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ABSTRACT 

 

Ayélé-Nati Ahyi 

THE ROLE OF PU.1 AND IRF4 INTERACTION IN THE BIOLOGY AND 

FUNCTION OF T-HELPER 2 CELLS 

 

Adaptive and innate immune responses play a critical role in the protection 

against extracellular or intracellular pathogens.  The function of these two types 

of immune responses is coordinated by CD4+ T-helper (Th) cells.  Depending on 

the cytokine environment, Th progenitor (Thp) cells differentiate into three 

functionally different effector subsets.  T-helper-1 (Th1) cells which mediate cell-

mediated immunity, T-helper-2 (Th2) which orchestrates humoral immunity and 

T-helper-17 (Th17) cells key players in autoimmunity response.  Cytokine 

induced transcription factors that are differentially expressed in Th cells are 

required for the development and commitment to a specific Th lineage.  The 

population of Th2 cells can be subdivided in subpopulations depending on the 

level of a cytokine and the subsets of cytokines they produce.  Very limited 

information is available about the regulation of cytokine production in this array of 

Th2 cells.  We have recently identified the ETS family transcription factor PU.1 as 

regulating heterogeneity in Th2 populations. To define additional factors that 

might contribute to Th2 heterogeneity, we examined the PU.1 interacting protein 

IFN-regulatory factor (IRF)-4, a transcription factor expressed in lymphocytes and 
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macrophages.  When Th2 cells are separated based on levels of IL-10 secretion, 

IRF4 expression segregates into the subset of Th2 cells expressing high levels of 

IL-10.  To investigate the role of IRF4 in cytokine heterogeneity, Th2 cells were 

infected with retrovirus expressing IRF4.  The cells overexpressing IRF4 

secreted significantly higher levels of IL-10 and IL-4 compared to cells infected 

with a control vector at the same time the level of IL-9 decreases.  To understand 

the mechanism by which IRF4 regulates IL-10 expression in various Th2 cell 

subpopulations we used co-immunoprecipitation assays to determine 

transcription factors that interact with IRF4.  Our data shows that PU.1, IRF4 and 

NFATc2 form a complex in Th2 nuclear extract.  We also demonstrated by ChIP 

assay that IRF4 directly binds the Il10 and Il4 loci in a time dependent manner.  

The role of these protein-protein and protein-DNA complexes and their 

contribution towards Th2 heterogeneity will be further defined.  Understanding 

the regulation of the anti-inflammatory cytokine IL-10 in Th2 cells may give us a 

tool to control inflammation. 

 

 

Mark H. Kaplan, Ph.D. - Chair 
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 INTRODUCTION 
Innate and adaptive immune response 

Innate and adaptive immune responses are the two components of immunity 

against pathogens.  Innate immunity includes epithelial barriers in the skin (1), 

gut (2) and lungs (3) that prevent infection while innate immune responses are 

carried out by granulocytes, phagocytes and natural killer (NK) cell.  NK cell 

function in the organism is to identify and destroy infected or transformed cells 

that lose MHC I expression. Upon stimulation by pathogens, mast cells and 

eosinophils release anti-microbial mediators and cytokines (4).  Phagocytes 

engulf microorganisms to eliminate them from the body (5).  The other cell types 

responsible for phagocyting microbes are macrophages and dendritic cells which 

recognize specific microbial motifs called pathogen associated molecular 

patterns (PAMPS) through Toll-like and other innate immune receptors (6). 

 

To complement the role of innate immune response, the adaptive immune 

response is triggered and provides an antigen-specific reaction to the pathogen 

that is challenging the organism.  Macrophages and dendritic cells have the 

ability to present unprocessed pathogens or engulfed pathogens processed into 

particles called antigens to T-cells.  Activated T-cells, especially Th2 cells, in turn 

trigger the proliferation and class switching of B cells.  Both T-cells and B cells 

mediate adaptive response and a subset of these cells maintain long-term 

memory that provides a rapid response when the body re-encounters the same 

pathogen (7, 8).   
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Antigen presenting cells (APC) (macrophages, dendritic cells and B cells) do not 

have the ability to distinguish between foreign organisms, commensal organisms 

or cells coming from the body (self).  As a result they generate both foreign and 

self-antigens in complex with MHC while T cells will only be activated by foreign 

antigen.  The way the organism prevents an immune response against itself is by 

deleting self-activated lymphocytes in the bone marrow and the thymus while 

repressing them in the periphery (9).  Any defect in eliminating or regulating 

lymphocytes that recognize self-antigens results in auto-immune diseases. 

 

The functional interaction between B cells, T cells and APC relies on a series of 

co-stimulatory or inhibitory signals and the production of immunomodulatory 

factors named cytokines which affect the function of other immune cells in the 

microenvironment.  To prevent an inapropriate response to any stimulus upon 

interaction with an APC, especially when a self-antigen is presented, 

lymphocytes require a second “wave” of signals coming from co-stimulatory 

receptors (10).  In the absence of these signals, the lymphocyte response is 

turned off and these cells become anergic or tolerant to self.  However, a tolerant 

response could correspond to an immunosuppressive state of the organism 

which favors infections and cancer (11).  Immunoregulation can also be mediated 

by a subset of T cells called T regulatory cells (Tregs) which secrete anti-

inflammatory cytokines including interleukin-10 (IL-10) (12), IL-9 (13) and 

transforming growth factor-beta (TGFβ) . 
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Depending on the site of infection of the pathogen, adaptive immune responses 

promote specific subpopulations of T-cells depending on the array of cytokines 

they secrete.  Cytokines are intercellular mediators that promote precise 

responses from target cells upon binding to their specific receptors.  Cytokine-

receptor interactions induce the expression of genes involved in inflammatory or 

anti-inflammatory responses (6).  Uncontrolled expression of pro-inflammatory 

cytokines can promote chronic or inflammatory diseases in the organism.  Three 

main subpopulations of effector T-cells have been identified: Th1, Th2 and Th17 

cells (14).   

 

T helper cell subsets 

T cells are comprised of three different subsets: the αβ T cells which include 

CD4+ T cells and CD8+ T cells, the γδ T cells involved in cutaneous and mucosal 

immunity (15) and the NKT cells which recognize lipid antigens in the context of 

CD1d an MHC class I like molecule (16).  CD4+ T helper (Th) cells play a critical 

role in modulating both innate and adaptive immune responses. Cytokines direct 

the differentiation of precursor CD4+ T-helper cells (Thp) into one of the defined 

committed Th phenotypes, T-helper-1 (Th1) cells, T-helper-2 (Th2) cells and T-

helper-17 (Th17) cells which are defined by their function and the array of 

secreted cytokines (Figure 1).  The transcriptional regulation that directs the 

differentiation of Thp cells is based on the expression and activation of the 

members of the Signal Transducers and Activators of Transcription (STAT) 

family. 
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The presence of IL-12 secreted by macrophages and dendritic cells in the 

microenvironment induces the skewing of Thp to Th1 cells.  IL-12 signals to the 

nucleus of T cells through STAT4 which induces the development of Th1 cells 

(17) and the production of Th1-type cytokines including IFN-γ, IL-2 and 

lymphotoxin-α.  IFNγ triggers the expression of T-bet a transcription factor 

controlling the differentiation of Th1 cells (18-20).  T-bet also inhibits the 

expression of Th2 specific gene thus maintaining the stability of Th1 cells.  Th1 

cells promote cell-mediated immunity against intracellular infections, 

inflammation disease such as atherosclerosis (21) and tumor development (22). 

 

IL-4 induces Th2 development and Th2-type cytokine production through STAT6.  

However the first source of IL-4 that induces Th2 differentiation is still not clear.  

Naïve CD4+ T cells have be reported to provide this initial source of IL-4 (23) and 

Th2 are able to effect their differentiation in an autocrine manner.  Wang et al. 

reported that basophils and mast cells are early sources of IL-4 in allergic 

response (24).  Th2-type cytokines include IL-4, IL-5, IL-9, IL-10 and IL-13 (25).  

The stimulation of Thp by IL-4 triggers the expression of GATA-3 a transcription 

factor that epigenetically modifies Th2 cytokine genes for expression (26) and 

inhibits Th1 differentiation (27, 28).  Th2 cells mediate humoral immune response 

by protecting against extracellular pathogens.  Th2 cells have been linked 

extensively to allergy but also modulate the function of Th1 cells (29).   
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More recently, Th17, an IL-17 secreting subset has been described and found to 

play a critical role in tissue inflammation.  IL-6 and TGFβ as well as IL-23 signal 

to CD4+ T cells to induce the production of IL-17 through the transcription factor 

RORγt.  Th17 cells secrete IL-17F, IL-17A (30), IL-21 (31, 32) and IL-22 a 

member of the IL-20 family of cytokines (33).  IL-17A and IL-17F induce the 

production of pro-inflammatory cytokines, chemokines and metalloproteinases.  

The skewing of CD4+ T cells to Th17 involves TGFβ, and IL-6, IL-1β to induce 

proliferation while IL-23 to maintain the phenotype.  This differentiation is 

mediated through STAT3 (31, 34).  It is not clear which class of pathogens 

stimulate Th17 response since some Gram-positive and Gram-negative bacteria 

or fungi can induce this response (35).  Th17 cells have been mainly reported to 

be involved in autoimmune reaction along with Th1 cells.  Experimental 

autoimmune encephalomyelitis (EAE) a mouse model for multiple sclerosis has 

been reported to be mediated by Th17 cells. 

 

Two additional subsets of T-cells have been recently described. The first one is a 

subset of T cells secretor of IL-9 (Th9) described as an unstable cell type derived 

from Th2 cells in the presence of TGFβ and IL-4 expressed by Th2 cells (36).  

This finding suggests that Th cells have plasticity in vivo which might allow an 

adaptation of the immune response to the challenges of the organism.  The 

second subset termed T follicular helper cells (Tfh) are non-Th1, non-Th2 

effector cell which express CXCR5 allowing them to home to B cells follicles.  

These cells are primed by IL-21, require STATs and express several B cells 
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associated molecules like BCL6, CXCR5, IL-6 receptor and CD84 (37-39).  The 

study by Chtanova et al. showed that BCL6 is preferentially expressed by Tfh 

cells compared to other subsets of T effector cells, suggesting that BCL6 might 

be a major regulator of Tfh cells maturation (37). 
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Figure 1: T helper cell development  
Naïve CD4+ T cells differentiate into Five subsets of Th cells as a result of the 
cytokines present in the microenvironment.  IL-12 promotes Th1 development; 
IL-4 triggers Th2 development, whereas TGFβ and IL-6 drives Th17 
development.  IL-21/IL-6 and TGFβ/IL-4 respectively promote Tfh and Th9 
differentiation.  Each of these subpopulations is characterized by the array of 
cytokines they secrete and their biologic functions. 
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IL-4 promotes Th2 development  

IL-4 plays a critical role in the differentiation of Th2 cells.  IL-4 is an 

autoregulatory cytokine secreted by T cells, mast cells and basophils.  It acts on 

different cell types including T and B cells by regulating their proliferation and 

differentiation.  IL-4 triggers biological effects by binding the IL-4 heterodimer 

receptor (IL-4R) which consists of an IL-4 receptor (IL-4R) α chain and the γ 

common (γc) chain subunit.  The two subunits of the IL-4R do not have intrinsic 

tyrosine kinase activity.  Two cytoplasmic protein tyrosine kinases, JAK1 and 

JAK3, members of the Janus kinase family, are associated respectively with the 

IL-4Rα and γc chains.  The Janus kinase proteins bind to the intracellular portion 

of the receptor where they are activated and phosphorylate IL-4R to favor the 

anchoring, through the Src homology domain 2 (SH2), of STAT6 (Figure 2).  

STAT6 molecules are phosphorylated on Y-641 and form a homodimer which 

translocates to the nucleus and transactivates the expression of target genes.  

STAT6 triggers the expression of Th2-restricted transcription factors, including 

GATA-3.  The requirement for STAT6 in IL-4 induced functions has been 

demonstrated using STAT6 deficient mice (40, 41).  In the absence of STAT6, IL-

4 is unable to promote the stable development of Th2 cells.  
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Figure 2: IL-4/STAT6 signaling pathway 
The binding of IL-4 to its receptor triggers the autophosphorylation of the α chain, 
the subsequent binding of STAT6 and STAT6 phosphorylation. STAT6 
homodimers are formed and translocate to the nucleus were target genes are 
transactivated.  

Direct and indirect target genes 
GATA-3, C-maf, IL-4, IL-5, 
SOCS1, CD40, IL-4Rα, IL-
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Transcription factors involved in Th2 differentiation 

Immunity against microorganisms is orchestrated by specialized CD4+ T helper 

cells which are subdivided in populations of Th1, Th2 and Th17 cells (42, 43).  

Th2 cells are involved both in immunity against helminth worms and the 

generation of allergic responses via secretion of IL-4, IL-5 and IL-13 (44).  In vivo 

Notch plays a central role as a receptor for parasitic antigens.  After binding its 

ligand Notch intracellular domain is cleaved and translocated to the nucleus 

where it binds RBP-J already at the target DNA site (45-47).  One of the target 

genes transactivated by Notch signaling in Th2 cells is the Gata-3 gene (48) 

while IL-10 is transactivated in Th1 cells (49).   

 

Upon activation of Th2 cells one of the early transcription factor induced is the 

special AT-rich sequence binding protein 1 (SATB1), a factor required for the 

formation of a compact transcriptionally active chromatin structure at the Th2 

cytokine locus (50).  This structure is important for STAT6 and GATA-3 function 

(50).  GATA-3 is a pivotal transcription factor in the differentiation and the 

maintenance of Th2 phenotype; it also prevents the differentiation of CD4+ T 

cells into Th1 cells as well as IFNγ production by these cells (28, 51, 52).  Both 

Notch (48) and IL-4/STAT6 pathways induce GATA-3 expression in Th2 cells.  

Like GATA-3, C-maf is a transcription factor induced by STAT6 (53) which 

specifically regulates the expression of IL-4 in CD4+ T cells and NK T cells (54, 

55).  IL-4 produced by the differentiating Th2 cells regulates in an autocrine 

manner production of other Th2 cytokines (55).  This positive feedback loop 
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triggers upregulation of Il4 gene by extracellular IL-4 and correlates with ectopic 

GATA-3 ability to induce the expression of endogenous GATA-3 gene.  JunB 

complex, nuclear factor of activated T cells (NFAT) c1 and c2 also regulate the 

expression of Th2 cytokine genes (56, 57).  Contrary to JunB, NFAT proteins are 

directly controlled by the calcium- and calmodulin-dependent phosphatase 

calcineurin (58).  NFATc1 and NFATc2 (59) cooperate with IRF4 in the induction 

of Th2 cytokines (59, 60).   

 

Concept of Th2 heterogeneity 

In 1989, when Fiorentino et al. were working on long-term mouse Th cell clones, 

the notion of heterogeneity in the T cell population was limited to the 2 types of 

Th cell clones they characterized based on the profile of cytokines secreted: Th1 

and Th2 (61).  At the present time we define heterogeneity in every subset of Th 

cells based on the amount of signature cytokines secreted by each cell.  The 

concept evolved from Hu-Li et al. using mice heterozygous at the Il4 locus 

(Il4/GFP mice) (62).  While assessing the allelic regulation of IL-4 in Th2 cells, 

they demonstrated that each cell had the same probability to express IL-4.  On 

the contrary Calado et al. reported that IL-10 expression in T cells arises from a 

stochastic regulation mechanism dependent on TCR signaling strength (63). 

