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ABSTRACT 

Wang, Bo M.S., Purdue University, December 2014. Structure-Based Computational 
Studies of Protein-Ligand Interactions. Major Professor: Samy Meroueh. 

 
 
Molecular recognition plays an important role in biological systems. The purpose of this 

study was get better understanding of the process by incorporating computational tools. 

Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) method and 

Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA) method, the end-

point free energy calculations provide the binding free energy the can be used to rank-

order protein–ligand structures in virtual screening for compound or target identification. 

Free energy calculations were performed on a diverse set of 11 proteins bound to 14 

small molecules was carried out for. A direct comparison was taken between the 

calculated free energy and the experimental isothermal titration calorimetry (ITC) data. 

Four and three systems in MM-GBSA and MM-PBSA calculations, respectively, 

reproduced the ITC free energy within 1 kcal·mol–1. MM-GBSA exhibited better rank-

ordering with a Spearman ρ of 0.68 compared to 0.40 for MM-PBSA with dielectric 

constant (ε = 1). The rank-ordering performance of MM-PBSA improved with increasing 

ε (ρ = 0.91 for ε = 10), but the contributions of electrostatics became significantly lower 

at larger ε level, suggesting that the only nonpolar and entropy components contribute to 

the improved results. Our previously developed scoring function, Support Vector 
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Regression Knowledge-Based (SVRKB), resulted in excellent rank-ordering (ρ = 0.81) 

when applied into MD simulations. Filtering MD snapshots by prescoring protein–ligand 

complexes with a machine learning-based approach (SVMSP) resulted in a significant 

improvement in the MM-PBSA results (ε = 1) from ρ = 0.40 to ρ = 0.81. Finally, the 

nonpolar components in the free energy calculations showed strong correlation to the ITC 

free energy while the electrostatic components did not; the computed entropies did not 

correlate with the ITC entropy. 

Explicit-solvent molecular dynamics (MD) simulations offer an opportunity to 

sample multiple conformational states of a protein-ligand system in molecular 

recognition. SVMSP is a target-specific rescoring method that combines machine 

learning with statistical potentials. We evaluate the performance of SVMSP in its ability 

to enrich chemical libraries docked to MD structures. Seven proteins from the Directory 

of Useful Decoys (DUD) were involved in the study. We followed an innovative 

approach by training SVMSP scoring models using MD structures (SVMSPMD). The 

resulting models remarkably improved enrichment in two cases. We also explored 

approaches for a priori identification of MD snapshots with high enrichment power from 

an MD simulation in the absence of active compounds. SVMSP rescoring of protein–

compound MD structures was applied for the search of small-molecule inhibitors of the 

mitochondrial enzyme aldehyde dehydrogenase 2 (ALDH2). Rank-ordering of a 

commercial library of 50,000 compounds docked to MD optimized structures of ALDH2 

led to five small-molecule inhibitors. Four compounds had IC50s below 5 μM. These 

compounds serve as leads for the design and synthesis of more potent and selective 

ALDH2 inhibitors.
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CHAPTER 1. MOLECULAR RECOGNITION IN A DIVERSE SET OF PROTEIN-
LIGAND INTERACTIONS STUDIED WITH MOLECULAR DYNAMICS 

SIMULATIONS AND END-POINT FREE ENERGY CALCULATIONS 

1.1 Introduction 

Molecular Dynamics (MD) simulation-based free energy calculations have been 

extensively used to predict the strength of protein-ligand interactions. Every step of drug 

discovery, from hit identification to lead optimization, can benefit from precise prediction 

of small molecules bound to protein structures. Free energy calculations can be used for 

target discovery when applied to a compound docked to the human proteome.1 Several 

rigorous methods such as free energy perturbation and thermodynamic integration have 

been developed for accurate free energy calculations.2-8 However, in the virtual screening 

of large chemical or combinatorial libraries, these methods cannot easily be incorporated.9 

Molecular dynamics (MD)-based MM-GBSA or MM-PBSA10, typical end-point methods, 

offer an alternative to carry out rigorous free energy calculations. The calculations can 

consider structurally diverse molecules.  

The MM-GBSA or MM-PBSA free energy consists of several of several terms that 

include a potential energy, a polar and non-polar solvation energy, and an entropy. These 

components that can be determined independently. More than one approach exists for the 

calculation of these components. For example, there are different force fields that can 

obtain the potential energy, which typically includes electrostatic and van der Waals 
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energies.11 The solvation energy can be calculated using either Poisson-Boltzmann12 (PB) 

or Generalized-Born (GB) models.13 Two commonly used approaches, namely normal 

mode analysis and quasiharmonic approximation, can be applied for entropy estimation. 14, 

15 Finally, the calculations are performed on multiple snapshots collected from MD 

simulations.16-18 The selection of different collections of structures is expected to affect the 

predicted free energy.19  

Here, MM-GBSA and MM-PBSA calculations were applied to determine the free 

energy of binding and rank-order a diverse set of protein-ligand complexes. The diversity 

in the structures of the ligand and targets distinguishes this work from previous efforts that 

have typically been limited to calculations on congeneric series of compounds on the same 

target protein. In addition, the experimental isothermal titration calorimetry (ITC) data was 

used in the comparisons with predicted energy to reduce the uncertainties in the 

comparisons between predicted and experimental data. A set of 14 protein-ligand structures 

obtained from the PDBcal database with high quality structural and thermodynamic 

binding data.20 Extensive explicit-solvent MD simulations were performed, and various 

implementations of MM-GBSA and MM-PBSA were used to study the binding of these 

complexes. Our previously-developed scoring functions were also tested for their ability 

to rank-order the complexes by scoring MD structures. The effect of induced-fit 

conformational changes on rank-ordering these complexes was studied by performing 

separate simulations for ligand, protein and protein-ligand complexes. Components of the 

MM-GBSA and MM-PBSA free energy were compared with the ITC free energy, enthalpy 

and entropy. 
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1.2 Materials and Methods 

 

1.2.1 Scoring Protein-Ligands Complexes 

We previously reported the Support Vector Machine Target SPecific (SVMSP) 

model21 for enriching databases and Support Vector Regression Knowledge-Based 

(SVRKB) scoring21, 22 for rank-ordering protein-compound complexes based on their 

binding affinity. SVMSP was specific by developed for each individual target protein and 

SVRKB was a generalized scoring function for predicting the binding affinity of protein-

ligand interactions. The SVMSP model was developed by using protein-ligand crystal 

structures from the sc-PDB database (v2010)23  for the positive set (active compounds 

classification) and randomly selected compounds docked to the target of interest as the 

negative set (inactive compounds classification). An improvement was made from the 

previous working removing crystal structures in which the ligand contains highly charged 

moieties such as sulfate or phosphate groups to refine the positive set, which resulted in a 

final set of 4,677 complexes. Random selected 5,000 compounds from the ChemDiv 

library24 were docked to the pocket on the corresponding target to build the negative set of 

the model. 

