphorylation is important to maintain cell adhesion in ceramide treatment, 

then over expressing a constitutively active or dominant negative RLC is 

predicted to result in reduced or enhanced cell adhesion, respectively when 

compared to wt RLC. Blebbistatin inhibits myosin II motor activities and could be 
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used to link myosin RLC phosphorylation to actomyosin motor function in cell 

adhesion. Blebbistatin will be used to confirm that myosin RLC phosphorylation, 

which results in activation of myosin II motor activity, plays a role in ceramide-

induced apoptosis. These studies will provide helpful insight into a potential 

mechanism by which PP2A induced activation of DAPK promotes cell 

detachment and anoikis.  

 

iii. Determine if DAPK plays a role in cell transformation 

  

DAPK is a known tumor suppressor protein with roles in suppressing 

metastasis in vivo (48). Expression is lost in numerous types of cancer due to 

methylation of its promoter (21, 87, 97, 142). Our studies have highlighted a role 

DAPK plays in initiating anoikis, a key step in preventing cells from acquiring 

anchorage independence and transformation. We hypothesize that DAPK may 

be an important tumor suppressor regulating anoikis and thus we propose 

inactivation of DAPK may be required for anchorage independence and cellular 

transformation.  

SV40 is a DNA tumor virus that encodes three proteins through alternative 

splicing, SV40 large T (LT), small T (ST), and 17kT antigens (reviewed in (119). 

The LT and 17kT antigens bind to retinoblastoma family members as well as p53 

resulting in their inhibition (75, 103). The ST antigen binds to structural A subunit 

of PP2A, preventing the formation holoenzymes, thereby suppressing its activity 

(92). Together these viral oncoproteins promote anchorage independence and 



 82 
 

cellular transformation (reviewed in (110)). Indeed, PP2A is an important tumor 

suppressor and reduced levels of PP2A activity has been detected in a number 

of different types of human cancer (106, 107, 130). This can occur when cells 

upregulate an endogenous PP2A inhibitor (i.e. SET, CIP2A and I2PP2A), 

highlighting the important role of its tumor suppressive activity (55, 68, 78). 

Pioneering studies on cellular transformation by William Hahn and Robert 

Weinberg determined most all types of human cells could be immortalized by 

expressing LT, the catalytic subunit of human telomerase (hTERT), and an 

oncogenic allele of Ras (41). However, to fully transform human cells, the 

enzymatic activity of PP2A had to be suppressed by ST. These fully transformed 

human cells (expressing: LT, hTERT, Ras, and ST) were capable of anchorage 

independence and tumor formation in immunodeficient mice (41, 42, 100, 140). 

This model provides an experimental system for the study of PP2A and its novel 

downstream substrate DAPK in human cell transformation. This system (cell line) 

is proposed to test the hypothesis that inactivation of DAPK is required for 

anchorage independence and cellular transformation.  

To test this hypothesis, we have obtained human fibroblast cell lines from 

William Hahn’s laboratory (Harvard University) that stably express LT, hTERT, 

and oncogenic RAS, but not ST. We have also obtained an expression plasmid 

for ST antigen from the laboratory of Kathleen Rundell (Northwestern University). 

A preliminary experiment will determine if expression of the ST antigen (inhibitor 

of PP2A) can prevent activation of DAPK in ceramide-treated HeLa cells. To 

determine if DAPK activity is required to suppress anchorage independence and 
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transformation, fibroblasts obtained from the Hahn lab will be infected with a 

lentiviral shRNA to DAPK. These fibroblasts are unable to fully transform without 

blocking the activity of PP2A with the ST antigen. I predict that stable knockdown 

of DAPK (shRNA) will result in enhanced cellular transformation, bypassing the 

requirement for ST antigen in colony formation assays. Additional experiments 

should include expressing the constitutively active mutant DAPK (S308A) in fully 

transformed cells (LT, hTERT, Ras and ST) to determine if DAPK could then 

suppress anchorage independence by initiating anoikis. Promising results from 

these proposed in vitro studies could be validated in vivo by injecting these cells 

in a tumor xenograft mouse model. Tumor size and the metastatic potential are 

predicted to be diminished in cells expressing S308A. These experiments would 

provide helpful insights into the role for DAPK in anoikis and cellular 

transformation and may provide new rationale targets for cancer therapy.  

 

C. Overall Summary and Clinical Implications 

 

In summary, our current studies identify a novel function for distinct 

holoenzymes of PP2A in regulating the cellular activities of the tumor suppressor 

DAPK. We have studied this endogenous protein interaction in a novel model of 

ceramide-induced anoikis and determined that both PP2A and DAPK negatively 

regulate cell adhesion. Steps at clarifying the mechanisms of cell detachment 

have been initiated in the laboratory but many unanswered questions still exist.  
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DAPK expression is currently used as a diagnostic biomarker for disease 

and loss of expression inversely correlates with severity, metastasis, recurrence 

and survival rates of cancer patients (12). This correlation exists in multiple types 

of cancer including cervical, acute and chronic lymphoblastic leukemia, gastric 

carcinoma and breast cancer (12). Ceramide is currently in preclinical trials as a 

novel and promising cancer therapeutic (24). Based on our studies, we predict 

tumors containing low cellular levels of DAPK will be less responsive to ceramide 

therapy.  As such, determining the expression level of DAPK from tumor biopsy 

prior to ceramide regimen may predict the ceramide sensitivity and clinical 

outcome for these patients.   
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