 

The differentiation of Th2 cells in vivo upon infection or in vitro generates a 

heterogenous population of Th2 cells that express and secrete various subsets of 

Th2-type cytokines at different levels (64).  The proportion of Th2 cells that 
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secrete a single cytokine is significantly higher than the fraction of double-

positive cytokine secretors (65).  Even at the level of a subpopulation of Th2 cells 

that secrete the same cytokine, not all cells secrete similar levels of cytokines 

(66).  Th2 specific transcription factors have been shown to regulate the 

expression level of specific Th2 cytokines and by consequence define the 

phenotype of the individual Th2 cells.  Some of these regulators are C-maf for IL-

4-single positive cells, NFATc2 for IL-10-single positive cells (55, 59) and Pias1 

which increases IL-13 production without affecting IL-4 or IL-5 expression (67).  It 

has been previously reported that the pattern of high and low secretion of IL-4 is 

a heritable and stable event and recently Chang et al. demonstrated the role of 

the PU.1 transcription factor in establishing these phenotypes (66).  

BOB.1/OBF.1 a regulator of PU.1 expression in Th2 cells also affects the 

potential for Th2 cytokine production (68).   

 

Biology of PU.1  

PU.1 also called Sfpi1 (spleen focus forming -1) was discovered due to its 

activation and overexpression in the erythroid leukemia induced by spleen focus 

forming virus upon insertion of this virus upstream of the Sfpi1 gene and by 

cloning a lineage specific transcription factor (69, 70).  PU.1 is an oncogenic 

transcription factor member of the ets gene family which shares a conserved 

ETS DNA binding domain.  This domain recognizes a purine-rich core containing 

the sequence 5’-C/AGGAA/T-3’.  PU.1 was the first member of the ETS protein 

to be crystallized (71).  It was originally reported to be specifically expressed in B 
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cells, macrophages, mast cells and neutrophils (69), but recently our group found 

that it was also expressed in Th2 cells secreting low levels of IL-4, IL-5 and IL-13.  

 

PU.1 is required for lymphoid and myeloid cell development.  It consists of three 

domains: the transactivation domain (TAD), the Proline-Serine-Threonine (PEST) 

rich domain and the DNA binding (ETS) domain (71).  Klemsz et al. 

demonstrated that the TAD domain located at the amino-terminal consists of an 

acidic subdomain and glutamine rich subdomain required for the PU.1 maximal 

transactivation function (Figure 3) (72).  PU.1 regulates the expression of the 

following genes in B cells: kappa, lambda, J chain light-chain and heavy-chain.  

Macrophage colony-stimulating factor receptor, scavenger receptor, interleukin 

1β, FcγRIIIA and FcγR1β are among the genes targeted by PU.1 in macrophages 

(73-76).  Studies using trichostatin A suggested that PU.1 expression was 

blocked by histone acetylation in the promoter region (77). 

 

 

 

    Acidic     Q-rich 

                      TAD           PEST         ETS (DNA binding) 

1                     74           100           160                                 272 

Figure 3: PU.1 protein representation 
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The regulation of PU.1 expression is critical for the normal development of 

hematopoietic cells and their function during immune response.  Two Sfpi1-/- 

mouse models were developed to assess the importance of this transcription 

factor.  The first, a null model was embryonic lethal by day 18 with an impaired 

development of B cells, granulocytes and monocytes in the embryos.  The 

second PU.1 knockout model allowed the development of embryos, however, 

mice died soon after birth unless they are maintained on antibiotics in which case 

they survived for 14 days.  In the second model mice showed a total loss of 

macrophage and B cells (78, 79).  Even though neutrophil morphology and 

marker expression including Gr-1 and chloroacetate esterase were normal, PU.1 

null neutrophils fail to terminally differentiate, to respond to chemokines, to 

generate superoxide ions, to phagocytose and kill bacteria.  PU.1 deficient 

neutrophils  are unable to express gp91 subunit of nicotinamide adenine 

dinucleotide phosphate oxidase which could explain some functional impairment 

(80).  PU.1 is also required for the normal development of T cells as T cells 

development was delayed until birth in the second model with the number of 

these cells reaching only a fraction of their size in the wild-type mice thymus (78). 

The study of PU.1 significance in adult hematopoietic cells was made possible 

with the PU.1 conditional knockout mice developed by the Tenen group (81) and 

Stephen Nutt’s group (82, 83).  The Nutt group reported that PU.1 ablation in 

adult hematopoietic cells significantly enhanced granulopoiesis with increased 

expansion of granulocytic progenitors and the absence of macrophage-CSF, 

granulocytes/macrophages-CSF and IL-6 responsiveness due to the reduced 
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expression of M-CSFR, GM-CSFRα and IL-7Rα.  This PU.1 conditional knockout 

showed a deficiency in lymphoid and myeloid progenitors (84).  Common 

lymphoid progenitors, common myeloid progenitor, granulocyte-macrophage 

progenitors as well as megakaryocyte-erythrocyte progenitor lineages were not 

detected in the absence of PU.1.  The study demonstrated that PU.1 regulates B 

and T cells lymphopoeisis by controlling multipotent progenitor commitment. 

The absence of PU.1 disrupted the balance regulating the maturation of 

multipotent myeloid progenitors, as a result the majority of the PU.1-deficient 

adult mice developed myeloid leukemia.  These leukemia cells were 

transplantable and acquired the autocrine capability to produce the growth factor 

IL-3 (85). 

 

PU.1 regulates early T cell development 

Early T cell development requires the extremely careful regulation of multiple 

transcription factors both temporally and quantitatively.  T cells go through 

different stages of development from double-negative 1 to pre-T cells (Figure 4).  

As a result lineage-specific genes are activated while lineage-inappropriate 

genes are inhibited all in an asynchronous manner.  The PU.1 and GATA-3 

interaction in a dose-dependent manner is essential for early T cell development.  

PU.1 expression is highest in the DN1 stage.  It decreases by 7 fold in DN2 and 

reaches background level at DN3, while GATA-3 level increases by 2 fold after β-

selection during DN4 (86).  Studies assessing the effect of GATA-3 and PU.1 

overexpression in fetal liver precursors or fetal thymocytes revealed the 
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developmental stage controlled by each of them (86).  The overexpression of 

PU.1 prevents the progression of lymphocytes precursors through β-selection but 

favor their differentiation into myeloid cells (87).  In addition C-myb, HES-1 and 

GATA-3 expression is blocked.  Cells transduced with low level of PU.1 are able 

to become DN2 or DN3.  GATA-3 overexpression severely blocked early stage T 

cell development with PU.1 and IL-7Rα expression inhibition and thymocytes are 

unable to mature into into DN2 or DN3 (Figure 4) (88, 89).  Ikaros and PU.1 are 

very important in thymocytes before birth while C-myb and GATA-3 are central 

for the emergence of thymic T-lineage precursors.  Once the early T cells go 

through β-selection the transcription factors required change.  GATA-3, a key 

transcription factor in the differentiation of Th2 cells, has previously been shown 

to block the expression of PU.1 and its target genes (86).  PU.1 is expressed in T 

cell progenitors but expression is rapidly extinguished during the double-negative 

(CD4-CD8-) stage as GATA-3 expression is increasing.  Both the decrease of 

PU.1 and the increase of GATA-3 are required for the normal development of T 

cells in the thymus (27, 28, 51, 86, 88-93).  In differentiated Th2 cells, PU.1 can 

interfere with GATA-3 function (66).   

 

 16



 

 

 

 

 

 

 

 

 

Lymphoid/myeloid 
precursor

Macrophage

Other

Lymphoid 
precursor

Natural Killer 

Dendritic cells

DN2 DN3 DN4 DP

CD4 
TCR

CD8 
TCR

Positive selectionβ-selection

T Lineage 
commitment Pre-TDN1

T Lineage 
specification

Lymphoid/myeloid 
precursor

Macrophage

Other

Lymphoid 
precursor

Natural Killer 

Dendritic cells

DN2 DN3 DN4 DP

CD4 
TCR

CD8 
TCR

Positive selectionβ-selection

T Lineage 
commitment Pre-TDN1

T Lineage 
specification

Figure 4: Lymphoid development pathway 
 

 

PU.1 regulates Th2 heterogeneity 

As mature T cells differentiate into Th2 cells, GATA-3 expression is further 

induced and is critical in the expression of Th2 cytokines (51).  However, while 

GATA-3 is expressed in all Th2 cells, not all Th2 cells express equal amounts of 

cytokine.  This heterogeneity could be explained by the presence of factors that 

modulate GATA-3 activity.  We demonstrated that PU.1 expression in CD4+ T 

cells is restricted to Th2 cells especially to IL-4 non secreting cells (66).  

Evidence supports a role for PU.1 as a modulator of GATA-3 activity by 

preventing GATA-3 binding to the Il4 locus in IL-4 low and IL-5 low cells, defining 

the phenotypes present in the heterogeneous Th2 population (66).  Whether 

GATA-3 is the only factor targeted by PU.1 to regulate this phenotype is still 

 17



unclear.  However, our understanding of the mechanism by which PU.1 regulates 

Th2 heterogeneity is incomplete since our data using mutant PU.1 suggests that 

in addition to its regulatory effect on GATA-3, PU.1 also targets other 

transcription factors in Th2 cells (66). 

 

Development of IL-10-secreting cells 

Different subsets of Th cells have been reported to secrete IL-10.  Both Th1 and 

Th2 cells express IL-10, however, Th2 cells express more IL-10 than Th1 cells.  

After repeated restimulation in the presence of IL-4, extensive histone acetylation 

of the Il10 gene was detected and determined in IL-10 memory Th2 cells (94).  

This mark of gene activation which correlates with the development of IL-10 

memory was not detectable in Th1 cells (94).  Recently IL-27, a member of the 

IL-12 family has been reported to increase IL-10 production in Th1 and Th2 cells 

via STAT3 (95, 96). 

 

Another subset of T cells, T regulatory type 1 cells (Tr1) is also known for IL-10 

secretion through which they exert a suppressive effect on T helper cell 

proliferation.  Tr1 differentiation and IL-10 expression is triggered by the 

transforming growth factor-β  and IL-27 produced by dendritic cells after their 

interaction with TGF-β T regulatory cells (97).  Tr1 are different from Foxp3-

expressing T regs which can also secrete IL-10 (98).  This subset of Tregs is 

generated in vitro in the presence of dexamethasone and vitamin D3. 
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Biology of interleukin-10 and its signaling 

IL-10 is a regulatory cytokine produced by a number of cells including 

macrophages, B cells, dendritic cells, mast cells and T cells (99).  In T cells IL-10 

expression is generally monoallelic with a transcriptional independence between 

both alleles (63).  IL-10 plays a critical role in controlling inflammation in vivo by 

selectively suppressing the expression of pro-inflammatory cytokines including 

IL-8, IL-12, IL-6 and TNF-α (100).   

 

IL-10 regulation 
Type I interferon, IFNα, was reported to induce the binding of transcription 

factors including IRF1 and STAT3 to the promoter region of the human IL-10 

gene locus and regulate IL-10 expression (101).  In Th1 and Th2 cells, IL-10 

expression is also regulated by Smad-4 (102) and Jun (103), while Sp1 and Sp3 

regulates the mRNA level of IL-10 (104).  The transcription factor GATA-3 plays 

a critical role in the regulation of IL-10 expression by remodeling of IL-10 locus in 

Th2 cells (26).  The transduction of non-polarized Th cells and Th1 cells with 

ectopic GATA-3 significantly increased the number of cells secreting IL-10 

demonstrating the instructive role of this factor.  Analysis of Th2 cells by ChIP 

assays revealed GATA-3 binding to its consensus sequence in the 5’ region and 

intron 4 of IL-10 locus.  Ectopic GATA-3 also increased the chromatin 

accessibility as well as histones H3 and H4 acetylation across the IL-10 locus 

which correlates with increased transcription (26) while sustained IL-4 stimulation 
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is required for extensive histone acetylation of the Il10 gene in IL-10 memory Th2 

cells (94). 

 

IL-10 signaling 
IL-10 receptor consists of two chains, IL-10R1 and IL-10R2 which bind Jak1 and 

Tyk2 upon activation by IL-10 allowing the recruitment of STAT3, STAT5 and 

STAT1.  As a result, STAT3 and STAT1 are phosphorylated, however, STAT3 is 

necessary and sufficient to mediate IL-10 anti-inflammatory effect (105, 106).  

Indeed IL-10 inhibits the transcription of inflammatory cytokines including IL-6 

and TNFα as well as CD40 expression via the suppressor of cytokine signaling 3 

(SOCS3) (107, 108).  In addition, IL-10 exposed macrophages inhibit 

IFNγ production by Th1 cells (109) while in vivo CD4+ T cells produced IL-10 

prevents Th1 from secreting IFNγ in response to helminthic infection (110).  The 

function of IL-10 induced STAT1 phosphorylation is still unclear. 

 

IL-10 has been associated with a positive clinical outcome in cardiac surgery as 

well as mouse carotid injury through a sustained inhibition of NFκB in addition to 

a decrease in the expression of chemokines and growth factors involved in pro-

inflammatory response in vivo (111).  In the context of airway hyperreactivity and 

asthma, IL-10 producing dendritic cells and T regulatory cells have been 

associated with antigen-specific CD4+ T cell unresponsiveness which protects 

against the development of the disease (12).   
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Biology of interleukin-9  

Interleukin-9 (IL-9) is a pleiotropic cytokine produced specifically by Th2 cells that 

was discovered because of its proliferative activity on murine T helper cell clones 

(112), murine mast cells (113, 114) and human megakaryoblastic leukemia line 

(115).  Murine fetal thymocytes (116), murine erythroid progenitors (117), human 

T cell lines and human myeloid and erythroid precursors were later found to be 

IL-9 biological targets (118, 119).  The human and mouse IL-9 genes share a 

similar structure with 5 exons that span -4 kb and that share 56% to 74% 

homology.  While IL-9 does not have any effect on freshly isolated CD4+ T cells 

even in the presence of anti-CD3 stimulation, mouse IL-9 is preferentially 

expressed by activated T cells and Th2 clones in vitro.   

 

IL-9 signaling 
IL-9 induces recruitment of eosinophils and lymphocytes to the lung, mucus 

hypersecretion, mast cells hyperplasia.  It is important to note that IL-9 cannot 

induce these asthma pathologic and physiologic changes in the absence of IL-4, 

IL-5 and IL-13 (120).  IL-9 plays a central role in the regulation of airway 

hyperreactivity and asthma.  Studies performed in IL-9 transgenic mice (Tg5) 

demonstrated that IL-9 promotes mucus glycoprotein (Muc2 and Muc5a) 

expression by airway epithelial cells.  The treatment of human primary lung 

cultures and human muccoepidermoid NCI-H292 cell line with recombinant IL-9 

also induced the upregulation of the same mucus glycoproteins (121).  This 

effect was similar to the one induced by IL-13 (121).  Like the IL-4 receptor, the 
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IL-9 receptor is a member of the hematopoietin receptor superfamily identified by 

cDNA expression cloning (122).  IL-9 effects were shown to be mediated by the 

JAK-STAT pathway.  JAK1 and JAK3 tyrosine kinases are pre-associated with 

IL-9Rα and the IL-2 receptor γ-chain respectively (123).  JAK-1 and JAK-3 

kinases phosphorylates the IL-9Rα on tyrosine 367 allowing the recruitment, 

phosphorylation and activation of STAT1, STAT3 and STAT5 (124).  STAT1 and 

STAT3 play a specific role in the induction of differentiation genes including 

granzyme A, L-selectin and Ly-6A/E, while STAT5 or both STAT1 and STAT3 

mediate IL-9 anti-apoptotic effect (124).   