In the development of SVMSP and SVRKB models, we extended our previous 

knowledge-based descriptors by using 14 distinct protein atom types and 16 ligand atom 

types (Appendix A, Table A.1).21 This resulted in 224 atom-pairs based potentials. We 

used 76 pair potentials for the vectors of SVMSP and SVRKB. A higher SVMSP score 

corresponds to a higher probability that the compound is an active one to the target. The 

higher SVRKB score indicate a higher binding affinity. 
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1.2.2 MD Simulations 

Explicit-solvent MD simulations were carried out for 14 complexes of small 

molecules bound to a protein, which were selected from the PDBcal database (Table 1.1).20 

Crystal structures of the target proteins were obtained from RCSB Protein Data Bank.25  

Preparation of the structures was performed by adding hydrogen atoms and modeling 

missing gaps with BIOPOLYMER module in SYBYL 8.0 (Tripos International, St. Louis, 

Missouri, USA). Optimization of the hydrogen bonding network was processed by using 

the REDUCE26 program in adjusting residue orientation and protonation states. All the 

ligand structures were extracted from crystal structures and visually checked and prepared 

in SYBYL. The compound was assigned AM1-BCC27 charges using the antechamber 

program from the AMBER9 package.28  Water molecules from crystal structures within 5 

Å to any atoms on the protein or compound were retained. No atom on the protein was 

within 14 Å from any side of the box. The solvated box was further neutralized with Na+ 

or Cl- counterions using the leap program from the AMBER9 package.28  

Simulations were carried out using the pmemd program in AMBER9 with ff03 

force field29 in periodic boundary conditions. All bonds involving hydrogen atoms were 

constrained by using the SHAKE algorithm.30 The simulations were carried out using a 2 

fs time step.  The particle mesh Ewald (PME) method was used to treat long-range 

electrostatics. Simulations were performed at the conditions of 298 K under 1 atm in NPT 

ensemble employing Langevin thermostat31 and Berendsen barostat.32 Water molecules 

were first energy-minimized and equilibrated by running a short simulation with the 

complex fixed using Cartesian restraints. 
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A series of energy minimizations followed up in which the Cartesian restraints 

were gradually relaxed from 500 kcal∙Å-2 to 0 kcal∙Å-2, and the system was subsequently 

gradually heated to 298 K via a 48 ps MD run. For each target, 6 independent simulations 

in length of 4 ns were performed by assigning different initial velocities. MD snapshots 

were saved every 1 ps yielding 6,000 structures per trajectory. The first 2 ns in each 

trajectory were discarded for equilibration. 

 

1.2.3 MD-Based Free Energy Calculations 

MM-PBSA and MM-GBSA free energy calculations combine internal energy, 

solvation energy based on electrostatic and nonpolar contributions, and the entropy. These 

calculations are carried out on snapshots collected from MD simulations. The binding free 

energy is expressed as: 

Δ𝐺𝐺𝑀𝑀𝑀𝑀−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = Δ𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑇𝑇Δ𝑆𝑆𝑁𝑁𝑁𝑁/𝑄𝑄𝑄𝑄𝑄𝑄 

Δ𝐺𝐺𝑀𝑀𝑀𝑀−𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = Δ𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 − 𝑇𝑇Δ𝑆𝑆𝑁𝑁𝑁𝑁 

where Δ𝐺𝐺𝑀𝑀𝑀𝑀−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and Δ𝐺𝐺𝑀𝑀𝑀𝑀−𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 are binding free energies calculated by MM-PBSA 

and MM-GBSA method, Δ𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and Δ𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 are the combined internal and solvation 

energies,  𝑇𝑇  is system temperature. Δ𝑆𝑆𝑁𝑁𝑁𝑁/𝑄𝑄𝑄𝑄𝑄𝑄  is entropy determined by normal mode 

calculation or quasiharmonic analysis. The internal energy is determined using the 

Lennard-Jones and Coulomb potentials33 in the Amber force-field (Δ𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺). The solvation 

energy is determined using Poisson-Boltzmann or Generalized-Born solvation models 

(Δ𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 or Δ𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺): 

Δ𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = Δ𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + Δ𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺 

Δ𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = Δ𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + Δ𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺 
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where Δ𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  and Δ𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺  are the solvation free energies calculated with PB or GB 

model, and Δ𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺  is the molecular mechanical energies. The molecular mechanical 

energies are composed of three components: 

Δ𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺 = Δ𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + Δ𝐸𝐸𝑉𝑉𝑉𝑉𝑉𝑉 + Δ𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼 

where Δ𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  is the non-bonded electrostatic energy, Δ𝐸𝐸𝑉𝑉𝑉𝑉𝑉𝑉 is non-bonded van der Waals 

energy, and Δ𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼 is the internal energies composed of bond, angle, and dihedral energies.  

The solvation free energies can be calculated using PB or GB model, expressed 

respectively by: 

Δ𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = Δ𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + Δ𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

Δ𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = Δ𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + Δ𝐸𝐸𝐺𝐺𝐺𝐺 

where Δ𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and Δ𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 are hydrophobic contribution to desolvation energy, 

Δ𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and Δ𝐸𝐸𝐺𝐺𝐺𝐺  are reaction field energies.34 

All the binding energies are determined by: 

Δ𝐸𝐸 = 𝐸𝐸𝑃𝑃𝑃𝑃 − 𝐸𝐸𝑃𝑃 − 𝐸𝐸𝐿𝐿 

where 𝐸𝐸𝑃𝑃𝑃𝑃, 𝐸𝐸𝑃𝑃 and 𝐸𝐸𝐿𝐿 are total energies corresponding to protein-ligand complex (PL), 

protein (P) and ligand (L), respectively. 

 The molecular mechanical gas phase energies were calculated by the sander 

program from the AMBER9 package, including the internal energy, van der Waals and 

electrostatic interactions. The dielectric constant for electrostatic interactions was set to 1.0. 

The polar contributions of the solvation free energy were calculated with Poisson-

Boltzmann (PB) method using the pbsa program12 and generalized Born (GB) method 

implemented in sander. The nonpolar contributions of the desolvation energy were 

determined with solvent-accessible-surface-area (SASA) dependent terms.35 The surface 
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area was calculated by molsurf program.36 The surface tension used to calculate the 

nonpolar contribution to the free energy of solvation is 0.0072. In the PB method, the 

reaction field energy was calculated with the dielectric constants for protein and solvent as 

1.0 and 80.0, respectively. In the test of the contribution of dielectric constant, we use 

various dielectric constant for the solute from 1 to 10, 15 and 20. The default value of the 

dielectric constant is 1. The solvent probe radius was set to 1.6 Å, which was optimized by 

Tan and Luo.37 Atomic radii were values optimized by Tan and Luo.37 The calculation 

based on the GB method was performed with the Onufriev’s GB model.38, 39 The SASA 

calculation was switched to the Icosahedra (ICOSA) method; surface area was computed 

by recursively approximating a sphere around an atom, starting from an icosahedra. Two 

different methods were applied for the calculation of entropies of the protein-ligand 

complexes. The quasiharmonic approximation was analyzed using the ptraj program in 

AMBER. Normal mode conformational entropies were estimated with the nmode module 

from AMBER. The distance-dependent dielectric constant was set to 4. Maximum number 

of cycles of minimization was set to 10,000. The convergence criterion for the energy 

gradient to stop minimization was 0.0001. All the detailed parameters of MM-PBSA and 

MM-GBSA free energy calculation are shown in Appendix A, Table A.2. 

For the MM-PBSA or MM-GBSA free energy calculations, a set of 500 structures 

for each protein-ligand complex was extracted from trajectories of MD simulations at 

regular intervals. For ∆GSVMSP//MMPBSA and ∆GSVMSP//MM-GBSA, all snapshots from MD 

simulations were first scored by SVMSP. The top scoring 500 structures were selected for 

free energy calculation. For ∆GMM-SVRKB, all snapshots were scored by SVRKB first; the 
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mean value of SVRKB score of all snapshots was used for calculated binding affinity (pKd) 

of the complex using: 

Δ𝐺𝐺 = −2.303 𝑅𝑅𝑅𝑅(𝑝𝑝𝑝𝑝𝑑𝑑) 

where 𝑅𝑅 is the gas constant, 𝑇𝑇 is room temperature (298.15 K). 

 

1.2.4 Correlation Analysis 

Three correlation metrics, Pearson’s correlation coefficient Rp, Spearman 

correlation coefficient 𝜌𝜌, and Kendall tau τ, were used in model parameterization and 

performance assessment. The correlation analysis was done using packages in R (version 

1.12.1). The 95% confidence interval was calculated using the 5,000 replicate bootstrap 

sampling.  

The Pearson product-moment correlation coefficient 𝑅𝑅𝑝𝑝  is a measure of linear 

dependence between two variables x and y, giving a value between +1 and −1 inclusive. It 

was given by: 

𝑅𝑅𝑝𝑝 =
∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)𝑖𝑖

�∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2𝑖𝑖 · ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑖𝑖
 

where 𝑥̅𝑥  and 𝑦𝑦�  are the mean value for 𝑥𝑥𝑖𝑖  and 𝑦𝑦𝑖𝑖  respectively. The Spearman’s rank 

correlation coefficient 𝜌𝜌  assesses how well the association of two variables can be 

described using a monotonic function. It was given by 

𝜌𝜌 = 1 −
6∑ (𝑥𝑥𝑖𝑖′ − 𝑦𝑦𝑖𝑖′)2𝑖𝑖

𝑛𝑛(𝑛𝑛2 − 1)
 

where 𝑥𝑥𝑖𝑖′ and 𝑦𝑦𝑖𝑖′ denote the ranks of 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖, n is the total number of x-y pairs. A perfect 

Spearman correlation of +1 or −1 occurs when each of the variables is a perfect monotone 
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function of the other. Kendall tau rank correlation coefficient 𝜏𝜏  is a measure of the 

association between two measured quantities. It was given by 

𝜏𝜏 =
∑ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖) ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦𝑗𝑗 − 𝑦𝑦𝑖𝑖)𝑖𝑖<𝑗𝑗

1
2𝑛𝑛(𝑛𝑛−1)

 

when the values of 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 are unique.  

 

1.3 Results 

 

1.3.1 Calculations of Binding Free Energies and Comparison to Isothermal Titration 

Calorimetry Data 

Free energy calculations were carried out for a set of 14 protein-ligand interactions 

using MM-GBSA and MM-PBSA (Figure 1.2). The structure of these complexes was 

previously solved by crystallography and characterization of the binding was done by ITC. 

The set contains 11 unique proteins and 14 structurally different ligands. The ligands 

include a cyclic peptide (1), peptidomimetics (2- 4), small organic molecules (5-10, and 

13), carbohydrates (10 and 11), a nucleoside (12) and a fatty acid (14) (Figure 1.1). Among 

the small organic molecules, four were fragment-like (6-8, and 13) with molecular weight 

less than 200 Da. Calculations were carried out using the MM-GBSA and MM-PBSA 

approach on multiple MD structures collected from 12 ns of simulation. The computed 

MM-GBSA or MM-PBSA free energies were compared to experimental binding affinity 

data ∆GITC (Table 1.1, Figure 1.3A). Among the 14 complexes, the predicted ∆GMM-PBSA 

were excellent (less than 1 kcal•mol-1) for three of the ligands, namely for (i) 3 binding to 

HIV-1 protease (PDB code: 1HPX; |∆∆G| = 0.8); (ii) 8 binding to mouse major urinary 
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protein 1 (PDB code: 1QY1; |∆∆G| = 0.4); and (iii) binding of 5 to human leukocyte 

function-associated antigen-1 (PDB code: 1RD4; |∆∆G| = 0.9). The predicted binding 

affinities for another five ligands were between 2 and 4 kcal•mol-1, namely for (i) 1 binding 

to human cyclophilin A (PDB code: 1CWA; |∆∆G| = 2.2); (ii) 6 binding to porcine odorant-

binding protein (PDB code: 1DZK; |∆∆G| = 2.2); (iii) 14 binding to human brain fatty acid-

binding protein (PDB code: 1FDQ; |∆∆G| = 2.7); (iv) 4 binding to HIV-1 protease (PDB 

code: 1HXW; |∆∆G| = 3.7); and (v) 11 bound to human galectin-3 (PDB code: 1KJL). The 

remaining predicted affinities for compounds 2, 7, 9, 10, and 13 were larger than 4 

kcal•mol-1. An overall measure of the deviation of the MM-PBSA free energy from the 

ITC free energy is provided by the root-mean-square of the calculated free energy deviation 

from experimental energy ∆∆GRMS, which was 4.4 kcal•mol-1. The median ∆∆G (∆∆GMED) 

for MM-PBSA is 3.5. The effect of the dielectric constant on the MM-PBSA calculations 

was also investigated (Table 1.4). Doubling the dielectric constant from 1 to 2 resulted in 

a significantly worse agreement between the MM-PBSA and ITC free energy as evidenced 

by a 5-fold increase in ΔΔGRMS and a 7-fold increase in (ΔΔGMED). This was also observed 

for calculations performed with larger dielectric constants (Table 1.4). 

The above calculations are repeated using a GB model for the electrostatic solvation 

free energy (MM-GBSA). MM-GBSA free energies were significantly larger than MM-

PBSA free energies. In some cases, ∆∆G of MM-GBSA energies exceeded 18 kcal•mol-1. 

Seven of the MM-GBSA free energies deviated from the ITC free energies by 5 kcal•mol-

1 compared with only two for MM-PBSA. Overall the MM-GBSA free energy showed 

greater deviation from the ITC free energy (∆∆GRMS = 9.2 kcal•mol-1) compared with MM-

PBSA (∆∆GRMS = 4.4 kcal•mol-1). The median ∆∆G for MM-GBSA is 5.2 kcal•mol-1. 
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Despite the large absolute values, MM-GBSA reproduced the free energy of binding 

remarkably well in four cases with ∆∆G less than 1 kcal•mol-1: (i) 7 binding to the mouse 

major urinary protein 1 (PDB code: 1QY1; |∆∆G| = 0.6); (ii) 10 binding to hen lysozyme 

C (PDB code: 1LZB; |∆∆G| = 0.7); (iii) 13 binding to the bovine pancreatic trypsin (PDB 

code: 1S0R; |∆∆G| = 0.3); and finally (iv) 14 bound to human brain fatty acid-binding 

protein (PDB code: 1FDQ; |∆∆G| = 0.3). 