 

Biology of Interferon Regulatory Factor 4  

The first protein shown to interact with PU.1 was IRF4.  IRF4 is also referred to in 

the literature as lymphoid specific interferon regulatory factor (LSIRF) (125), PU.1 

interacting protein (Pip) (47), DNA binding motif EM5 binding nuclear factor (NF-

EM5) (126) or interferon (IFN) consensus sequence-binding protein in adult T-

cell leukemia cell lines or activated T cells (ICSAT) (127).  IRF4 protein structure 

consists of 2 major domains: a DNA binding domain at the amino terminal and a 

PU.1 interacting domain at the carboxyl terminal.  The C-terminal and N-terminal 

regions contain auto-inhibitory domains that prevent IRF4 from binding to DNA 

(Figure 5).  The binding of IRF4 to the immunoglobulin kappa3’ enhancer was 

dependent upon its protein-protein interaction with PU.1 as well as protein-DNA 

interactions (126).  Perkel et al. demonstrated that PU.1 recruitment of IRF4 to 

the DNA is a two step mechanism which first involves the interaction of IRF4 with 
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PU.1 ETS domain in solution and PU.1 PEST phosphorylation on serine 148 

triggering a covalent structural change (128).  This PU.1 structural change 

causes IRF4 conformational modification that allows its recruitment to the DNA 

(128).  Escalante and coworkers crystallized the PU.1/IRF4/DNA ternary complex 

using the DNA binding domains of theses transcription factors and a 21-mer DNA 

site from λB element containing PU.1 binding site (AGGAA) and IRF4 binding 

site (GAAA) (129, 130).  This study also revealed that PU.1 and IRF4 interaction 

releases the autoinhibitory effect of the N-terminal and C-terminal region of IRF4 

allowing its recruitment to the lambdaB element of immunoglobulin light chain 

lambda enhancer and transactivation of the gene in a cooperative manner (126, 

129-132).  Casein kinase II phosphorylates PU.1 on serine 132 and serine 148 in 

the PEST domain (132, 133), as a result phosphorylated PU.1 increases the 

stability of a ternary complex composed of PU.1 and IRF4 bound to DNA.  Using 

quantitative hydroxyl radical footprinting, Gross et al. determined that the DNA 

binding domains of both PU.1 and IRF4 interact with the DNA (λB element) in the 

major groove while protein-protein interactions happen near the intervening 

minor groove (132, 134).   

 

Upon binding to DNA PU.1 and IRF4 bend DNA to an S-shape which bring the 

DNA binding domains closer together, enhancing the interaction between the 

proteins by 20 to 40 fold across the minor groove (130).  The mutation of R328 to 

glutamic acid in IRF4 abrogates the interaction with PU.1 and recruitment of IRF4 

to the DNA.  The deletion of residues 410 to 450 in IRF4 prevented the binding of 
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IRF4 to NFATc2 and decreased the IRF4-dependent synergy of NFATc2-

dependent IL-4 transactivation.  The central region of IRF4 is a proline-threonine 

rich region susceptible to FK506 Binding Protein (FKBP52) isomerization through 

its peptidyl-propyl isomerase (PPIase) activity.  While IRF4 interaction with the 

PU.1 PEST domain or NFATc2 blocked the function of the auto-inhibitory 

domains in IRF4 DNA binding (59, 130), IRF4 and PU.1 interaction was 

abrogated by the PPIase activity of FKBP52 (135).   

 

IRF4 is an important transcription factor in the differentiation of Th2, Th17 and 

some functions of Treg cells (136-138).  While IRF4 induces cytokine production 

in memory T cell populations, it triggers the opposite effects in naïve T cell 

populations (139).  In Th2 cells IRF4 binds to a site adjacent to a NFAT binding 

element and cooperates with NFATc1 or NFATc2 in the transcription of IL-4 (59, 

60).  These interactions are important as the activation of T cells triggers a rapid 

induction of IRF4 which enhances NFATc2 and c-maf-dependent IL-4 expression 

or NFATc1-dependent IL-2 expression (125, 127).  IRF4-deficient T cells secrete 

decreased levels of Th2 cytokines including IL-4, IL-5 and IL-13 (136).  The 

analysis of Th2 specific transcription factor GATA-3 in the Irf4-/- Th2 cells 

showed a decrease in the level of GATA-3 which in part explains the absence of 

Th2 cytokines expression (136).   

 

Even though PU.1/IRF4 interaction and function have been extensively examined 

in B cells, their importance has never been assessed in the differentiated T cells.  
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IRF4 overexpression has been shown to increase the level of IL-10 secreted by 

Jurkat cells and IRF4 knockout cells have an impaired Th2 cytokine expression 

including an impaired IL-10 expression.  The mechanism by which IRF4 controls 

the expression of IL-10 in vivo or in vitro is still unknown.   
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Figure 5: IRF4 Protein structure  
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The goal of this research 

Previous work has demonstrated that IRF4 was required for the development of 

T cells and dendritic cells, since Irf4-/- mice have shown a defect in the 

development of these cells (136).  These phenotypes may explain the impaired 

potential of the Irf4-/- T cells to express the expected hallmark cytokines after 

skewing under Th1 or Th2 conditions.  In the case of Th2 cells the decrease in 

GATA-3 expression brings the question of whether IRF4 is affecting Th2 cytokine 

genes directly or indirectly.  Our goal for this study was to decipher the role of 

IRF4 during Th2 differentiation versus its role during development.  To achieve 

this aim only mice expressing wild-type IRF4 were used allowing us to assess 

the indirect effect of IRF4 on GATA-3 expression versus IRF4 direct effect on an 

array of Th2 related genes. 

 

Th2 cells promote allergic inflammation and modulate inflammatory disease 

caused by Th1 and Th17 cells.  The airway infiltration of Th2 lymphocytes has 

been associated with human asthma and the production of IL-4, IL-5 and IL-13 

correlates with asthma-like symptoms in mouse model of asthma (140).  It was 

demonstrated by Finotto and her group that T-bet deficiency induced airway 

remodeling as well as increased amount of IL-4 and IL-13 in the lung both 

characteristic of asthma (141, 142) and a study by Eisner et al. reported that 

asthma was associated with a modest increase in the risk of heart disease in 

women (143).  Since IL-10 production has been associated with protection 

against the development of the heart disease, understanding the mechanisms 
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that regulate the heterogeneity of IL-10 producing Th2 cells would be an 

important tool in the development of therapies for suppressing allergic disease 

and increasing the modulation of Th1 mediated inflammation involved in 

atherosclerosis, vascular injury and heart disease.  Our approach to achieve 

these goals was to decipher the mechanisms controlling the function and balance 

of Th2 cytokines that promote allergic inflammation and cytokines that are anti-

inflammatory.  We have previously demonstrated that PU.1 acts as a modulator 

of Th2 cell subset development by interfering with GATA-3 function.  However, 

these data also suggested that additional targets regulating PU.1 activity exist.  

The goal of this study was to define the importance of IRF4 in the phenotype of 

subpopulations of IL-10 producing Th2 cells.  Manipulating the level of this 

transcription factors offers a potential tool for switching the balance between 

immunity and allergy (or pathology).   
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MATERIALS AND METHODS 
 Mice   

Wild-type C57BL/6 and Balb/c mice (Harlan Bioscience, Indianapolis, IN) were 

used for Th1 and Th2 differentiation.  Conditional mutant Sfpi1 mice on the 

C57BL/6 background (84) and were mated to lck-Cre expressing mice (noted as 

Sfpi1lck-/-).  Mice were maintained in pathogen-free conditions and all studies 

were approved by the Indiana University School of Medicine Animal Care and 

Use Committee. 

 

CD4 Cell Isolation 

Spleen and lymph nodes were collected from mice and homogenized in RPMI 

1640 (Gibco) supplemented with 10% fetal bovine serum, 1mM glutamine, 100 

Units/ml penicillin, 100 μg/ml streptomycin, 10 mM Hepes buffer, 0.5 x 

nonessential amino acids, 1mM sodium pyruvate, and 50 μM β-mercaptoethanol.  

The extract suspension was sieved in a conical tube through a strainer (BD 

Biosciences, San Jose, CA) to remove debris.  The cell suspension was 

centrifuged at 1500 rpm for 5 minutes at 4ºC and the supernatant was discarded.  

The cells were resuspended in MACS buffer [phosphate buffered saline (PBS) 

supplemented with 2mM EDTA and 0.5% bovine serum albumin (BSA)] (3 ml).  

Anti-mouse CD4 magnetic beads from Miltenyi Biotec (75 μl per 12-14x107 cells) 

were added to the cell suspension followed by 15 minutes incubation at 4ºC.  

Cold MACS buffer (12 ml) was added to the cell suspension followed by 

centrifugation at 1,500 rpm.  The strong magnetic field surrounding the column 
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retained the CD4 positive cells while other cells were washed three times with 

MACS buffer (3ml).  The column was then removed from the magnetic field and 

placed in a 15-ml tube. Six milliliters of MACS buffer were added to the column 

and flushed out with a plunger to elute CD4 cells.  The purity of the CD4 cells 

was determined to be more than 97% by FACS. 

 

In vitro T helper Cell Differentiation 

CD4+ T cells were purified from spleen and lymph nodes by positive selection 

using magnetic beads (Miltenyi Biotech, Auburn, CA) with purity greater than 

97% by FACS analysis. Cells were activated in 6-well plate coated with 2 μg/ml 

of anti-CD3 mAb (145-2C11) in 1 ml PBS and incubated at 37ºC, 5% CO2, 100% 

humidity for 2 hours with 2 μg/ml plate-bound anti-CD3.  For Th2 differentiation 1 

μg/ml anti-CD28, 10 ng/ml IL-4 and 10 μg/ml anti-IFNγ mAb (R4/6A2 or XMG) 

were added to the CD4+ T cells while 1 μg/ml anti-CD28, 10 ng/ml IL-12 and 10 

μg/ml anti-IL-4 mAb (11B11) were added for Th1 differentiation.  The cells were 

plated at a density of 1x106 cells/ml.  After 3 days of incubation, cells were 

expanded for a total of 5 to 10 days.  Differentiated cells were restimulated with 2 

μg/ml anti-CD3 at a concentration of 106 cells/ml for real-time PCR and ELISA as 

previously described (34, 66).  Statistics were performed using a t-test with SPSS 

software. 
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FACS Analysis of Th2 Cytokine Expression 

Intracellular cytokine staining was performed using fluorochrome conjugated 

antibodies to stain cells that had been restimulated either with 50 ng/ml phorbol 

myristate acetate (PMA; Sigma) and 750 ng/ml ionomycin (P+I) or 4 μg/mL α-

CD3 for 3 hours prior to treatment with 3 μM monensin.  Restimulation was 

continued for 2h when P+I were used and 3h for α-CD3.  Cells (1x106) in RPMI 

1640 were centrifugated at 1,500 rpm for 5 minutes in a 12x75 mm tube.  The 

supernatant was poured out and the cells were washed once with 2 ml FACS 

buffer (1x PBS, 0.1% sodium azide, 0.1% BSA).  The cells were incubated in a 

fixative buffer (FACS buffer 48ml containing 4% paraformaldehyde) (1ml) for 10 

min at room temperature (RT).  The fixation buffer is washed with FACS buffer 

(1ml) followed by a second wash with a permeabilization buffer (0.1% saponin, 

FACS buffer) (1ml).  The fluorochrome conjugated antibodies for IL-4, IL-5, IL-10, 

IL-13, IL-10Rα, IL-4Rα (BD Biosciences, San Jose, CA) and the fluorochrome 

conjugated anti-human CD4 antibody for transduced cells were added to the 

tubes followed by 30 minutes incubation at 4ºC.  After this incubation time cells 

were washed once with a permeabilization buffer then resuspended in FACS 

buffer.  In each sample 10,000 events were collected using LSRII machine and 

data was analyzed using Cellquest software. 

 

 Intracellular Staining for Transcription Factors 

Differentiated cells (1x106) were restimulated, fixed and permeabilized as 

previously described. Cells were treated with anti-IRF4 or normal IgG (Santa 
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Cruz Biotechnology) as control for 30 minutes at 4ºC then washed with 

FACS/ELISA buffer.  The secondary donkey anti-goat antibody (Jackson 

Immunoresearch) conjugated with Cy5 (Cyanine 5) (0.125 μL) was added to the 

cells for 15 minutes then washed with 1 mL permeabilization buffer.  

The IRF4 stained cells were incubated with anti-GATA-3-FITC (Fluorescein 

isothiocyanate), anti-IL-10 PE (Phycoerythrin) and anti-IL-4 PE-Cy7 for 30 

minutes, washed with 1mL permeabilization buffer then resuspended in 

FACS/ELISA buffer.  LSRII machine was used to collect 50-100 x103 events after 

gating on live cells. 

 

Generating Total/Nuclear Cell Lysates and Measuring Protein 
Concentration 

Total cell extracts were prepared by lysing Th2 cells or Phoenix cells with lysis 

buffer (10% glycerol, 1% Igepal, 50 mM tris-pH 7.4, 150 mM NaCl, 1 mM EDTA-

pH8) for 15min on ice before centrifugation at 14,000 rpm for 15 min at 4ºC.  

Nuclear and cytoplasmic proteins were prepared from differentiated Th2 cells 

using Nuclear and Cytoplasmic Extraction Reagents from Pierce Biotechnology.  

Differentiated cells (20x106) were harvested and washed with PBS.  The 

supernatant was carefully removed and the cell pellet was resuspended in 200 

μL of ice-cold cytoplasmic extraction reagent I (CER I) by vortexing for 15 

seconds. The cell suspension was incubated on ice for 10 minutes.  Ice-cold 

CER II (11 μL) was added to the cells, vortexed for 5 seconds and incubated on 

ice for 1 minute.  The lysate was centrifugated at 14.000 rpm for 15 minutes at 
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4ºC and the supernatant was collected as the cytoplasmic extract.  The nuclear 

fraction was pelleted down and resuspended in 100 μL of ice-cold nuclear 

extraction reagent (NER) and incubated for 40 minutes with 15 seconds 

vortexing every 15 minutes.  The tube was centrifuged for 10 minutes at 14,000 

rpm and the supernatant (nuclear extract) was transferred to a clean pre-chilled 

tube.  For long-term storage samples were kept at -80ºC. 

 

The protein assay dye reagent (Bio-Rad) was diluted 1:4 in ddH2O.  The 

standard protein BCG and the samples were serially diluted in 100 μl H20 per 

well of a flat-bottom 96-well plate and 100 μL of diluted protein dye was added to 

each well.  The color change was measured at 595 nm either with a microplate 

reader model 550 (Bio-Rad) or microplate reader model 680. 

 

SDS-PAGE and Western blot 

Cell lysates containing 25 to100 μg of protein were added to SDS-PAGE loading 

buffer (200mM Tris HCl pH 6.8, 40% glycerol, 8% SDS, 4% β-mercaptoethanol, 

0.04% bromophenol blue) and boiled for 5 minutes to denature the proteins.  

NUPAGE 4-12% gradient Bis-Tris 12-well pre-cast polyacrylamide gels 

(Invitrogen) were used to separate proteins in both samples and Precision Plus 

marker (BioRad) by electrophoresis.  Power pack from BioRad was used to run 

the gel at 150V for 90 minutes.  The proteins were transferred overnight to a 

nitrocellulose membrane (Schleicher & Schuell) at 30V, 4ºC in a 2X NUPAGE 

transfer buffer containing 20% methanol.  The membrane was blocked in 5% 
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nonfat powdered milk/1x TBST (Tris-Base, NaCl, Tween-20) on a shaker for 1 

hour.  The Primary antibodies to detect GATA-3 (R& D systems, Minneapolis, 

MN), IRF4, PU.1and NFATc2 (Santa Cruz Biotechnology, Santa Cruz, CA) and 

β-actin (Calbiochem, La Jolla, CA) were used to immunoblot the membrane for 2 

hours at RT on a shaker.  The membranes were washed 3 times for 15 minutes 

with 1x TBST before incubation with the secondary antibody horse-radish 

peroxidase (HRP, BioRad).  Three TBST-washes at RT were performed to 

remove the excess secondary antidody.  To detect the protein of interest western 

lightning chemiluminescence reagent (PerkinElmer Life Sciences, Wellesley, MA) 

was used as a substract for HRP and exposed to CL-Xposure film (Pierce, 

Rockford, IL).  The membranes were stripped with stripping buffer (44.65 mL 

1xTBST, 5 mL 20% SDS and 350 μL β-mercaptoethanol) for 30 minutes, covered 

with saran wrap in the 56ºC water bath and washed with 1x TBST for 10 minutes.  

Membranes were blocked in 5% milk and immunoblotted for another protein. 

 

Chromatin Immunoprecipitation Assay (ChIP) 

CD4 T cells cultured under Th2 conditions for five days were restimulated with 2 

μg/ml anti-CD3 for 2 to 4h before cross-linking the protein-DNA complexes by 

adding formaldehyde to the cell cultures.  Unstimulated Th2 cells were used as 

control and 5 x 106 cells were used per ChIP reaction.  Cells were resuspended 

in nuclear lysis buffer (50nM Tris pH 8.0, 10mM EDTA pH 8.0, 1% SDS, and 

protease inhibitor) at 4ºC for 15 minutes and the DNA was sheared by 

ultrasonication.  The precleared cell lysates were incubated with anti-PU.1 or 
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anti-IRF4 overnight and the next day DNA was immunoprecipitated.  For this 

experiment anti-histone H3 antibody was used as positive control and IgG 

antibody was used as negative control for the ChIP assay.  The DNA bound 

beads were washed with a low salt buffer, a high salt buffer, a LiCl buffer (0.25 M 

LiCl, 1% Igepal, 1% sodium DeoxyCholate,1mM EDTA pH 8.0 and 10 mM Tris 

pH 8.0), and two TE buffer washes (1mM EDTA and 10 mM Tris pH 8.0).  Real-

time PCR was done with 2 μl (1.7 X 105 cells) of immunoprecipitated DNA for 30 

cycles.  DNA was then analyzed using PCR or qPCR. To calculate percent input, 

ChIP results from the control IgG were subtracted from ChIP results for the 

specific antibody and divided by input values as determined by an input standard 

curve. 

 

Semiquantitative Real-Time RT-PCR 

Total RNA was isolated from total Th2 cells, flow cytometry sorted IL-10-high and 

IL-10-low cells, retrovirally transduced or siRNA transduced Th2 cells.  RNA was 

reverse transcribed with Super Script First-strand kit (Applied Biosystems, Foster 

City CA).  PCR was performed on an Applied Biosystems ABI PRISM 7500 

Realtime PCR system using Taqman Universal PCR Master Mix with FAM-

labeled primers from the same company.  Relative quantitation was performed 

using CT (threshold cycle) method.  Assays were performed in duplicate and the 

target gene ΔCT values were derived by subtraction of the CT value from β-2-

microglobulin.  ΔΔCT values were calculated relative to the chosen calibrator 

sample and relative gene expression levels were determined from the equation 
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2-ΔΔCT. Error bars represent the range in relative gene expression level based 

on the ΔΔCT standard deviation.  

 

Detection of Cytokines using ELISA 

The level of cytokines secreted by restimulated cells was measured from cell free 

supernatants using ELISA (Enzyme-Linked Immunosorbent Assay).  To perform 

this experiment 96 well ELISA plate were coated with 2μg/mL of anti-IL-4, anti-IL-

5 and anti-IL-13 capture antibodies (BD Biosciences) diluted in 0.1M NaHCO3 

(pH 9).  The plates were incubated at 4ºC overnight and blocked the next day in 

250 μl FACS/ELISA buffer (2% BSA and 0.01% NaN3 in PBS, pH 7.4) for at least 

2 hours at room temperature.  The blocking buffer was washed away with ELISA 

wash buffer (0.1% Tween-20 in PBS).  The supernatants diluted 50 fold as well 

as the standards (R& D systems, Minneapolis, MN) were added to the plate and 

incubated overnight at 4ºC.  After washing the samples off the plate three times 1 

μg/mL of biotinylated detection antibodies in FACS/ELISA buffer was added to 

the plates for a minimum of 2 hours.  The plates were washed three times with 

ELISA wash buffer and incubated with streptavidin alkaline phosphatase (Sigma-

Aldrich, St Louis MO) in FACS/ELISA buffer for one hour in minimum.  

 

IL-9 detection using ELISA (BD protocol) 
Briefly, the plates were coated with 2 μg/mL of anti-IL-9 capture antibody (R& D 

systems, Minneapolis, MN) in 0.1M NaHPO4 at 4ºC overnight and blocked the 
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next day in 200 μl of  BD blocking buffer (10% fetal bovine serum in PBS) for 2 

hours at RT.  The blocking buffer was washed away with ELISA wash buffer.  

The supernatants were diluted 4 fold and added to the plates as well as the 

standards (R& D systems, Minneapolis, MN) for a an overnight incubation.  After 

washing off the samples three times, 0.5 μg/mL of biotinylates detection 

antibodies in 0.05% Tween-20 of BD blocking buffer was added to the plates for 

a minimum of 1 hour.  The plates were washed three times with ELISA wash 

buffer and incubated with streptavidin alkaline phosphatase for another hour 

(Sigma-Aldrich, St Louis MO).  BIO-RAD microplate reader model 550 or 680 

were used to measure the color change following the addition of sigma 104 

phosphatase substrate (5 mg/mL) diluted in ELISA substrate buffer (10% 

diethanolamine,0.05 mM MgCl2, 0.02% NaN3, pH9.8). 

 

Cytokine Selection of IL-10 -High and -Low Populations 

IL-10 secreting cells were generated by culturing mouse CD4+ cells in Th2 

skewing conditions.  CD4+ T cells were differentiated into Th2 cells for 7 to 10 

days of culture Th2 cells were harvested and rested in fresh medium for 6 hours 

to allow the cells to be more responsive to subsequent stimulation.  After this 

resting period the cells were restimulated for 6 h with 10 ng/ml PMA and 1 μg/ml 

ionomycin at 107 cells/ml in RPMI-1640.  Cells were harvested and washed with 

MACS buffer.  The Th2 cells were labeled using the mouse IL-10 Secretion 

Assay (Miltenyi Biotech, Auburn, CA).  The restimulated Th2 cells were labeled 

on their surface with IL-10-specific high affinity matrix bispecific, i.e., Ab-Ab 

 36



conjugates of anti-CD45 mAb (30-F11) with an anti-IL-10 mAb (JES5-2A5) from 

Miltenyi Biotec.  The labeled cells were incubated at 37ºC to allow the secretion 

of the expressed cytokines which were captured by the conjugated antibodies 

bound to the surface of the secreting cells (Figure 6).  During this step 107 Th2 

cells were incubated in 100 ml of warm complete RPMI.  The dilution of the 

secreting cells prevented false-positives that can arise from IL-10 high secretors 

cytokines binding to low secretors surface bound Ab.  After 45 min to 1h, these 

cells were treated with IL-10 detection Ab conjugated with PE which bind the IL-

10 cytokine immobilized on the cell surface by the bispecific Ab.  IL-10 low 

secretors and high secretors were sorted in function of the fluorescence using 

FACSVantage SE or BD FACSAria from Becton Dickinson.  The cells were 

rested for 1 or 2 days before restimulation, analysis or transduction. 

 

 

 

 

 

 

 

IL-10 detection Ab conjugated with PE 

Antibody conjugates of anti-CD45 mAb
and anti-IL-10 mAb

IL-10 cytokine

Figure 6: Schematic of IL-10 secretion assay 
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Co-immunoprecipitation of IRF4, PU.1 and GATA-3 

For immunoprecipitation (IP) nuclear cell lysates (1 mg Th2 extract) were 

incubated with control antibody (normal mouse IgG), anti-IRF4, anti-PU.1 or anti-

GATA-3 conjugated with protein G beads (Santa Cruz Biotechnology, Santa Cruz 

CA) overnight at 4ºC.  The next day the immunocomplex was precipitated with 

protein G beads (except for anti-GATA-3), and released from the beads by 

boiling in non-reducing loading dye.  The beads were centrifuged for 1min at 

14,000rpm and washed three times with IP wash buffer containing 0.1% tween-

20 and protease inhibitors.  Proteins were separated on NUPAGE 4-12% Bis-Tris 

SDS-PAGE gel from invitrogen, and transferred onto Optitran cellulose nitrate 

membrane (Whatman, Dassel, Germany).  The blots were blocked for 1 h in 5% 

dry nonfat milk in TBST at RT then probed with anti-IRF4, anti-PU.1 or anti-

GATA-3 and appropriate secondary antibody (Biorad, Hercule, CA or Santa Cruz 

Biotechnology, Santa Cruz CA) for 1 h at RT.  The signal was developed with 

Western blot Lightning Chemiluminescence Reagent Plus (Perkin-Wellesley, 

MA).  The blots were stripped and reprobed with anti-actin (Calbiochem, La Jolla, 

CA) and Immunoblots were re-probed with the precipitating antibodies 

 

DNA Affinity Precipitation Assay (DAPA) 

CD4+ T cells were isolated and cultured under Th2 skewing condition for 5 days.  

Four mgs of Th2 cell extract were incubated overnight at 4ºC with 10 μl biotin-

conjugated PU.1 consensus oligonucleotide, 10 μl of protease inhibitors and 

completed to 1 ml with oligo DNA pull down buffer-low salt (25 mM HEPES , 10% 
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glycerol, 15 mM NaCl, 0.5 mM DTT, 0.5% Igepal, 0.1 mM EDTA-pH 7.5).  The 

oligonucleotides (PU-forbiotin, tgaattaaggaagtaagaag and PU-rev, 

cttcttacttccttaattca (5’-Biotin)) were annealed by incubating 45 μl (100 pmole/μl) 

of each oligo with 10 μl Roche buffer M for 5 min at 100ºC and letting the mixture 

cool down slowly to RT.  Th2 nuclear lysate (250 μg) was incubated with double 

stranded biotinylated IL-10 promoter oligonucleotide (tgaggtctgaagaaaatcagccct 

ctcggg (5’-Biotin) and the reverse complement).  For the competition assay the 

competitor oligonucleotide was incubated with the nuclear protein for 15min at 

RT before the addition of the biotinylated IL-10 promoter oligonucleotide.  The 

IRF4 mutant competitor had a deletion of the IRF4 consensus binding site and 

the sequence was tgaggtctatcagccctctcggg and the reverse complement.  The 

sequence for the Igλ (lambda B) IRF4 competitor and GATA-3 oligonucleotide 

were previously described (66, 130).  The next day the protein-DNA complex was 

incubated for 6 h with streptavidin conjugated beads (1.2 mg/ml streptavidin 

conjugated to sepharose 4B, Millipore-Upstate).  The DNA-bound protein was 

released by boiling in non-reducing loading dye before loading on SDS gel.  Anti-

PU.1, anti-IRF4 or anti-NFATc2 antibodies were used to detect the proteins 

pulled down with the oligonucleotide. 

 

Retroviral Vectors and Transduction 

The retroviral vector MIEG-hCD4 was made as previously described (66).  

Briefly, the EGFP gene contained in the MIEG-EGFP vector was replaced with 

hCD4 cDNA amplified from a cloned cDNA (provided by G. Alkhatib, Indiana 
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University).  The coding region for human IRF4 cDNA was amplified by PCR and 

cloned into MIEG-hCD4.  The Phoenix-Eco packaging cells line was transiently 

transfected with 15 μg of purified plasmid by calcium phosphate precipitation.  

The next day DMEM medium was replaced with RPMI-1640 complete medium.  

The supernatant containing retrovirus was collected after 1 and 2 days of 

incubation, filtered through 0.45 μm filter and stored at -80ºC.  Th2 cells 

differentiated for 2 days were transduced by centrifugation at 1,800 rpm, 20ºC for 

2 h with 1.5 ml of retroviral supernatant containing 8 μg/ml of polybrene, 100 

U/ml of human IL-2 and cytokines and antibodies for Th2 differentiation.  Two 

hours after centrifugation, the cells were supplemented with complete RPMI-

1640 medium.  The next day cells were expanded with RPMI-1640 containing IL-

4, human IL-2 and anti-IFNγ.  Transduced Th2 were stained with human CD4-PE 

from BD and purified by sorting before restimulation for real-time PCR or ELISA. 

 

IRF4 siRNA and shRNA assays 

IRF4 siRNA 
Balb/c CD4+ T cells were skewed under Th2 condition for 5 days as described 

above and transfected by Amaxa nucleofection with srambled siRNA 

(cugagaguauuucgagacgaaaa) or IRF4 specific siRNA, a pool of two different 

siRNA constructs (siRNA2 (gaggaagaacauugagaagtugc) and siRNA3 

(cuccgucauucuuccauccaaga)) described by Brüstle et al.(137).  The treated cells 

were rested for 4h at 37ºC and restimulated with 5 μg/ml, anti-CD3, 1 μg/ml anti-
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CD28, 10 ng/ml of IL-4 and 10 μg/ml XMG for 40h.  Cells were then harvested 

and either analyzed by RT-PCR or restimulated with 2 μg/ml anti-CD3 for ELISA. 

 

IRF4 shRNA 
The sequences for IRF4 siRNA1 (uugggaauuguuuaaaggcaagu) and siRNA2 

described by Brüstle et al were converted to DNA oligonucleotides and annealed 

following Clontech protocol before ligation into an RNAi-Ready pSIREN vector 

(Clonetech Laboratories, Inc. Mountain View, CA).  The negative control shRNA 

annealed oligonucleotide provided with the kit was used to generate the negative 

shRNA.  These vectors (2 μl) were used to transform 50 μl of DH5α and LB-

ampicillin selective medium was used to grow the cells.  The plasmids purified 

were used to transfect Phoenix GP cells and obtain viral supernants.  CD4+ T 

cells cultured under Th2 conditions were transduced with IRF4 shRNA or 

negative shRNA and harvested two days later for FACS analysis. 

 

Reporter Assay 

EL4 cells were split on day 0, and on day 3 106 cells were transfected by 

electroporation with 0.9 μg of plasmid, 0.9 μg of reporter and 0.2 μg of β-

galactosidase in a total volume of 100 μl of DMEM.  Cells were immediately 

transfered to 6 well plates.  After 24h the cells were harvested, washed with PBS 

and restimulated with 0.2 μg/ml of Ionomycin and 20 ng/ml of PMA for 24h.  

Harvested cells were lyzed with 100 μl of reporter lysis buffer (Promega) and the 
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luciferase activity was measured for each sample and divided by the protein 

concentration and the β-galactosidase activity of the sample.        
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RESULTS 
IRF4 expression defines IL-10 low and IL-10 high phenotype  

Our first goal was to assess Th2 cytokine heterogeneity in IL-10 low and IL-10 

high cells after separation of Th2 cells based on IL-10 secretion.  Th2 cells were 

harvested after 10 days of differentiation and restimulated before labeling for IL-

10 secretion and cell death with 7-Amino-Actinomycin D.  The gates for IL-10 

non-secreting cells and IL-10 secreting cells were defined respectively by the 

negative control (unstained cells) and the positive control (mouse CD4 PE 

stained cells).  The purity of these populations was higher than 90% (Figure 7A).  

Il10 RNA level was assessed after 4h of restimulation.  IL-10 high cells 

expressed greater levels of Il10 RNA than IL-10 low cells, however, IL-10 

enrichment was insufficient to see a great segregation of Il4 expression (Figure 

7B).  IL-10 high cells secreted more IL-10 than IL-10 low cells and this phenotype 

was maintained at least a week after sorting suggested that the cytokine profile 

of the IL-10 secreting or IL-10 non-secreting cells was not transient phenotype 

but stable phenotype (Figure 7C).  