 

Figure 1.1 Chemical Structure of Bound Ligands in Protein-Ligand Complexes 
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Typically, MM-GBSA calculations are carried out by running a single simulation 

for the complex. Implicit in this approach is that the ligand will only select conformations 

of the apo protein that are similar to those that are sampled by the protein in the protein-

ligand complex. However, there are numerous examples of ligand binding that leads to 

conformational change of the protein. The free energy of this conformational change, also 

known as adaptation energy, contributes to the overall free energy of binding.40 We 

investigate the role of this adaptation energy for 6 of the 14 complexes (Table 1.2 and 

Figure 1.3B) for which the crystal structure of the apo was solved independently from the 

complex structure. Starting with the structure of complex, apo and ligand, three separate 

MD simulations were carried out. The root-mean-square deviation (RMSD) of the free 

protein and ligand were determined with respect to the crystal structure of the protein and 

ligand in the complex crystal structure (Appendix B, Figure B.1). The protein and ligand 

sampled different structures in the free-state compared to the bound state.  

The snapshots from the three separate simulations of complex, apo and ligand are 

used to carry out MM-PBSA free energy calculations (∆GPB-ADAPT) (Table 1.2). These are 

compared with the standard MM-PBSA free energies (∆GMM-PBSA) (Table 1.2, Figure 1.3B). 

Overall, the RMSD of ∆GPB-ADAPT from the ITC free energies is ∆∆GRMS = 12.4 kcal•mol-

1 with a median ∆∆G of 7.6 kcal•mol-1 (Table 1.3). Hence, ∆GPB-ADAPT resulted in overall 

greater deviation from the experimental free energy than both MM-GBSA (∆GMM-GBSA) 

and MM-PBSA (∆GMM-PBSA). Only one out of the 6 complexes, namely 5 in complex with 

human leukocyte function-associated antigen-1 (PDB code: 1RD4; |∆∆G| = 2.6), showed 

reasonable agreement with experiment (<3 kcal•mol-1). The remaining five exhibited 

binding free energies that were substantially different from the ITC data. 
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A question of interest is whether scoring functions can generate reliable binding 

affinities when carried out on multiple structures sampled from MD simulations instead of 

crystal structures. To address this question, we applied our recently-developed scoring 

function, SVRKB,21 to snapshots from MD simulations. The empirical scoring function is 

trained on three-dimensional protein-ligand crystal structures and experimentally-

measured binding affinity data. SVRKB is used to score MD snapshots of the 14 complexes 

considered for MM-GBSA and MM-PBSA calculations (Table 1.1 and 1.2). We refer to 

this approach as MM-SVRKB to emphasize the use of multiple MD structures in the 

scoring. MM-SVRKB (∆∆GRMS = 2.1 kcal•mol-1) showed better agreement with the 

experimental free energies than MM-PBSA (∆∆GRMS = 4.4 kcal•mol-1). In fact, |∆∆GMM-

SVRKB| was less than 2 kcal•mol-1 for 10 of the targets, compared with three for the MM-

PBSA calculations. None of the predicted MM-SVRKB binding affinities was greater than 

5 kcal·mol-1 than the experimentally-measured affinity. 
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Table 1.3 Correlation Coefficients for Free Energy Calculations
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Finally, we compared calculations performed using harmonic versus 

quasiharmonic approaches for the entropy of binding. Two approaches were considered, 

namely normal mode analysis, or the use of a quasiharmonic approach where the entropies 

are determined by a covariance analysis of the fluctuations obtained from the MD 

simulations. The MM-PBSA free energies obtained with the normal mode analysis resulted 

in a ∆∆GRMS = 4.4 kcal•mol-1 when compared with the ITC free energy, and a median of 

3.5 kcal•mol-1 for ∆∆G (Figure 1.3C). On the other hand, the MM-PBSA free energies for 

the quasiharmonic approach led to a ∆∆GRMS of 10.1 kcal•mol-1 and a median value of 6.1 

kcal•mol-1.  

 

1.3.2 Rank-Ordering Protein-Ligand Complexes 

Performance to rank-order complexes was evaluated using three correlation metrics, 

namely the Pearson’s correlation coefficient (Rp), Spearman’s rho (ρ), and Kendall’s tau 

(τ). Pearson’s coefficient is the more traditional metric used to measure the correlation 

between observed and predicted affinities. Spearman’s rho is a non-parametric measure of 

the correlation between the ranked lists of the experimental binding affinities and the scores. 

It ranges between -1 and 1. A negative value corresponds to inverse correlation while a 

positive value suggests correlation between the variables. Kendall’s tau (τ) was also 

considered to assess rank-ordered correlation as suggested by Jain and Nicholls.41 τ has the 

advantage of being more robust and can be more easily interpreted. It corresponds to the 

probability of having the same trend between two rank-ordered lists. 
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 It is interesting that despite the better performance of MM-PBSA in predicting the 

absolute free energy, the opposite is observed for rank-ordering. All three correlation 

coefficients metrics were significantly higher for MM-GBSA (Rp = 0.75; ρ = 0.68; τ = 0.52) 

compared with MM-PBSA (Rp = 0.37; ρ = 0.40; τ = 0.25) (Table 1.3, Figure 1.4A). At 

higher dielectric constants, the correlations for MM-PBSA significantly improves (Table 

1.4).  A mere doubling of the dielectric constant from 1 to 2 led to a similar increase in the 

correlation factors (Rp = 0.77; ρ = 0.81; τ = 0.65).  Further increase of the dielectric beyond 

two results in smaller increases in performance, as illustrated by the correlations at a 

dielectric constant of 20 (Rp = 0.90; ρ = 0.91; τ = 0.76).  But inspection of the components 

of the free energy (Table 1.6) reveals that this increase in performance is not due to more 

accurate representation of the electrostatic component of the free energy.  Instead, it is 

attributed to the significantly smaller contributions of the electrostatic energy at higher 

dielectric constants.  An increase in the dielectric constant reduced ΔEELE and ΔEPB by a 

factor of 1/ϵ and 1/ ϵ 2, respectively, where ϵ is the dielectric constant.  As a results, the 

lower contributions from the electrostatic component results in a free energy component 

that is dominated by the non-polar and entropy terms.  SVRKB applied to MD structures 

(MM-SVRKB) showed better performance than MM-GBSA (Rp = 0.77; ρ = 0.81; τ = 0.65) 

(Figure 1.4C, Figure 1.6A). Interestingly, free energies that included the adaptation energy 

(ΔGPB-ADAPT) exhibited dramatic improvement over MM-PBSA (Rp = 0.95; ρ = 0.89; τ = 

0.73) (Table 1.3, Set 2, Figure 1.4B). ΔGPB-ADAPT correlations are also better than MM-

SVRKB (Rp = 0.74; ρ = 0.89; τ = 0.73). 
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MM-GBSA and MM-PBSA calculations are performed on multiple structures 

collected from MD simulations. Typically, snapshots are selected at regular intervals. We 

wondered how MD snapshots can be pre-scored to improve the MM-PBSA or MM-

SVRKB results. We had previously developed a scoring approach (SVMSP) to distinguish 

between native and non-native binding modes.21 Scoring of MD snapshots with SVMSP is 

expected to enrich these structures for native-like complexes. SVMSP was used to score 

all snapshots from MD simulations for each of the 14 targets considered in this work. A 

total of 500 complexes with the top SVMSP scores were selected for MM-GBSA 

Table 1.4 Correlation Coefficients for MM-PBSA Calculations with Different 

Dielectric Constants 
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calculations. The combined SVMSP//MM-GBSA scoring did not improve the predictive 

abilities of MM-GBSA suggesting that the GB method is less sensitive to the structure used 

in the calculation (Table 1.3, Figure 1.6B). However, a dramatic boost in performance is 

observed for SVMSP//MM-PBSA (Table 1.3, Figure 1.6B). In fact, an increase of 0.39, 

0.41, and 0.38 is seen for Rp, ρ and τ, respectively. In Set 2, SVMSP//MMPBSA’s 

prediction of the binding affinity trend is as good as MM-PBSAADAPT. Components of the 

MM-PBSA or MM-GBSA calculations are insightful as they provide insight into the free 

energy of binding (Table 1.6). But an important question is whether these components 

correlate with the experimentally-determined thermodynamic parameters provided by ITC. 