 

The levels of other Th2 cytokines including IL-4, IL-5 and IL-9 were analyzed in 

these subsets of Th2 cells.  As shown in Figure 7D the production of IL-4 and IL-

5 were respectively 4 and 6 fold higher in IL-10 high than in IL-10 low cells and 

similar patterns was observed at the RNA level.  In contrast to the enrichment for 

IL-4 and IL-10 levels, the level of IL-9 is 9-fold higher in IL-10 low compared to IL-

 43



10 high cells (Figure 7D).  This data suggests that Th2 cytokines gene 

expression in IL-10 high secretor cells is controlled and not ubiquitously induced. 
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Figure 7: IL-10 high and low Th2 cells phenotype 
CD4+ T cells were cultured under Th2 conditions for 7-10 days and separated 
into IL-10 high and IL-10 low populations using cytokine capture and sorting by 
flow cytometry.  Based on the negative and positive control the gates were set 
respectively for IL-10 low and IL-10 high cells (A).  IL-10 high and low cells, after 
sorting, were stimulated with anti-CD3 for 4 h and RNA was isolated for qPCR 
analysis of Il4 and Il10 (B).  IL-10 high and low cells supernatants were tested for 
IL-10 concentration 1d or 6d after sorting and 1d restimulation using ELISA (C).  
Cells cultured and sorted as in A were stimulated with anti-CD3 for 1d for IL-4, IL-
5 detection by ELISA or 4 h before RNA isolation for qPCR analysis of Il9 (D).  
Data in all panels are representative of at least four experiments. 
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An array of Th2-associated transcription factors including IRF4, GATA-3 and 

PU.1 were tested after segregation in IL-10 high and IL-10 low cells.  GATA-3 

was reported to remodel the Il10 promoter region (26) while Irf4-/- Th2 cells 

secreted significantly lower level of IL-10 (60).  To verify IRF4 protein segregation 

in IL-10 high and low cells we performed intracellular staining in CD4+ T cells 

skewed toward Th2 for 5 days using anti-IL-10PE antibody and anti-IRF4 

antibody (Santa Cruz Biotechnology).  We gated on both the cells that secreted 

the lowest and the highest level of IL-10 so that the buffer region between these 

two gates is as big as possible.  There was an 8-fold difference in IRF4 

expression in cells gated for IL-10 high or IL-10 low expression (Figure 8A).  Irf4 

expression was greater in unstimulated IL-10 secreting than IL-10 non-secreting 

cells (Figure 8B).  Upon restimulation the fold difference in Irf4 RNA level 

increased from 138 to 2626 (Figure 8B).  In general IRF4 expression is induced 

by α-CD3 stimulation in both subsets of cells (data not shown).  Interestingly, 

cells that express high levels of GATA-3 and IRF4 secrete 10-fold more IL-10 

than GATA-3/IRF4 low expressing cells (Figure 8C). 

 

 In our 2005 paper, we reported that PU.1 is expressed in IL-4 low cells where it 

sequesters GATA-3 from binding the Il4 and Il5 loci and induces the expression 

of these genes.  The absence of PU.1 in IL-4 high cells allows them to secrete IL-

4 at a higher level than IL-4 low cells (66).  By contrast, we see 5 times more 

Sfpi1 RNA in 4h restimulated IL-10 high than in IL-10 low cells (Figure 8D).  
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Figure 8: IRF4 expression segregates between IL-10 high and −low Th2 
cells 
CD4+ T cells were cultured under Th2 conditions for 7-10 days and separated 
into IL-10 high and IL-10 low populations (see Figure 7).  Th2 cells were treated 
with monensin for the last three hours of a six hour stimulation with anti-CD3 
before intracellular staining for IL-10, IRF4 and GATA-3 or IgG control.  The 
fluorescence intensity histogram (FI) of IRF4 was plotted for the negative control 
which are Th2 cells treated with normal IgG and Cy5 conjugated donkey anti 
goat antibody (dashed line), IL-10 secreting (bold line) and IL-10 non secreting 
cells (gray area) (A).  IL-10 high and low cells, after sorting, were left 
unstimulated or stimulated with anti-CD3 for 4 h and RNA was isolated for qPCR 
analysis of Irf4 (B), Sfpi1 and gata3 (D).  Th2 cells treated with monensin and 
stained as in (A) were analyzed for IRF4 and GATA-3 expression and backgated 
for IL-10 expression.  GATA-3 and IRF4 double negative cells (bold line) and the 
double positive cells (purple area) FI was plotted (C).  Data in all panels are 
representative of at least three experiments. 
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IRF4 expression segregates with IL-10 secreting Th1 cells 

Th1 cells also secrete IL-10, though in the absence of other stimulatory 

cytokines, at levels much lower than those produced by Th2 cells (Figure 9A) 

(94).  To determine whether IRF4 expression correlates with the production of IL-

10 by Th1 cells, Irf4 RNA level and IRF4 protein level were determined in Balb/C 

Th1 versus Th2 cells.  As shown in Figure 9B, Th1 and Th2 cells expressed 

similar nuclear levels of IRF4, even though, only 3% of Th1 cells express IL-10 

versus 30% in the Th2 subset cells (Figure 9B versus Figure 8A).  To determine 

whether Th1 cultures also display IL-10 heterogeneity and if IRF4 expression 

segregated with IL-10 high Th1 cells, CD4+ T cells were cultured under Th1 

skewing conditions (IL-12+α-IL-4) and were used for intracellular staining for IL-

10 and IRF4.  Th1 cell analysis by flow cytometry confirmed that the IRF4 

expression pattern was similar to the pattern in Th2 cells where higher IRF4 

expression was observed in IL-10 high cells (Figure 9C).  This data suggested 

that in the Th1 population, IRF4 may contribute to IL-10 production but is not a 

determining factor for expression.   
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Figure 9: IRF4 expression segregated with IL-10 secreting Th1 cells 
Balb/c CD4+ T cells were cultured for 5 days under Th1 or Th2 skewing 
conditions and restimulated with α-CD3 for 1 day.  The concentration of IL-10 in 
the supernatant was assessed by ELISA (A) and the level of IRF4 protein in 
unstimulated or 6h stimulated naïve T, Th1 and Th2 cells as well as control or 
IRF4 transfected phoenix cells was assessed by western blot (B).  Th1 cells were 
also restimulated for intracellular staining as described in Figure 8.  The cells 
stained with α-IL-10PE and α-IRF4/DαG-Cy5 were analyzed by flow cytometry 
(C).  The control cells were treated with normal IgG/DαG-Cy5.  The histogram 
plot represents the mean fluorescence intensity of Cy5. The dark line represents 
the IgG control, the gray area represents the IL-10 low gated cells (R9) and the 
bold line represents the IL-10 high gated cells (R8).  This data is representative 
of three independent experiments. 
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IL-10 induction in T helper cells other than Th2 is not mediated by IRF4 

Various types of T helper cells secrete IL-10 including Th1 cells, T regulatory 1 

and Tregs (95, 96).  In addition to the known IL-10 inducing cytokines including 

IL-4, IL-12 and IL-2, IL-27 has been recently added to the list (95, 96).  In order to 

determine whether IRF4 expression correlates with IL-10 level in T helper cell 

types other than Th2 cells and assess the involvement of IRF4 in IL-27 pathway 

we cultured CD4+ T cells under non polarizing ( no cytokine), Th1 (IL-12+ α-IL4), 

Th2 (IL-4+α-IL12), Th17 (TGF-β+α-IL-4+α-IL-12+ IL-6+IL-1β) and Treg 

(TGFβ+α-IL-4+α-IL-12) skewing conditions.  These cells were cultured in the 

presence or absence of 50 ng/ml recombinant IL-27 (rIL-27).  After 3 days of 

culture the cells were expanded, supplied with half the concentration of skewing 

cytokines and 25 ng/ml of rIL-27.  On day 5 the cells were harvested for 

assessment of Il10 and Irf4 RNA level by real-time PCR after 2h of α-CD3 

restimulation.  As shown in Figure 10, most of the T helper cell types express 

similar levels of Irf4 RNA in the presence or absence of rIL-27 except Th2 cells 

which IRF4 expression decreased upon treatment with rIL-27.  The effect of rIL-

27 on Il10 RNA levels was different in various T helper cell types.  Th2 cells 

expressed the highest level of Il10 RNA followed by Tregs and Th17 cells.  The 

addition of rIL-27 to T helper cells during differentiation induced a dramatic 

increase in Il10 expression in Th1, a significant increase in Th17 cells and 

modest increases in unskewed, Th2 and Treg (Figure 10).  The treatment with 

rIL-27 increased IL-10 secretion in Th17 cells and Treg while it decreased IL-10 

production in unskewed and Th2 cells.  These data demonstrated that IRF4 level 
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did not correlate with IL-10 expression in T helper cell types other than Th2 cells 

and suggested that additional factors contribute to IL-10 production in other Th 

cells.  The fact that IL-10 level increased in Th1, Th17 and Treg cells upon rIL-27 

treatment with no change in Irf4 level demonstrated that IRF4 is not mediating 

the IL-27 effect (Figure 10).  In unskewed and Th2 cells rIL-27 has the opposite 

effect by inducing the decrease of Irf4 level and the reduction of total IL-10 

secreted after 24h of restimulation.  The presence of rIL-27 may be inducing this 

decrease in Th2 IL-10 production by triggering the expression of an IRF4 

inhibitor, by preventing the release of the expressed IL-10 into the medium since 

Irf4 RNA level was stable or by decreasing the half-life of the IRF4 protein.  The 

treatment of T helper cells with rIL-27 demonstrated that IRF4 does not mediate 

IL-10 production in response to this cytokine with the exception of Th2 cells 

where any change in IL-10 expression correlates with IRF4 level.  In Th1, Th17 

and Treg cells other transcription factors may regulate IL-10 expression. 
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Figure 10: IL-27 induction of IL-10 in T helper cells is not IRF4 dependent  
Balb/c CD4+ T cells were skewed under unskewed (no cytokine), Th1 (IL-12+ α-
IL-4), Th2 (IL-4+α-IL12), Th17 (TGF-β+α-IL-4+α-IL-12+ IL-6+IL-1β) and Treg 
(TGFβ+α-IL-4+α-IL-12) conditions for 5 days, in the presence or absence of rIL-
27.  Differentiated cells were restimulated for 1 day with α-CD3 for 2h before 
assessing Irf4 and Il10 RNA levels by real-time PCR.  The data is the 
representation of 2 experiments. 
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IRF4 function in Th2 cells 

IRF4 was reported to be important for Th2 and Th17 development since IRF4-

deficient T cells secrete decreased levels of Th2 and Th17 cytokines while IFNγ 

levels increase in Th2 cells (136, 137).  However the role of IRF4 during Th2 

differentiation in mature CD4+ T cells has not been clearly defined.  The defect in 

Th2 cytokine expression suggested that ectopic expression of IRF4 in Th2 cells 

during differentiation would increase the level of secreted Th2 cytokines.  To test 

this, we generated an IRF4-expressing bicistronic retroviral vector (Figure 11A) 

and transduced differentiating Th2 cells on the second day of a five-day culture 

period.  Cells sorted for hCD4 expression were restimulated with α-CD3 and 

evaluated for cytokine production using ELISA.  Our data demonstrated that 

ectopic expression of IRF4 in Th2 cells increased production of IL-10 and IL-4 by 

8-fold and 4-fold, respectively, with no significant effect on IL-5 and IL-13 (Figure 

11B). 

 

Since transduction of IRF4 increases specific cytokines in differentiating Th2 

cells, we next tested whether it would alter the phenotype of IL-10 low cells 

isolated from differentiated Th2 populations.  To assess the change in IL-10 low 

phenotype, we sorted IL-10 low cells from cells cultured under Th2 conditions for 

10 days as described in Methods.  IL-10 low cells were transduced with IRF4 RV, 

cultured for two days before hCD4+ cells sorting and restimulation with anti-CD3 

to assess the level of cytokine production.  Transduction of IRF4 in IL-10 low 

cells enhanced the production of IL-10 and IL-4 by 6-fold and 4-fold, respectively, 
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with no significant effect on IL-5, but a decrease in Il9 mRNA (Figure 11C).  

These results demonstrate that IRF4 specifically increases IL-4 and IL-10 

production from Th2 cells but does not induce other Th2 cytokines.  The infection 

of IL-10 low cells also demonstrated that the introduction of exogenous IRF4 

increased their IL-10 production to the level of IL-10 high cells (Figure 11D), even 

though the level of IL-10 in MIEG infected IL-10 high cells is lower than IL-10 

level in untreated IL-10 high cells (Figure 7B). 
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Figure 11: Effect of ectopic IRF4 expression in total Th2 cells and subsets 
of Th2 cells 
IRF4 retroviral vector was generated as described in the material and methods 
section using an MIEG vector containing hCD4 gene as a marker (A).  Total Th2 
cells were transduced with viral supernatant generated by transfecting packaging 
Phoenix-GP cells cultured in DMEM medium.  Th2 cells differentiated for 2d were 
transduced and cultured for 3 additional days. Cells were sorted for hCD4 
expression and restimulated for 1 day before ELISA for IL-4, IL-5, IL-10 and IL-13 
(B).  Th2 cells differentiated for 7d were restimulated with PMA and ionomycin for 
6h before capturing IL-10 on the cell surface and detecting the IL-10-anti-IL-10 
complex with an anti-IL-10 antibody conjugated with PE.  The IL-10 low secretors 
and IL-10 high secretors were rested for 24h before transduction with the 
retroviral supernatants generated with the control RV or the IRF4 RV(C and D).  
The level of Il9 RNA was determined by real-time PCR.  These experiments were 
representative of 2-5 experiments. 
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IRF4 down-regulation decreases IL-10 and IL-4 expression 

CD4+ T cells were skewed under Th2 condition for 5 days and transducted with 

control siRNA or IRF4 specific siRNA using Amaxa.  After 40h cells were either 

analyzed by RT-PCR or restimulated with 2 μg/ml anti-CD3 for ELISA.  Irf4 

mRNA level decreased by 2 fold while IL-10 production decreased by 60% 

(Figure 12A).  The siRNA oligonucleotide was cloned into a Ready green 

fluorescent vector to generate IRF4 shRNA.  Th2 cells cultured for 5 days were 

rested and transduced with control and IRF4 shRNA.  After 2 days cells were 

restimulated for intracellular staining.  The mean fluorescent intensity shows that 

IRF4 level decrease by 32%, IL-10 by 24% and IL-4 by 75% (Figure 12B).  These 

data suggest that decrease in IRF4 level was not enough to induce a drastic IL-

10 decrease but was sufficient for IL-4 decrease. 

 

 

 

 

 

 

 

 

 

 

 60



 

A 

B 

Control SiRNA

IRF4 SiRNA
 

 

0

1

2

3

IL
-1

0 
(n

g/
m

L)
0

20

40

60

80

100

120
 

R
el

at
iv

e 
Irf

4
ex

pr
es

si
on 

 

 

 

 

 

 

 

42231739IRF4 ShRNA
26730.292541No target
IL-4 MFIIL-10 MFIIRF4 MFI

42231739IRF4 ShRNA
26730.292541No target
IL-4 MFIIL-10 MFIIRF4 MFI

 

 

Figure 12: IRF4 down-regulation in Th2 cells 
Balb/c CD4+ T cells were cultured for 5 days under Th2 skewing conditions and 
tranduced with control siRNA or IRF4 siRNA.  After 40h the Cells were harvested 
and either analyzed by RT-PCR or restimulated with 2 μg/ml anti-CD3 for ELISA. 
(A).  Th2 cells cultured for 5 days were rested and transduced with control and 
IRF4 shRNA.  After 2 days cells were restimulated for intracellular staining.  The 
mean fluorescence intensity (MFI) of IRF4, IL-10 and IL-4 was assessed by flow 
cytometry. 
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IRF4 regulates IL-4 and IL-10 expression by binding to the Il4 and Il10 loci 

To assess whether IRF4 regulates IL-4 and IL-10 expression by directly binding 

to regulatory regions in Il4 and Il10 gene loci, we tested the direct binding of IRF4 

to the Il4 and Il10 loci (Figure 13) using DNA affinity precipitation assay and 

chromatin immunoprecipitation.  We first used a biotinylated oligonucleotide 

corresponding to an IRF4 consensus binding site in the Il10 promoter. 

Strepavidin-agarose was able to precipitate IRF4 in the presence but not the 

absence of oligonucleotide using a DAPA protocol (Figure 13B).  To demonstrate 

specificity for this interaction IRF4 was competed with an oligonucletide from the 

Igλ enhancer that contains an IRF-4 binding site, but not with the Il10 promoter 

oligonucleotide with the IRF-4 binding site deleted or with a GATA-3 consensus 

oligonucleotide.  Chromatin immunoprecipitation experiments in CD4+ T cells 

cultured for 5 days under Th2 differentiating conditions and restimulated with α-

CD3 for different amount of time.  The amount of DNA immunoprecipitated was 

quantified as the percent input.  ChIP results for the specific antibody were 

determined using a standard curve of input DNA from the same cells.  Both the 

Il10 and Il4 promoters were enriched in IRF4 immunoprecipitates compared to 

control antibody precipitates.  Similarly regulatory regions including Il4VA and Il10 

conserved non-coding sequence (CNS3) previously shown to regulate IL-10 

(103) were enriched in IRF4 immunoprecipitates compared to the IgG control 

(Figure 13C).  Interestingly IRF4 binding to these regions decreased as a 

function of restimulation time in Il10 locus while IRF4 binding did not significantly 

change for Il4Va. 
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Figure 13: Chromatin immunoprecipitation demonstrate IRF4 binding to 
Il10p, Il10CNS3 and Il4VA
Mouse IL-10 gene is represented with the arrow indicating the translational start 
and black boxes representing exons. The regions used for promoter and CNS3 
ChIP assays are indicated with nucleotide positions corresponding to the 
transcriptional start site (A).  Th2 nuclear extract was incubated with (+) or 
without (-) a biotinylated oligonucleotide corresponding to an IRF4 consensus 
binding site in the Il10 promoter and used for DAPA and IRF4 immunoblot.  The 
following competitors were used at 2 and 5 fold exces to demonstrate specificity 
of the oligonucleotide-IRF4 interaction: oligonucleotides containing an IRF4 
binding site from the Igλ gene, the Il10 promoter oligonucleotide containing a 
deletion of IRF4 binding site, and an oligonucleotide containing a GATA-3 
consensus site.  Th2 extract immunoblotted without DAPA is indicated as Th2 
(B).  Balb/c CD4+ T cells were differentiated intoTh2 cells for 5 days.  These cells 
were either restimulated with anti-CD3 for 2h or unstimulated before cross-linking 
the protein-chromatin complexes by adding formaldehyde to the cell cultures.  
For one ChIP reaction 20x106 cells were used.  The nuclei were resuspended in 
nuclear lysis buffer and the genomic DNA is sheared by ultrasonication.  The 
precleared cell lysates is incubated with anti-IRF4 or IgG antibody as negative 
control for the ChIP assay and 0.3% of the total amount of DNA was used in 
each immunoprecipitation was determined in the input.  ChIP assay of IRF4 
binding to Il10 promoter (Il10p), Il10 CNS3 or Il4 enhancer (Il4 VA) regions.  
Quantification of control IgG and IRF4 binding was performed using qPCR and 
the amount of DNA immunoprecipitated was quantified as the percent input (C).  
The data is representative of 3 experiments.
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IRF4 transactivates both the Il10 promoter and Il10 CNS3 regions 

IRF4 was previously shown to transactivate a luciferase reporter containing the 

Il4 promoter in M12 B lymphoma cell and to synergize with NFATc2 and C-maf in 

the induction of this promoter activity (59).  To determine if IRF4 could 

transactivate gene expression from the Il10 regulatory elements we used a 

luciferase reporter containing either the Il10 promoter region (Il10p) or the Il10 

CNS3 region (Figure 14A) (103).  Upon co-transfection of EL4 T cells with either 

of the Il10 reporters and IRF4-expressing or control pCEP4 vectors, the 

transactivation was measured by assessing luciferase activity.  Our data showed 

that co-transfection of IRF4 with Il10p or Il10 CNS3 significantly increased 

luciferase activity compared to the pCEP4 control (Figure 14B).  Stimulation of 

the transfected cells with PMA + ionomycin increased basal reporter activity and 

IRF4 co-transfection was able to further increase reporter activity (Figure 14B).  

Thus, IRF4 binds and directly transactivates Il10 regulatory elements. 
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Figure 14: IRF4 transactivates Il10 driven reporters 
Representation of the mouse IL-10 gene with the arrow indicating the 
translational start and black boxes representing exons.  The regions used for 
promoter and CNS3 reporters and ChIP are indicated with nucleotide positions 
corresponding to the transcriptional start site (A).  EL4 cells were transfected by 
electroporation with pCEP4 or IRF4 vectors, Il10p or Il10 CNS3 reporter and β-
galactosidase gene containing vector (internal control) in a total volume of 100 μl 
of DMEM.  Cells were immediately transfered to 6 well plates containing DMEM 
medium at 37 ºC.  After 24h the cells were harvested, washed with PBS and 
restimulated with 0.2 μg/ml of Ionomycin and 20 ng/ml of PMA for 24h.  The plots 
are the representation of the luciferase activity and divided by the protein 
concentration and the β-galactosidase activity of each sample.  The data is 
representative of 3 experiments. 
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Th2 cytokine temporal expression pattern following anti-CD3 restimulation  
 
The defense mechanism against microbial invasion mimicked in vitro by LPS 

treatment, involves the activation and function of macrophages which rapidly 

secrets proinflammatory cytokines.  The presence of these cytokines in the 

microenvironment dictates the differentiation pathway for lymphoid cells.  To 

prevent damage of the host from excess secretion of pro-inflammatory cytokines, 

the anti-inflammatory cytokine IL-10 is almost simultaneously induced in 

macrophage cells by type I interferons (144).  The regulation and kinetic of IL-10 

expression therefore determines the outcome of the local immune response.  

The analysis of human and murine Kupffer’s cells upon endotoxin challenge 

revealed a significant increase in Il10 RNA after 2h.  To assess the importance of 

these process in Th2 cells we investigate time course and autoregulation of IL-10 

(145). 

 

To determine the pattern of expression of hallmark Th2 cytokines and IRF4, 

CD4+ T cells were cultured for 5-days under Th2 skewing condition, and then 

washed before restimulation with anti-CD3 for increasing periods of time.  We 

examined the expression of Th2 cytokines including Il4, Il5, Il9, Il10, Il13 and the 

transcription factor Irf4 by real-time PCR.  Our data indicates that both Il10 and 

Irf4 expression reach peak expression after 2h and 20h of restimulation (Figure 

15A).  Interestingly this biphasic Il10  expression was also reported in natural 

killer (NK) cells treated with IL-2 and IL-12 with similar kinetic for the IL-10 

expression spikes (146).  In these NK cells IL-10 expression was regulated by 
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STAT4 binding to the CNS region in the 4th intron of the Il10 gene (146).  The 

similar pattern of expression for Irf4 supports that this transcription factor is the 

key regulator of IL-10 expression in Th2 cells. 

 

In contrast, Il9 expression was relatively low until 8h and 24h of restimulation 

when it drastically increased (Figure 15B).  These time points correspond to a 

low Irf4 and Il10 expression levels, suggesting a regulatory function of IRF4 and 

IL-10 on the expression of IL-9.  Il4 and Il5 reached their peak expression at 4h 

and 24h respectively 2h and 4h after Irf4 and Il10 peaks (Figure 15C).  

Surprisingly, these data suggest that Il10 induction precedes Il4 expression and 

not the opposite, whether IL-10 is regulating IL-4 expression in differentiated Th2 

cells was not addressed in this study.  Figure 15C also shows a sustained Il13 

expression with a constant increase from 1h to 24h restimulation with a small 

plateau between 6h and 8h.  The Il13 expression profile supports other data that 

this cytokine is not controlled by IRF4. 
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Figure 15: Irf4, Il10 and Il9 expression pattern as function of restimulation 
time 
Balb/c CD4+ T cells were cultured for 5 days under Th2 skewing conditions and 
restimulated or not with α-CD3 for different amount of time.  The total RNA level 
for Irf4, Il4, Il5, Il13, Il10 and Il9 were determined by real-time PCR.  The data is 
representative of 2 experiments
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IL-10 regulates its expression in an autoregulatory feedback loop 

An IL-10 autoregulatory feedback loop was reported in myeloid cell types 

including Kuffer cells (145) and primary macrophages (108) through a 

downregulation by exogenous or endogenous IL-10 protein.  The observation of 

a biphasic IL-10 expression with a smaller peak at 20h compared to the peak at 

2h may also be explained by this autoregulatory loop.  Our approach to assess 

this pathway in Th2 cells was to change IL-10 concentration in the culture 

medium and assess the effect of the modification on the expression level of Il10 

and Irf4.  We cultured CD4+ T cells for 9 days under Th2 skewing conditions and 

sorted IL-10 non-secreting and IL-10 secreting cells.  The IL-10 low cells were 

then treated for 3 days with PBS or recombinant IL-10 (rIL-10), while IL-10 high 

cells were treated with control IgG1 or neutralizing α-IL-10 antibody.  IL-10R and 

IL-4Rα levels were assessed on IL-10 low and IL-10 high cells after 5 days of 

Th2 differentiation (Figure 16A).  IL-10 low cells expressed 3-fold less cytokine 

receptor compared to IL-10 high cells suggesting that IL-10 low cells are less 

susceptible to IL-10 or IL-4 in the microenvironment.  The addition of rIL-10 to IL-

10 low cells decreased the level of endogenous Il10 and Irf4 which were already 

low in this subset of cells.  On the contrary, Il9 levels increased in the rIL-10 

treated cells compared to the control (Figure 16D).  In IL-10 high cells treated 

with α-IL-10, Il10 and Irf4 levels increased compared to the control cells treated 

with IgG1.  The level of Il9 on the other hand slightly decreased in the α-IL-10 

treated cells (Figure 16B).   
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To determine whether STAT3 is mediating IL-10 autoregulatory feedback loop, 

we performed the same experiments using STAT3CD4-/- Th2 cells.  As shown in 

Figure 16C and Figure 16E, the deficiency in STAT3 did not prevent IL-10 from 

regulating its expression.  Overall Figure 16 demonstrates that the IRF4 level 

correlates with IL-10 expression suggesting that IL-10 is negatively regulating 

IRF4 expression which in turn affects IL-10 level in the cells.  Whether other 

transcription factors are involved in this process is unknown.   

 

IL-9 is a pleiotropic cytokine known to induce the recruitment of eosinophils and 

mucus hypersecretion in asthma.  Dexamethazone a strong inducer of IL-10 

expression was reported to inhibit IL-9 expression (147).  Our results in Figure 

15A, B and Figure 11C suggest that IRF4 negatively regulates IL-9 expression.  

Figure 16 further supports a role for IRF4 in IL-9 regulation since rIL-10 

decreased Irf4 level while increasing Il9 expression (Figure 16D) and the 

neutralization of IL-10 triggered Irf4 expression in a STAT3-independent manner 

while decreasing Il9 expression (Figure 16B).   

 

The early expression of IL-10 in Th2 cells in response to α-CD3 stimulation plays 

a critical role in vivo in the downregulation of inflammatory response upon 

infection to prevent organ damage.  On the other hand, negative autoregulation 

of IL-10 expression may be the mechanism by which the immune system 

recovers sensitivity to new proinflammatory stimuli from the microenvironment.  
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Figure 16: Effect of IL-10 neutralizing antibody on IL-10 high cells and 
recombinant IL-10 on IL-10 low cells 
Balb/c CD4+ T cells were skewed under Th2 condition for 5 days and treated 
with monensin for the last three hours of a six-hour stimulation with anti-CD3 
before surface staining for IL-4R or IL-10R in addition to IL-10 and IL-4 
intracellular staining.  The histograms in (A) are respectively the overlays of IL-
10R MFI and IL-4R MFI in IL-10 low and IL-10 high cells (A).  The Balb/c CD4+ T 
cells were cultured for 9 days under Th2 skewing conditions before resting and 
restimulation for IL-10 low and IL-10 high sorting.  IL-10 high (1x105) cells were 
plated in 200 μl per well of 48 well plate and either treated with 10 μg/ml IgG1 or 
anti-IL-10.  The next day 2 μg/ml of the antibodies were added to the cells to 
neutralize the IL-10 secreted by these cells.  On day 3 of culture cells were 
harvested and restimulated for 3h and 8h with 2 μg/ml of α-CD3 (B).  The same 
experiment was performed in STAT3CD4-/- IL-10 high cells (C).  IL-10 low (2x105) 
cells were plated per well of 48 well plate and either left untreated or treated with 
10 ng/ml of rIL-10.  After 3 days of culture cells were harvested and restimulated 
for 8h with 2 μg/ml of α-CD3.  The RNA level of Irf4, Il10 and Il9 were measured 
by real-time PCR (D).  The same experience was performed in STAT3CD4-/- IL-10 
low cells (E).  The data is representative of 2 experiments.
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PU.1 and IRF4: part of the same protein-protein or protein-DNA complexes 

PU.1 was demonstrated to interact with GATA-3 using recombinant protein 

binding assays (148) and in Th2 cell co-immunoprecipitates (66).  In B cells PU.1 

is also known to interact with IRF4 and recruit it to the DNA to form a ternary 

complex (132, 134, 149, 150).  To confirm the interaction of PU.1 and IRF4 in a 

different cell system, we transfected Phoenix cells either with an empty vector, a 

PU.1 vector, an IRF4 vector or both PU.1 and IRF4 vector (Figure 17A).  Anti-

PU.1 or anti-IRF4 was used to immunoprecipitate complexes from total Phoenix 

cell lysate.  A small amount of PU.1 was immunoprecipated with IRF4 when 

either of the antibodies were used (Figure 17B).  The western blot of the 

immunoprecipitates also showed that anti-PU.1 or anti-IRF4 were respectively 

able to pull down PU.1 and IRF4 when these transcription factors are expressed 

by themselves (Figure 17B). 