Each component of the MM-GBSA and MM-PBSA calculations is plotted against the ITC 

free energy. It was interesting, but not completely surprising,42, 43 that the non-polar 

components of the binding affinity correlated with the ITC free energy (Table 1.5 and 

Figure 1.5). The correlation coefficients were Rp = 0.89, ρ = 0.90, τ = 0.76 and Rp = 0.88, 

ρ = 0.89, τ = 0.74 for the van der Waals energy (ΔEVDW) and the non-polar component of 

the solvation free energy (ΔENP), respectively. There was no correlation between the 

electrostatic components of the free energy (ΔEELE) and the ITC free energy. There was 

also no correlation between the reaction field energy calculated by PB (ΔEPB) and the ITC 

free energy. This is consistent with previous results that showed that the non-polar 

component of the free energy was a significantly better predictor of the stability of protein-

protein complexes than the electrostatic component.42, 43 Finally, there was no correlation 

between molecular weight of ligand and binding affinity (Rp = -0.51, ρ = -0.65, τ = -0.51). 
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Figure 1.5 Regression Plots between Experimental Free Energy and Components of 

Calculated Free Energy 
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The entropy component of the MM-GBSA and MM-PBSA calculations follows a 

similar trend to the true entropy of binding. The availability of ITC data for each of our 

systems provides an opportunity to compare computed versus experimental entropy. For 

MM-PBSA and MM-GBSA, the entropy is typically determined using either normal modes 

or a quasiharmonic analysis. Figure 1.3C shows that these two approaches result in 

different free energies with overall better agreement for the free energy from the normal 

mode analysis. The correlations MM-PBSA free energies using normal mode was Rp = 

0.37, ρ = 0.40, τ = 0.25, compared with Rp = -0.20, ρ = -0.30, τ = -0.25 for the 

quasiharmonic analysis. The normal mode and quasiharmonic entropies are compared to 

the experimental entropy. A plot of TΔSITC versus TΔSNM or TΔSQHA shows that computed 

and experimental entropies are inversely correlated with correlation coefficients of (Rp = -

0.63; ρ = -0.55; τ = -0.43) and (Rp = -0.47; ρ = -0.45; τ = -0.30), respectively (Figure 1.5E 

Table 1.6 Correlation Coefficients for Components of Free Energy Calculations 
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and 1.5F). No change is observed when the entropy change of ligand only (TΔSNM
Lig), or 

receptor only (TΔSNM
Apo) are compared to the ITC entropy (Table 1.5). 

The performance of MM-GBSA and MM-PBSA is compared to GBSA and PBSA, 

which correspond to calculations performed on a single crystal structure for each of the 

complexes in Table 1.1. Correlation coefficients reveal that both GBSA and PBSA perform 

poorly in rank-ordering complexes when a single crystal structure is used (Figure 1.6C). 

For GBSA all three correlation factors were smaller than 0.5 (Rp = 0.44; ρ = 0.47; τ = 0.27), 

and for PBSA, predicted and experimental data were inversely correlated (Rp = -0.51; ρ = 

-0.57; τ = -0.45). SVRKB, on the other hand, performed well consistent with our previous 

study 44 (Rp = 0.83; ρ = 0.82; τ = 0.69).  
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1.4 Discussion 

MM-GBSA and MM-PBSA calculations are applied to a diverse set of 14 ligands 

bound to 11 different proteins. A unique aspect of this work is that (i) a diverse set of 

proteins and ligands are used in contrast to most studies that compare ligands bound to the 

same protein; (ii) all complexes were previously solved by x-ray crystallography and 

binding was characterized by ITC. The ligands included small organic compounds, cyclic 

and linear peptides, fragment-like small molecules, and carbohydrates. Most free energy 

calculations did not accurately reproduce the ITC free energy. But there were several cases 

that were in excellent agreement with ITC: three complexes for MM-PBSA calculations, 

and four for MM-GBSA. Overall, MM-PBSA resulted in less deviation from the 

experimental data than MM-GBSA. But the opposite was observed for rank-ordering. MM-

GBSA correlated significantly better with the ITC free energy (Rp = 0.75; ρ = 0.68; τ = 

0.52) when compared to MM-PBSA (Rp = 0.37; ρ = 0.40; τ = 0.25).  The non-polar terms 

(ΔGVDW and ΔGNP) showed strong correlation with the experimental free energy (Rp = 0.89; 

ρ = 0.90; τ = 0.76 and Rp = 0.88; ρ = 0.89; τ = 0.74 for ΔGVDW and ΔGNP, respectively).  

An increase in the dielectric constant for the MM-PBSA calculations worsened agreement 

of the computed and experimental free energies.  However, rank-ordering appeared to 

significantly improve upon increase of the dielectric constant.  But close inspection of the 

components of the free energy reveals that this increase is attributed to the lower 

contribution of electrostatics as a results of an increase of the dielectric constant.  The 

Coulomb and electrostatic terms are inversely proportional to the dielectric constant and to 

the square of the dielectric constant, respectively. Less contribution from electrostatics 

leads to a free energy that is dominated by the non-polar and entropy components resulting 

 

 



30 

to better performance.  There was no correlation between the electrostatic components of 

the MM-GBSA and MM-PBSA free energy and the ITC free energy. 

Two models for the entropy were considered, normal mode and quasiharmonic. 

Normal mode analysis assumes that each structure is at a potential energy minimum. 

Quasiharmonic analysis is based on a covariance analysis of the atomic fluctuation. Our 

data showed that the free energies using normal mode analysis correlated significantly 

better than free energies using quasiharmonic analysis. A possible explanation is that the 

simulations used in this study may not have been sufficiently long to ensure convergence 

of quasiharmonic analysis. Neither the normal mode entropy nor the quasiharmonic 

entropies correlated with the ITC entropy. This is likely due to the fact that the ITC entropy 

includes both solvation and configurational entropy,45 while the computed entropy only 

includes the configurational entropy. The solvation entropies may be indirectly captured 

by the other terms of the MM-GBSA or MM-PBSA free energy. 

Small-molecule binding often induces conformational change to the target protein. 

This adaptation energy is often ignored in MM-GBSA or MM-PBSA calculations as a 

single simulation is carried out starting with the complex structure. The structure of the apo 

protein is extracted from the complex. We studied the effect of this adaptation energy by 

running a separate simulation for ligand, apo and complex structures. We did this for 6 of 

the 14 complexes whose apo structure was solved independently by x-ray crystallography. 

Overall, this resulted in poorer agreement with the ITC data when comparing the absolute 

values of the free energies. However, the adaptation energy resulted in a significant boost 

in rank-ordering. The ΔGPB-ADAPT resulted in a Pearson (Spearman) correlation of 0.95 
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(0.89) compared with 0.89 (0.83) for ΔGMM-GBSA and 0.42 (0.14) for ΔGMM-PBSA. The ΔGPB-

ADAPT showed the best rank-ordering among all methods that were tested in this work. 

Typically snapshots for MM-GBSA or MM-PBSA calculations are selected at 

regular intervals in an MD simulation. We wondered whether different approaches for 

selecting structures will influence the free energy of binding. We used a recently-developed 

machine learning-based scoring approach (SVMSP) to pre-score all the snapshots in a 

trajectory. SVMSP is trained from crystallography and docked protein-decoy structures to 

classify protein-ligand complexes.21 It is therefore expected that the method will enrich 

MD snapshots for native-like structures. Rank-ordering of snapshots (Table 1.3) had little 

influence on the MM-GBSA free energies (Table 1.3). However, rank-ordering with MM-

PBSA calculations improved significantly from Rp = 0.37, ρ = 0.40, τ = 0.25 for snapshots 

selected at regular intervals to Rp = 0.76, ρ = 0.81, τ = 0.63 for SVMSP-selected snapshots. 

These results indicate that the Poisson-Boltzmann calculations are more sensitive to the 

quality of the structure than MM-GBSA. 

 In sum, MM-GBSA and MM-PBSA methods come short in reliably reproducing 

the free energy of binding.  However, these methods can perform remarkably well for 

rank-ordering diverse set of compounds.  MM-GBSA can perform well by merely using 

snapshots from an MD simulation of the complex, while MM-PBSA is significantly more 

sensitive to the structures used.  Filtering MD structures with scoring functions to enrich 

for native-like complexes results in excellent rank-ordering by MM-PBSA.  In addition, 

running separate simulations of the receptor also improves the rank-ordering abilities of 

MM-PBSA.  While previous studies have found that rank-ordering performance for MM-

PBSA improves with increasing dielectric constant, we found that this is mainly due to 
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the smaller contributions of electrostatics as a result of increasing the dielectric constant 

(at ε = 5, for example, the Coulomb energy is reduced by a factor of 1/5 and the PB 

solvation energy by 1/25).  It was remarkable that the non-polar components correlated 

very well with the free energy.  The combination of non-polar and entropy also correlated 

very well with the free energy, which is why overall correlation improved at higher 

dielectric constants for MM-PBSA.  Finally, the MM-PBSA entropy does not correlation 

with the ITC entropy.   
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CHAPTER 2.  ENRICHMENT OF CHEMICAL LIBRARIES DOCKED TO PROTEIN 
CONFORMATIONAL ENSEMBLES AND APPLICATION TO ALDEHYDE 

DEHYDROGENASE 2 

2.1 Introduction 

Structure-based virtual screening is widely used in the search for small molecules 

to probe the function of proteins and nucleic acids in chemical biology and drug 

discovery.46,47 Typically, a chemical library is docked to a pocket on a target structure, 

followed by the ranking of the resulting protein-compound complexes in a process known 

as scoring. The top candidates are acquired or prepared for experimental validation.  

Several scoring methods have been developed over the years;  these include empirical,48-

56, knowledge-based,16, 57-65 and force field-based.66-73 We recently developed a new 

scoring approach that combines machine learning and statistical knowledge-based 

potentials for rank-ordering Support Vector Regression Knowledge-Based (SVRKB)74 and 

database enrichment Support Vector Machine SPecific (SVMSP).21 The former is 

regression-based and trained on crystal structures using corresponding experimental 

binding affinities, while the latter is based on classification and is trained strictly on three-

dimensional structures of protein-ligand complexes using both actives and decoys. 

Part of the challenge with the use of structure-based virtual screening is protein 

flexibility.75-77  It is ignored in the majority of cases by docking compounds strictly to a 

crystal structure,78-80 although there are examples that have used multiple crystal 
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structures,81-83 NMR structures,84-87 or a combination of the two.11, 12 Albeit less common, 

the use of molecular dynamics (MD) simulations to generate an ensemble of structures has 

also been reported in virtual screening efforts that have led to active compounds.88, 89 Our 

recent study led to the discovery of small-molecule inhibitors of a tight protein-protein 

interaction by docking a chemical library to protein structures collected from explicit-

solvent MD simulations.90 Several studies have attempted to gain a deeper understanding 

of the role of MD structures on chemical database enrichment.76-78 

Here, we conduct an in-depth study to investigate the SVMSP scoring approach in 

chemical database enrichment using structures collected from explicit-solvent MD 

simulations.  We explore enrichment for individual and ensemble of snapshots.  In addition, 

we follow an innovative approach that explores the use of MD structures for the 

development of scoring functions for virtual screening.  Also, we investigate the a priori 

identification of MD snapshots with high enrichment power from an MD simulation. 

Finally, SVMSP scoring of protein-compound MD structures is applied in the virtual 

screening of commercial libraries against the mitochondrial aldehyde dehydrogenase 2 

enzyme (ALDH2) enzyme. ALDH2 catalyzes the NAD+-dependent oxidation of a broad 

spectrum of endogenous and biogenic aldehydes to their corresponding carboxylic acids.  

ALDH2 is commonly associated with its role in alcohol metabolism, but it has been 

suggested as a potential target for a variety of diseases that include addiction and cancer.  

Top candidates that emerged from virtual screening were acquired and tested for inhibition 

of enzyme activity. 
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2.2 Materials and Methods 

 

2.2.1 Data Set Preparation 

For the enrichment study, 7 protein structures from the Directory of Useful Decoys 

(DUD)92 and one from our in-house validation set, namely MDM2 (mouse double minute 

2 homolog) (PDB code: 1RV1), were used to assess the performance of scoring functions. 

The DUD proteins include acetycholinesterase AChE (PDB code: 1EVE), human androgen 

receptor AR (PDB code: 1XQ2), human cyclin-dependent kinase 2 CDK2 (PDB code: 

1CKP), human epidermal growth factor receptor EGFR (PDB code: 1M17), human 

mitogen-activated protein kinase 14 known as p38 (PDB code 1KV2), human proto-

oncogene tyrosine-protein kinase Src (PDB code: 2SRC), and cationic trypsin (PDB code: 

1BJU). 

To ensure diversity among the active compounds in DUD, the compounds were 

clustered by chemical similarity.  FP3 fingerprints were generated for every ligand with 

Open Babel.93 A Tanimoto coefficient matrix was calculated for each target by Open Babel. 

Hierarchical clustering method was applied with the cluster package in python2.6 to cluster 

compounds. The getlevel threshold in the cluster package was set to 0.1, which means that 

any two compounds with Tanimoto coefficient deviation less than 0.1 will be included into 

the same cluster. The number of compounds after clustering for each target is shown in 

Table 2.1. The ratio of active ligands to decoys (Nligands/Ndecoys) was kept to 1:36 following 

the convention adopted in DUD.  
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2.2.2 MD Simulations 

All the criteria of MD simulations were set to be the same as described in section 

1.2.2.  

For each target, 4 independent 6 ns simulations were performed. MD snapshots 

were collected every 1 ps yielding 6,000 structures per trajectory, or 24,000 structures in 

total. 