 

To investigate the interaction of PU.1 and IRF4 in Th2 cells, we used anti-PU.1, 

anti-IRF4 or anti-GATA-3 to immunoprecipitate complexes from Th2 nuclear 

lysate.  PU.1, IRF4, and a small amount of GATA-3 were immunoprecipitated 

from Th2 cells with anti-IRF4 and anti-PU.1 (Figure 17C).  Immunoprecipitation 

with anti-GATA-3 confirmed the interaction between PU.1 and GATA-3, though 

little IRF4 was precipitated with this complex (Figure 17C).  We also assessed 

IRF4 interaction with NFATc2 using anti-NFATc2 and found that NFATc2 binds 

to IRF4, GATA-3 and PU.1 while NFATc1 did not interact with PU. 1 (Figure 

17D).  Thus, although PU.1 interacts with IRF4 and GATA-3, these data suggest 
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that PU.1-IRF4 and PU.1-GATA-3 are largely separate complexes, as little IRF4 

was associated with GATA-3.  
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Figure 17: PU.1 and IRF4 protein-protein interactions  
Phoenix cells were transfected with empty, PU.1 and/or IRF4 expressing vectors.  
After 2d of incubation at 37ºC, PU.1, IRF4 and GAPDH expression was assessed 
in one hundred μgs of cell lysate by western blot (A).  CD4+ T cells were cultured 
for 5 days under Th2 skewing conditions.  Four mgs of total Phoenix cell lysate 
(B) or Th2 cell nuclear protein (C) were incubated overnight at 4°C with either 
anti-IRF4, anti-PU.1 or anti-GATA-3 conjugated (for Th2 cells) (C).  Th2 nuclear 
cell lysates were incubated with control antibody IgG (Santa Cruz, CA) overnight 
at 4ºC.  The immunocomplex was precipitated with protein G beads and released 
from the beads by boiling in non-reducing loading dye before loading on SDS gel.  
Immunoblots were re-probed with the precipitating antibodies (C).  The data is 
representative of at least 4 experiments.
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To determine whether PU.1 and IRF4 can form a ternary complex with an 

oligonucleotide containing PU.1 binding consensus, we performed a DNA affinity 

precipitation assay using total cell lysate from PU.1 and IRF4 expressing Phoenix 

cells.  When PU.1 was expressed alone or co-expressed with IRF4, it formed a 

protein-DNA complex with the PU.1 oligonucleotide in the Phoenix cell line 

(Figure 18A).  One limitation for this experiment was that IRF4 alone was 

immunoprecipitated by PU.1 oligonucleotide suggesting that IRF4 binding is not 

specific.  The same experiment was performed in Th2 cells differentiated with 0.5 

μg/ml α−CD3 (Th2 low), 2 μg/ml α−CD3 (Th2), IL-4 non secreting cells (IL-4 low) 

or EL4 cells transfected with PU.1.  Only a small amount of PU.1 was 

immunoprecipitated with the biotin-labelled oligonucleotide and IRF4 when 

different Th2 cell subpopulations or EL4 cells expressing exogenous PU.1 were 

used (Figure 18B).  This can be explained by the fact that PU.1 is only detectable 

in the nucleus of Th2 cells (66).  Compared to PU.1 transfected Phoenix cells, 

PU.1 concentration in Th2 total cell lysate was probably too low for a strong 

detection by western blot after DNA affinity precipitation assay.  To determine if 

IRF4 is directly regulating Il10 and Il4, we tested the direct binding of IRF4 to the 

Il10 locus (Fig. 4A) using chromatin immunoprecipitation.  
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Figure 18: PU.1 and IRF4 protein-DNA interactions  
Biotin-conjugated PU.1 consensus oligonucleotide was incubated overnight with 
Phoenix cell or Th2 cell lysates. The next day the protein-DNA complex was 
incubated for 2h with streptavidin conjugated beads.  SDS-PAGE lysate loading 
buffer was added to the DNA-protein complex before loading on SDS gel (A).  
The same experiment was performed in different subsets of Th2 cells or EL-4 
cells (B).  The data is representative of 3 experiments.
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 Functional interactions of PU.1 and IRF4 

To determine if the association of IRF4 and PU.1 had functional consequences, 

we used mice carrying a conditional allele of the Sfpi1 gene, encoding PU.1, 

crossed to lck-Cre transgenic mice (denoted as Sfpi1lck-/-).  We then compared 

the function of IRF4 in wild-type and Sfpi1lck-/- Th2 cells.  Chromatin 

immunoprecipitation demonstrated that IRF4 binding to the Il10 promoter is 

greater in Sfpi1lck-/- Th2 cells than in C57BL/6 Th2 cells (Figure 19A).  A similar 

trend of IRF4 binding was observed for the Il4 promoter.  The level of Il4 DNase 

hypersensitivity site VA (151, 152) in the IRF4 precipitates was also greater in 

Sfpi1lck-/- Th2 cells than in WT Th2 cells though binding to Il10 CNS3 was only 

modestly affected by PU.1-deficiency.  Concomitant with increased IRF4 binding 

to the Il10 locus, transduced IRF4 induced more IL-10 in Sfpi1lck-/- Th2 cells than 

in WT Th2 cells.  We did observe that IRF4 transduction had a less robust 

increase in IL-10 production in C57BL/6 background cells, compared to Balb/c 

Th2 cells (Figure 11B vs. Figure19B).  Overall, these results suggest that PU.1 

interactions limit the ability of IRF4 to transactivate Th2 cytokines.  The 

deficiency in PU.1 expression in 5 days differentiated Th2 cells allowed these 

cells to secrete more IL-10 than WT.  This phenotype was more pronounced in 

the cells cultured with 0.125 μg/ml α-CD3 compared to the cells differentiated 

with 2 μg/ml  α-CD3.  The mechanism linking PU.1 function and the strength of T 

cells stimulation is still under investigation in the lab. 
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Figure 19: PU.1 interacts with and limits the activity of IRF4 
ChIP assay for IRF4 binding to Il10 promoter and CNS3 regions, and Il4 VA 
regions was performed as described in Figure 13 with chromatin from WT and 
Sfpi1lck-/- CD4+ T cells cultured under Th2 conditions (A).  WT and Sfpi1lck-/- 
CD4+ T cells were cultured under Th2 conditions and transduced with control or 
IRF4-expressing retroviruses as described in Figure 11B. IL-10 levels were 
determined by ELISA and normalized to control transduced cells. Results are 
representative of three experiments.  WT and Sfpi1lck-/- CD4+T cells were 
differentiated under Th2 condition for 5 days in the presence of 2 μg/ml or 0.125 
μg/ml α-CD3 and restimulated for 1 day with 2 μg/ml α-CD3 for ELISA (C). 
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PU.1 function depends on its cooperative state with other proteins. 

Our previous work demonstrated that PU.1 was a regulator of Ccl22 expression 

in Th2 cells (66).  Ccl22 is a Th2 chemokine expressed in Th2 related 

pathologies.  It is highly expressed in IL-4 low cells compared to IL-4 high cells 

and the transduction of PU.1 in Th2 cells dramatically increase the expression of 

this chemokine (66).  To determine whether PU.1 is directly regulating the 

expression of Ccl22 gene by binding to the DNA we performed a ChIP assay in 

Balb/c Th2 cells before and after restimulation with 2 μg/ml anti-CD3 for (Figure 

20A and B).  Our data demonstrated that PU.1 binds to multiple regions of the 

Ccl22 gene.  Data in Figure 20C demonstrated that PU.1 binding to the Ccl22 

promoter region is higher after 2h restimulation compared to unstimulated cells.  

This result suggests that PU.1 promotes the expression of certain Th2 specific 

genes despite negatively regulating the binding of IRF4 or GATA-3 to target 

genes.  
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Figure 20: PU.1 directly binds to Ccl22 promoter internal regions 
Representation of the mouse Ccl22 gene with black boxes representing exons 
(A).  ChIP assay for PU.1 binding to Ccl22 promoter and internal regions was 
performed as described in Figure 13 with chromatin from Balb/c CD4+ T cells 
cultured under Th2 conditions and restimulated for 2h (B).  The binding of PU.1 
was assessed before and after restimulation.  The precleared cell lysate from 
unstimulated (-) or 2h stimulated (+) Th2 cells is incubated with anti-IRF4 or IgG 
antibody as negative control for the ChIP assay and the amount DNA bound to 
PU.1 was amplified by PCR in 10% or 2% of the total amount of DNA (C). 
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IRF4 expression profile in subpopulations of Th2 cells 

Our study demonstrated that IRF4 is a key regulator of IL-4 and IL-10 expression 

with GATA-3.  To directly visualize the level of this transcription factors in 

different subsets of Th2 cells we analyzed these cells based on two-state 

separation of cells into IL-10 high and low cells.  However, IL-10 high and low 

cells can be further divided based on co-expression of other cytokines.  Since 

IRF4 induced production of IL-4 and IL-10, we examined the expression of IRF4 

in populations of IL-4- and IL-10-positive cells by intracellular staining. IRF4 

expression was highest in Th2 cells that were double-positive for IL-4 and IL-10, 

and lowest in cells that did not secrete either cytokine (Figure 21A).  Interestingly, 

expression was intermediate but similar in IL-4- and IL-10-single positive cells.  

Thus while IRF4 promotes IL-4 and IL-10 production, other factors also 

contribute to the decision of a cell to make one or both cytokines. 

 

The analysis of IL-10 low and IL-10 high Th1 cells showed that most of the cells 

that secrete IL-10 also secrete IFNγ and express 3-fold more IRF4 than the other 

subsets of Th1 cells.  Contrary to Th2 cells IFNγ/IL-10 non secretors or single 

secretors express similar levels of IRF4 (Figure 21B). 
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Figure 21: IRF4 heterogeneity in Th2 cells  
CD4+ T cells were cultured under Th2 or Th1 conditions for 5d.  IRF4, GATA-3 
and PU.1 protein levels were analyzed in Th2 cells treated with monensin for the 
last three hours of a six-hour stimulation with anti-CD3 before intracellular 
staining for IL-4, IL-10 and the proteins (A).  The mean fluorescence intensity 
(MFI) of IRF4 staining is shown in the table for each of the gated populations.  
Th1 cells were stained with IRF4 and IFNγ and the MFI of IRF4 staining is shown 
in the adjacent table (B). 
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DISCUSSION 
Role of IRF4 role in T-helper cell development 

IRF4 plays an important role in the development of Th2 and Th17 cells (136, 

137).  In Irf4-/- mice, development of Th2 cells is decreased, suggesting that it 

plays a role in the differentiation process (60).  A recent study reported that 

contrary to its role in effector/memory cells, IRF4 is a negative regulator of Th2 

cytokine expression in naïve T cells (139).  The deficiency of IRF4 in T helper 

cells also prevented the differentiation of Th17 cells both in vitro and in vivo by 

decreasing of the IL-21-induced IL-23 receptor expression, as well as the 

expression the lineage-specific orphan nuclear receptors RORgammat and 

RORalpha (153).  As a result Irf4-/- mice are protected from experimental 

autoimmune encephalomyelitis (EAE) (137).  However, a role in differentiation 

does not preclude involvement in the regulation of specific cytokines in 

differentiated Th2 cells.  In this study we demonstrate that IRF4 contributes to the 

heterogeneity of Th2 populations by increasing expression of IL-4 and IL-10 and 

decreasing expression of Il9, while having no effects on IL-5 or IL-13.  IRF4 

expression segregates in Th2 cells between IL-10 high and IL-10 low cells.  IRF4 

triggered cytokine expression by directly binding to and transactivating the Il4 

gene (59) as well as the Il10 gene, and ectopic expression of IRF4 can increase 

IL-10 production from IL-10 low cells.  Thus, IRF4 is an instructive factor in 

establishing Th2 heterogeneity. 
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T helper cell heterogeneity 

Increasing evidence suggests that the establishment of Th2 heterogeneity is not 

stochastic, but rather instructive, based on the expression of specific factors. As 

such, a growing list of transcription factors has specific effects on Th2 cytokines.  

IRF4 is induced following T cell activation, and expression is further increased 

following Th2 differentiation.  Importantly, the level of IRF4 in IL-10-low cells is 

increased compared to that in recently activated T cells.  As we have shown, 

IRF4 activates IL-10 and IL-4 production, while decreasing Il9 and having little 

effect on IL-5 or IL-13.  C-maf regulates IL-4 production but is not required for 

production of other Th2 cytokines (55).  Similarly, Pias1 increases IL-13 

production without affecting IL-4 or IL-5 expression (67).  We have shown that 

PU.1 decreases expression of many Th2 cytokines, but increases expression of 

Ccl22, a chemokine associated with Th2 inflammation (66).  BOB.1/OBF.1 

regulates PU.1 expression in Th2 cells and also affects the potential for Th2 

cytokine production (68).  Moreover, the expression levels of each of these 

factors, and other factors that contribute to Th2 cytokine production exist in 

gradients that correlate with cytokine producing phenotypes (Figure 21).  The 

similar level of expression of IRF4 in both IL-4- and IL-10-single positive cells 

supports the idea that other positive- or negative-acting factors overlay on the 

IRF4 gradient to generate the specific patterns of cytokine secretion.  Some of 

these regulators might be C-maf for IL-4-single positive cells or NFATc2 for IL-

10-single positive cells (55, 59).  The mosaic of transcription factor gradients 

ultimately results in the heterogeneity observed in cytokine production from 
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individual cells.  The regulation of the epigenetic modification, the transcription 

and the translation of the cytokine genes are all involved in defining the 

phenotype of the Th2 cells. 

 

Th2 Transcription factors involved in the regulation of IL-10 expression  

In Th2 cells, GATA-3 induces the expression of the cytokines IL-10, IL-4, IL-5 

and IL-13 by modifying epigenetically the Il10 locus (26), transactivating the Il4, 

Il5, and Il13 loci (51, 154, 155).  Contrary to IL-4 gene, memory Th2 cells need 

repeated restimulation in the presence of IL-4 before detection of extensive 

histone acetylation of the Il10 gene.  This epigenetic imprinting which correlates 

with the development of IL-10 memory is not detectable in Th1 cells (94). 

  

IL-10 is a regulatory cytokine produced by a number of cells including Th2 cells 

and it’s regulation in each cell type may be distinct.  IL-10 plays a critical role in 

controlling inflammation in vivo by selectively suppressing the expression of pro-

inflammatory cytokines.  In various cell types, the molecular mechanism 

regulating the expression of IL-10 involves binding of IRF1 and STAT3 to the 

promoter region of the Il10 gene locus (26, 94), and the regulation of the level of 

IL-10 mRNA by Sp1 and Sp3 (156).  In Th2 cells, GATA-3 remodels the Il10 

locus (26), and Jun family proteins bind the CNS3 region to induce Il10 

transcription (103).  Moreover, IL-10 production requires repeated stimulation to 

be completely imprinted within the Th2 population (157).  We show that IRF4 

contributes to Il10 expression in Th2 and Th1 cells. The IL-12-dependent 
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production of IL-10 in Th1 cells has been documented in human and mouse cells 

(94, 158, 159).  Clearly, additional factors contribute to the difference in IL-10 

production by Th1 and Th2 cells, including that c-jun and JunB bind to the Il10 

CNS3 in Th2 but not Th1 cells (103), and that Ets-1 is a negative regulator of IL-

10 production in Th1 cells (160).  We demonstrate that in Th2 cells IRF4 binds 

directly to the Il10 locus and is able to transactivate Il10 regulatory element 

reporter plasmids.  Our results parallel the recent description of a role for IRF4 in 

Treg cells where Il10 was one of the prominently regulated genes (138).  The fact 

that IRF4 binding sites exist in the Il10 promoter and CNS3 regions, and that it 

binds to the same regulatory element as Jun containing complexes suggests that 

these factors may cooperate.   

 

Our data demonstrated that Th1 cells express a similar level of IRF4 compared 

to Th2 cells, this data suggests that in addition to regulating IL-10 expression, 

IRF4 might be regulating the expression of additional genes in Th1 cells.  The 

overexpression of IRF4 in Th2 cells in addition to enhancing the expression of 

Th2 cytokines also induced an increase in IFNγ production (136).  It suggested 

that IRF4 can promote modifications in IFNγ gene even in Th2 cells with the 

presence of GATA-3 and inducing the transactivation of the gene.  In Th1 cells 

IRF4 might contribute to IFNγ expression. 
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IRF4 role in naïve versus differentiating or differentiated Th2 cells 

A recent study by Homna et al. reported a differential role of IRF4 in the 

regulation of Th2 cytokines in naïve CD4+ T cells versus effector/memory CD4+ 

T cells (139).  Knocking down IRF4 promoted IL-4, IL-5 and IL-10 production in 

naïve cells while inhibiting it in effector/memory CD4+ T cells.  This work did not 

address the molecular aspect of this opposite regulatory function but the authors 

suggested that different sets of transcription factors specific to these cells might 

be dictating the role of IRF4 (139).  It is also possible that Th2 cytokine DNA loci 

in effector/memory cells were already epigenetically modified by transcription 

factors like GATA-3 which allows enhanceosomes containing IRF4 to bind to 

positive regulatory regions (26, 51).  However, in naïve cells the inaccessibility of 

these areas of the DNA directs IRF4 repressor complexes to bind inhibitory 

regions.  