The first 1 ns in each trajectory was discarded for equilibration. A set of 500 

snapshots was extracted at regular intervals from the resulting 20 000 snapshots for each 

protein. Atoms within 5 Å around ligand in crystal structure were considered as pocket 

atoms. The 500 trajectory frames were further clustered into groups based on pairwise 

similarity measured by root-mean-square deviation (RMSD) of pocket atoms with ptraj 

Table 2.1 Validation Set for Enrichment Studies   
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program in AMBER. The hierarchical clustering algorithm was used to cluster all 500 

structures into sets of 5, 10, 20, 30, 50, 100, and 250 structures. 

 

2.2.3 Scoring Protein-Ligand Complexes 

SVMSP models were built in the same manner as described in section 1.2.1. The 

SVMSPKINASE model was developed for kinase targets only. The positive set included only 

kinase structures refined sc-PDB database, consisting of 763 crystal structures. The 

negative set for SVMSPKINASE was the same as SVMSP model. SVMSPMD models were 

created by using decoy compounds docked to MD snapshots for the negative training set.  

A total of 5,000 randomly selected compounds were docked to each MD snapshot. The 

positive set consisted of the same structures as were used to develop SVMSP. When the 

positive set employed kinase only positive set, the model was called SVMSPKINASE-MD. 

 

2.2.4 Compound Docking 

All the molecular docking reported in this work was done using AutoDock Vina.94 

The exhaustiveness parameter of Vina program was set to default value of 8. A maximum 

number of 9 binding modes were generated, with maximum energy difference between the 

best and the worst binding mode set to 3 kcal·mol-1. The docking pose with the lowest 

energy estimated by Vina was selected as the best binding pose for further scoring. The 

box size was 19 Å. 
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2.2.5 Receiver Operating Characteristic Plot and Statistical Analysis 

A tool that is commonly used to assess the performance of a scoring function is the 

receiver operating characteristic (ROC) plot.95 An ROC curve is constructed by ranking 

the docked complexes, selecting a set of compounds starting from the highest scoring 

compounds, and counting the number of active compounds. This process is repeated a 

number of times for a gradually increasing set of compounds selected from the ranked list. 

In an ROC plot, the farther away the curve is from the diagonal, the better the performance 

of the scoring function. The area under the ROC curve, which we refer to as ROC-AUC, 

can also be used as a representation of the performance of the scoring function. A perfect 

scoring function will result in an area under the curve of 1, while a random classification 

will have an ROC-AUC of 0.5. 

 

2.2.6 ALDH2 Virtual Screening 

The initial coordinates of ALDH2 taken into the molecular dynamic (MD) 

simulations were obtained from RCSB Protein Data Bank (PDB code: 1O04). The PDB 

file was imported into Maestro (version 9.3, Schrödinger, LLC, New York, NY, 2012), 

prepared using the Protein Preparation Wizard.96 Bond orders were assigned, hydrogen 

atoms were added, disulfide bonds were created, and selenomethionines were converted 

to methionines. Crystal water molecules were kept. MD simulations were carried out as 

described above. By assigning different initial velocities, 5 independent 7 ns simulations 

were carried out for a total length of 35 ns simulation. The first 2 ns of each trajectory 

were considered as part of the equilibration process and discarded. MD snapshots were 

saved every 1 ps yielding 5,000 structures per trajectory. In total, 25,000 snapshots were 
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collected. The snapshots were clustered into 75 sets by the ptraj program using atoms 

around the active site pocket. The hierarchical clustering algorithm was used for the 

clustering. Among 75 clusters, the top 50 clusters that had the most snapshots were 

selected. A representative snapshot was chosen for virtual screening from each of the 50 

clusters. Around 50,000 compounds from the ChemDiv80 24 library were docked to each 

of the 50 snapshots using Vina. 

Docked receptor-ligand complexes were rescored using the SVMSP scoring 

function. The 5,000 randomly picked compounds from ChemDiv library docked to 

ALDH2 crystal structure were used as negative set to build the SVMSP model. For each 

compound, the highest score among all the snapshots within the cluster was used to rank 

all the compounds. The top scoring 5,000 compounds from the ChemDiv80 library were 

selected. Canvas similarity and clustering script97, 98 in Maestro program were applied to 

cluster the top compounds. Atom triplet fingerprint type with 32-bit precision was used. 

Atom typing scheme was Daylight invariant atom types. The single linkage method was 

used to generate 150 clusters. The compounds representing the 150 cluster center were 

selected for further experiments. 

 

2.2.7 ALDH2 Inhibition Assay 

Compounds were first screened using a high-throughput dehydrogenase assay to 

measure the production of NADH via fluorescence (excitation λ = 340 nm, emission λ = 

465 nm) on an Ultra384 plate reader over a 10 min period. The screening assay used 20 

nM ALDH2, 30 μM propionaldehyde, 100 μM NAD+, and 50 μM compound in 25 mM 

BES, pH 7.5 with 2% (v/v) DMSO in a 96-well black plate with a final volume of 200 
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μL. The compounds that showed inhibition in this assay were then tested for their effect 

on ALDH2 dehydrogenase activity at 50 μM concentration using a Beckman DU-640. 

The dehydrogenase assay used 150 nM ALDH2, 100 μM propionaldehyde, and 200 μM 

NAD+ in 25 mM BES, pH 7.5 with 1% (v/v) DMSO. The assays were monitored at 340 

nm for the increase in NADH production (extinction coefficient = 6.22 mM−1 cm−1). If 

compounds showed inhibition at this concentration, assays to determine the concentration 

dependence of inhibition (IC50) were performed. IC50 values toward inhibition of ALDH2 

activity were measured with compound concentrations ranging from 0 to 100 μM. All 

IC50 values were determined by fitting to the 4-parameter logistics function in SigmaPlot 

(v12). 

 

2.3 Results 

 

2.3.1 Enrichment in the Conformational Ensemble 

We were particularly interested in assessing how our scoring approach, SVMSP, 

affects enrichment of compound libraries docked to MD structures collected from explicit-

solvent MD simulations.  To that end, MD simulations were carried out for 8 proteins that 

included 7 proteins from the Directory of Decoys (DUD), namely androgen receptor (AR), 

acetylcholinesterase (AChE), trypsin, cyclin-dependent kinase 2 (CDK2), epidermal 

growth factor receptor (EGFR), mitogen-activated protein kinase (p38) and proto-

oncogene protein tyrosine kinase (Src).  One additional protein, MDM2, which is involved 

in a protein-protein interaction with p53, was added to the list (Table 2.1).  A total of 24 ns 

of simulation was carried out for each protein.  In each case, a set of 500 structures was 
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collected at regular intervals from 20 000 snapshots generated by the simulations. Decoy 

and active compounds obtained from DUD (or generated for MDM2) were docked to the 

500 MD snapshots with AutoDock Vina. The resulting complexes were scored with 

SVMSP,21 ChemScore,99 GoldScore,100 and GBSA.10 

For the crystal structures, the ROC-AUC ranged from 0.38 for p38 to 0.90 for 

EGFR. The ROC-AUC for SVMSP was larger than 0.8 for five out of the eight proteins. 