 

The role of IRF4 in differentiating versus differentiated Th2 cells is very similar 

since it has a positive regulatory function in Th2 cytokines expression and 

production.  CD4+ T cells skewed under Th2 condition in the absence of IRF4 

demonstrated an impaired differentiation with “Th2” cells that had the cytokine 

profile of Th1 cells (136).  Even though IL-4 signaling was not affected, GATA-3 

was not upregulated (136).  When we knocked down IRF4 in differentiated Th2 

cells, the expression of Th2 cytokines like IL-10 and IL-4 decreased (Figure 22) 

correlating with the results reported in effector/memory CD4+ T cells (139).  We 

also observed an upregulation of Th2 cytokines when Th2 cells are transduced 
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with exogenous IRF4 with no significant effect on GATA-3 expression suggesting 

that IRF4 regulates GATA-3 expression only during the priming process of Th2 

cells.  

 

Role of IRF4 and GATA-3 role in regulating IL-10 

IRF4. 
Our data demonstrated that IRF4 is directly regulating Il10 gene expression by 

binding to the promoter and the CNS3 region of the gene (Figures 12 and 19).  In 

the absence of PU.1 in Sfpi1-/- Th2 cells, IRF4 binding to it target genes 

increased dramatically (Figure 19A) and the expression of exogenous IRF4 in 

Sfpi1 -/- Th2 cells enhanced IL-10 and IL-4 production to a greater extent than in 

WT Th2 cells (Figure 19B).  The interaction of IRF4 and PU.1 at the protein level 

suggests that PU.1 sequesters IRF4 from binding to its target genes, Il10 and Il4.  

A similar mechanism was reported for PU.1 and GATA-3 by our lab (66).  The 

segregated expression of PU.1 in IL-4 low cells prevented GATA-3 from binding 

to the Il4 gene locus while GATA-3 was bound to this locus in IL-4 high cells (66).  

Contrary to IL-4 low cells, IL-10 low cells expressed lower levels of PU.1 than IL-

10 high cells.  We propose that in IL-10 high cells, the high expression of IRF4 

and GATA-3 overcome the elevated level of PU.1.  

 

Interestingly, knocking down PU.1 increased the number of IL-10, IL-4 and IL-5 

secreting cells, while exogenous wild-type PU.1 strongly decreased Th2 cytokine 

expression (66).  In this report a PU.1 DNA binding mutant was less efficient in 
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decreasing Th2 cytokine production compared to the wild-type PU.1, suggesting 

that PU.1 regulatory effect may be mediated through other transcription factors 

such as IRF4, which are known to be recruited to the DNA by PU.1 in B cells (74, 

126, 161) or T cells (Figure 18B).  However, in B cells PU.1/IRF4 enhanced the 

transcriptional activity of  Il1β (74), class II transactivator promoter III (CIITA-PIII) 

(161) and kappa 3’ enhancer (126) while in T cells PU.1/IRF4 might have an 

inhibitory effect on the transcription of the target genes including Il10 and Il4.  In 

the case of Il1β, PU.1 forms an enhanceosome with IRF4, IRF1 and IRF2 (74).  

The presence of cell specific transcription factors in the protein complex may 

dictate an enhancing or inhibitory regulatory function of PU.1/IRF4 in the cells.  

Whether PU.1 binds IRF4 on the Il10 and Il4 loci in Th cells and prevents the 

transactivation of these genes still needs to be investigated. 

 

GATA-3. 
GATA-3 is a key transcription factor in the differentiation and development of Th2 

cells.  Farrar et al. using a retroviral-based tagging technique to monitor the fate 

of individual T cell progenitors demonstrated that IL-4 was able to shift the 

phenotype of already committed non-IL-4-producing via GATA-3-induced 

epigenetic modification in vitro (28, 92) and in vivo (27).  This data confirmed that 

Th cell skewing is through an instructive transcriptional programming driven by 

the cytokines present in the cell microenvironment (92). 
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The genetic programming of each cell may predispose it to a differential 

expression of the instructive factors.  For example Figure 16A shows that IL-10 

high cells express 3 times more IL-4Rα and IL-10Rα than IL-10 low cells.  This 

data suggests that IL-10 high cells may be more responsive to IL-4 stimulation 

which in turn induces a high level of GATA-3 and IRF4 expression in these cells.  

We propose that even though IL-10 high cells express a significant level of PU.1 

(Figure 8D) the elevated level of GATA-3 and IRF4 overcome the presence of 

PU.1 in the IL-10 secreting cells so that only a fraction of these factors is 

sequestered from their target genes.  PU.1 might be preventing Th2 cells from 

excessive production of Th2 cytokines upon stimulation, as a result Th2 cells can 

quickly turn off cytokine production in a feed back loop.  In this report, we have 

identified IRF4 as a regulator of Th2 heterogeneity by enhancing or decreasing 

the production of specific cytokines.  IRF4 function, like GATA-3 as described in 

our previous report (66), is limited by the expression of PU.1 in Th2 cells, which 

binds IRF4 and decreases binding to target genes including Il10.  Future work 

will examine how these factors interact to generate the population phenotype and 

what signals determine the expression of each factor within individual cells. 

 

We did not observe strong interactions of IRF4 with GATA-3. In contrast, we did 

observe interactions with PU.1, which we previously demonstrated decreased IL-

10 production (66).  In the absence of PU.1, IRF4 had greater potential to bind 

Il10 and increase IL-10 production, suggesting that at least some of the ability of 

PU.1 to modulate Il10 is through the ability to interfere with IRF4 activity.  Further 
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analysis of how these factors interact at the functional level will discern more 

precise roles.   

 

In addition to its indirect regulatory role on Th2 cytokines expression, PU.1 

directly binds to Ccl22 gene upon stimulation (Figure 20) and regulates its 

expression since PU.1 overexpression increases Ccl22 production in Th2 cells 

(66).  It is possible that PU.1 is recruiting other factors to the promoter region of 

Ccl22 or that PU.1 is recruited to the promoter by another factor since its binding 

was detected after 2h of restimulation.  This aspect of PU.1 function was not 

assessed in this study.  The model in Figure 22 depicts the different pathways for 

PU.1 regulatory activity. 
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Figure 22: PU.1 regulatory function in Th2 cells   
IRF4 and GATA-3 transcriptional activities are regulated by the presence of PU.1 
in Th2 cells.  When IRF4 and GATA-3 are expressed in excess they bind their 
target DNA whether the Th2 subsets express PU.1 or not but the absence of 
PU.1 favor the transcriptional activity of GATA-3 and IRF4.  PU.1 is also an 
inducer of Th2 genes including Ccl22 by directly binding to its promoter region. 
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Reciprocal regulation between, IL-10, IRF4 and IL-9  

The reciprocal regulation of Il10 and Il9 is striking and distinct from the IL-9 and 

IL-10-producing cells present in cultures primed with TGFβ and IL-4 (36).  While 

transduction of IRF4 in Th2 cells decreases Il9 expression, we did not observe 

IRF4 binding to the Il9 promoter in a ChIP assay (data not shown).  This 

suggested that the effects of IRF4 could be indirect, through the induction of IL-

10.  Indeed, neutralizing IL-10 in IL-10 high cells, that express low levels of Il9, 

modestly decreased Il9 mRNA (Figure 16B) while addition of exogenous IL-10 to 

IL-10 low cells increase Il9 expression.  However, it is not clear which IL-10 

activated pathways might be responsible for this regulation (model summarized 

in Figure 24).  It is also not clear why a cell would be specialized to express only 

one of these cytokines.  IL-9 is a pleiotropic cytokine involved in the pathologic 

and physiologic evolution of asthma by recruiting eosinophils and lymphocytes to 

the lung, inducing mucus hypersecretion, mast cells hyperplasia in concert with 

IL-4, IL-5 and IL-13 (120), while IL-10 is a suppressive cytokine that may 

modulate many of these processes.  It is possible that secretion of IL-9 by Th2 

cells would only be effective if target cells did not receive a conflicting signal 

generated by IL-10. In this manner, Th2 heterogeneity may reflect functional 

specialization of cell types within the inflammatory microenvironment. 

 

The role of IL-10 in inducing late expression of IL-9 through this regulatory loop 

may have different roles depending on the disease.  Contrary to its 

proinflammatory role, IL-9 has a immunosuppressive functions which allow 
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allograft tolerance (13).  Indeed mast-cell-deficient mice do not display immune 

tolerance (13).  Studies reported that CD4+CD25+Foxp3+ regulatory T cells 

secrete IL-9 which recruits and activates mast cells to mediate regional immune 

suppression (13).  The IL-9 secreted by Th2 cells could also complement IL-10 

immunosuppressive function by recruiting mast cells to area of the organism 

where tolerance is established. 

 

In addition to the effect on IL-9 expression there is evidence that IL-10 

expression is controlled by a regulatory feedback loop which allows the 

lymphocytes and the microenvironment to respond to subsequent infection 

through the production of inflammatory cytokines (summarized in Figure 23).  

The effect of this feedback loop can be observed in Th2 cells restimulated for 

increasing times.  Figure 15 A shows that IL-10 expression peaks at 2h, followed 

by a smaller peak at 20h restimulation and suggests that the IL-10 negative 

regulatory feedback loop prevents Th2 cells from a second strong “wave” of anti-

inflammatory response.  It is interesting to note that IL-10 high cells express 

higher level of IL-10R which might make these cells more prone to rapidly turning 

off IL-10 production in response to IL-10 stimulatory feedback loop.  Apparently 

STAT3 is not mediating the IRF4-dependent feedback regulation of IL-10; 

however, Irf4 gene expression is a target for this pathway. 

 
Our data suggests that IL-10 is negatively regulating Il9 expression in wild-type 

Th2 cells via IRF4, however, in the absence of STAT3 IL-10 induces Il9 
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expression even though Irf4 mRNA level increases in response to the feedback 

loop.  We propose two mechanisms for Il9 regulation by IL-10.  In the first 

mechanism IRF4 may be forming an Il9 repressor complex with STAT3, as a 

result, other transcription factors can induce Il9 expression in STAT3CD4-/- Th2 

cells.  In the second mechanism we propose the IL-10/STAT3 pathway to trigger 

the expression of an inhibitory factor which is not expressed in STAT3CD4-/- Th2 

cells upon IL-10 stimulation. 

 

IL-9IL-9

IRF4IRF4

IL-10IL-10

STAT3STAT3

 

 

 

 

 

 
Figure 23: Model of the IL-10 autoregulation feedback loop and the indirect 
regulation of IL-9 expression 
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OVERALL CONCLUSION 
Cytokine induced transcription factors that are differentially expressed in Th cells 

are required for the development and commitment to a specific Th lineage.  Our 

study confirmed that heterogeneity in Th2, as well as in Th1, populations results 

from the instructive function of transcription factors in the regulation of cytokine 

expression at a single-cell level.  Indeed, we have recently identified the ETS 

family transcription factor PU.1 as regulating heterogeneity in Th2 populations 

and we examined the PU.1 interacting protein IFN-regulatory factor (IRF)-4, a 

transcription factor expressed in lymphocytes and macrophages.  We were able 

to understand the role of IRF4 in this process and its relation with other 

instructive transcription factors including GATA-3 and PU.1.  When Th2 cells are 

separated based on levels of IL-10 secretion, IRF4 expression segregates into 

the subset of Th2 cells expressing high levels of IL-10. To investigate the role of 

IRF4 in cytokine heterogeneity, Th2 cells were infected with retrovirus expressing 

IRF4.  The cells overexpressing IRF4 secreted significantly higher levels of IL-10 

and IL-4 compared to cells infected with a control vector at the same time the 

level of IL-9 decreases.  Down regulation of IRF4 by shRNA or siRNA decreased 

IL-10 and IL-4 expression.  We used co-immunoprecipitation assays to determine 

transcription factors that interact with IRF4.  Our data shows that PU.1, IRF4 and 

GATA-3 form a complex in Th2 nuclear extract while NFATc2 forms a complex 

with each of these factors; whether all 4 factors are part of the same complex 

was not clear. We also demonstrated by ChIP assay that IRF4 directly binds the 

Il10 and Il4 loci in a time dependent manner and transactivates Il10 regulatory 
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regions.  The binding of IRF4 to these loci is regulated by PU.1 which is a 

sequestering factor for both GATA-3 (66) and IRF4.  The IRF4 dependent 

regulation of IL-10 was specific to Th2 cells and may be partial in Th1 cells.  

Understanding the molecular mechanism dictating the cytokine profile of Th2 

cells is an important tool in modulating the function of these cells in a disease 

model by transiently affecting their ratio of anti-inflammatory cytokines to 

inflammatory cytokines. 

 

 103



FUTURE DIRECTIONS 
Stability and function of IL-10 –low and –high cells in vivo 

We demonstrated that different subpopulations of Th2 cells (IL-10 secreting and 

IL-10 non-secreting cells) have a stable phenotype in vitro where they are not 

challenged by a fluctuating cytokine microenvironment.  Determining the stability 

of IL-10 –low and –high cell phenotype in vivo will confirm its heritability as well 

as the epigenetic modifications defining each subset of cell.  The second aspect 

of this question will be to assess the effects of these cells on the progression of 

an allergic disease like asthma.  To address these questions Th2 cells will be 

generated from I-Ad-binding ovalbumin (OVA) 323-339-specific T-cell receptor-

transgenic (TCR-Tg) mouse spleen cells by culturing with OVA323-339 peptide, 

APC, IL-4 and α-IL-12 antibody.  IL-10 secreting and non secreting cells will be 

sorted from the OVA co-culture and injected by tail vein injection in sensitized 

Balb/c mice.  Two different groups of mice will be analyzed in this study, the non-

sensitized mice and the mice sensitized with ovalbumin for 14 days which favor 

recruitment of lymphoid cells to the lungs.  These mice will be challenged with 

aerosolized OVA or bovine serum albumin (BSA) and analyzed for changes in 

lung resistance, airway responsiveness to inhaled methacholine.  The analysis of 

donor CD4+T cells in bronchoalveolar lavage by flow cytometry after IL-10 

intracellular staining will assess the stability of IL-10-low and IL-10 -high cells 

phenotype as well as their ability to mediate allergic inflammation.  
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Effect of PU.1 and IRF4 direct DNA binding on IRF4 transcription activity 

We demonstrated that IRF4, like Jun proteins, transactivates the IL-10 promoter 

and the IL-10 CNS3 driven luciferase reporters.  We also showed that IRF4 

directly binds to Il10 gene regulatory regions.  Interestingly PU.1 also binds to 

these regions with a different kinetic of binding (data not shown).  One 

mechanism by which PU.1 can also inhibit IRF4 transcription activity could be 

through the formation of PU.1/IRF4/DNA ternary complex.  This complex has 

been shown to enhance λB transactivation after substantial conformational 

changes of DNA shape in B cells, but it could play the opposite role in T cells due 

to the presence of other transcription factors specific to Th2 cells.  Our approach 

to address this question is to transfect EL4 cells with both PU.1 and IRF4 vectors 

along with Il10p or Il10 CNS3 driven luciferase reporters and assess luciferase 

activity.  The Controls for this experiment will consist of cells transfected with 

empty vector, PU.1, IRF4 or JunB vectors alone the earlier been the negative 

controls and the later been the positive controls.  The function of the different 

domains of PU.1 in the transactivation of IL-10 will be assessed by using PU.1 

mutants in the reporter assays. 

 

IRF4 effect on IL-10 transcription might be mediated through its DNA binding 

domain and/or its PU.1 interacting domain.  To determine the role of the different 

IRF4 domains on the induction of IL-4 and IL-10, we propose to engineer IRF4 

mutant/hCD4 bicistronic retroviral vectors which will be used to transduce both 

WT and Sfpi1-/- Th2 cells as described in Figures 11 and 19.  The binding of full-
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length IRF4 in the presence of mutant PU.1 or IRF4 mutants to IL-10 promoter or 

IL-10 CNS3 oligonucleotides will be assessed by DNA affinity precipitation assay 

using Th2 cell nuclear extract. 
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