For MD structures, there were two cases, trypsin and AChE, which showed a gradual 

increase in the ROC-AUC as the size of the cluster became larger (Figure 2.1). In the case 

of trypsin, the ROC-AUC nearly reached a value of 1 for the cluster for 250 structures. For 

AChE, an improvement of nearly 0.1 in ROC-AUC was observed when compared to the 

crystal structure. In the case of p38 kinase, CDK2, and AR, the performance remained 

constant at 0.33, 0.57, and 0.82, respectively. Src reveals an initial drop in ROC-AUC of 

about 0.1 units to 0.7, which does not change as the number of structures is increased. For 

EGFR, the ROC-AUC was constant for 5 and 10 snapshots but dropped by 0.2 units for 20 

and 30 structures only to show an increase back to 0.9 for 50, 100, and 250 structures. The 

results suggest that a cluster of 50 snapshots is likely to result in the best performance 

across a set of diverse proteins for SVMSP. All data presented below uses the 50 MD 

snapshots unless otherwise stated.  
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Enrichment performance for the other three scoring approaches, namely GoldScore, 

ChemScore, and GBSA, were poor in all systems when the crystal structure was used. 

ROC-AUCs do not change significantly in all four scoring functions with respect to the 

size of the cluster (Figure 2.1 and Appendix A, Table A.3).  For ChemScore, GoldScore, 

and GBSA rescoring, performance is similar to the crystal structure in each cluster.  An 

exception is for GBSA in AR where a drop from 0.7 to 0.4 is observed. 

 

Table 2.2 SVMSP Enrichment Performance of Different Cluster Size 
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2.3.2 Enrichment for Individual Snapshots 

The docking of all actives and decoys to 500 snapshots collected from the MD 

simulations of each protein in Table 2.1 provided an opportunity to explore enrichment for 

individual MD structures. ROC-AUC scores were determined for all 500 snapshots 

collected for each of the 8 target proteins in Table 2.1. The ROC-AUC for each snapshot 

was plotted against its structural deviation from the crystal structure measured by the root-

mean-squared derivation (RMSD) (Figure 2.2). No direct correlation between ROC-AUC 

and RMSD is observed.  This suggests that greater overall structural deviation from the 

crystal structure does not translate into lower or higher enrichment performance (Figure 

2.2).  

Figure 2.1 ROC-AUC Scores for Different Clusters of MD Structures 
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Figure 2.2 ROC-AUC for Individual Snapshots 
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What is notable from this data is the large fluctuation in the ROC-AUC among the 

500 snapshots.  Enrichment in several MD snapshots exceeded that of the corresponding 

crystal structure (Table 2.3).  A total of 32, 55, 2, 81, 17, 76, 13, and 18% percent of the 

snapshots for AChE, AR, MDM2, p38, trypsin, EGFR, CDK2 and Src, respectively, 

exhibited better performance than the crystal structure.  In some cases, there exists MD 

snapshots that significantly exceeded the enrichment power of the crystal structure.  For 

example, for AChE, the snapshot with the maximum ROC-AUC (ROC-AUCMAX) was 0.83, 

nearly 0.2 higher than the crystal structure. A similar snapshot was identified for AR (ROC-

AUCMAX = 0.90), CDK2 (ROC-AUCMAX = 0.77), EGFR (ROC-AUCMAX = 0.97), MDM2 

(ROC-AUCMAX = 0.85), trypsin (ROC-AUCMAX = 0.94), and Src (ROC-AUCMAX = 0.74). 

Two proteins had poor enrichment both in the crystal (ROC-AUC of 0.38 and 0.60, 

respectively) and MD structures (ROC-AUC of 0.36 and 0.55, respectively). For these two 

proteins, ROC-AUCMAX was 0.54 and 0.77, respectively. 

 

2.3.3 Training Support Vector Machine Target Specific with MD Structure 

Our SVMSP models have been developed entirely using protein-compound co-

crystal structures (positive set) and compounds docked to the target crystal structure 

(negative set).  We explored the possibility of using MD structures to develop SVMSP 

scoring models.  To accomplish this, we followed the same protocol for developing the 

SVMSP models except that compounds in the negative set were docked to MD snapshots 

of the target of interest. We continue to use cocrystal structures for the positive set. The 

resulting SVMSP models (SVMSPMD) are tested on all 500 snapshots for two targets, 

namely p38 and CDK2. These targets were selected because of the poor enrichment that 
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was observed in both X-ray and MD structures.  A remarkable increase in the ROC-AUC 

for SVMSPMD is observed for p38 from 0.42 to 0.64 (Figure 2.3A and Table 2.3). ROC-

AUCMAX was 0.81, compared to 0.54 using the crystal structure. A similar increase in 

performance was observed for CDK2 by 0.10. The mean ROC-AUC is 0.62, compared 

with 0.54 for SVMSP trained strictly with crystal structures. In fact, more than 29 snapshots 

were found to have an ROC-AUC greater than 0.7 for SVMSPMD in contrast to only one 

snapshot with the standard SVMSP approach. We also developed SVMSPKINASE-MD model 

applied using strictly kinase cocrystal structures for the positive set. An improvement in 

the mean ROC-AUC is observed in both cases by nearly 0.05 over SVMSPMD (Figure 2.3). 

In addition, a significantly greater number of snapshots with ROC-AUC greater than 0.70 

were identified (6% for SVMSPMD versus 20% for SVMSPKINASE-MD). The maximum 

ROC-AUC also increased by 0.05 relative to SVMSPMD (Table 3). 
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Figure 2.3 ROC-AUC for Individual Snapshots Using SVMSPMD 
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2.3.4 A Priori Selection of MD Snapshots with High Enrichment Power 

The aforementioned results show that a subset of MD snapshots possess greater 

enrichment power than the crystal structure. A question of interest is whether one can 

preselect these MD structures from an MD simulation of the apo structure in the absence 

of actives. Our set of protein-compound structures enable us to address this question since 

we know the enrichment power of each snapshot. The ROC-AUC can be used as a score 

to rank-order the snapshots. 

A plot of ROC-AUC for each snapshot of the proteins in Table 2.1 reveals that MD 

snapshots with higher enrichment power have a tendency to have lower average SVMSP 

scores for decoys (Appendix B, Figure B.2).  Hence, to identify MD snapshots with high 

enrichment power, one could dock randomly selected compounds to the snapshots and rank 

the snapshots with SVMSP.  The snapshots with the lowest SVMSP scores are likely to 

have the highest enrichment power (least likely to bind to the random compounds).  To test 

this we docked a set of randomly selected compounds to each of the 500 snapshots of 

EGFR and Src.  These compounds were scored with SVMSP, and a median decoy score is 

determined for SVMSP.  In each case, snapshots were ranked with the median SVMSP 

score.  To determine how effectively we are filtering these MD snapshots for structures 

with high enrichment power, we defined ROC-AUC thresholds of 50, 60, 70, 80 and 90% 

of the ROC-AUC range (ROC-AUCMAX - ROC-AUCMIN) score (Figure 2.4).  So a 50% 

threshold means that if an MD snapshot has an ROC-AUC that is greater than 50% of the 

value of the maximum ROC-AUC minus the minimum ROC-AUC of the crystal structure, 

it is considered a true positive (high enrichment structure).  This threshold enabled us to 

construct ROC curves to test how effectively we are enriching for snapshots that exceed 
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this threshold.  In the case of EGFR, assuming a 50% threshold, the ability to a priori 

identify high enrichment structures using strictly decoy compounds is high as evidenced 

by an ROC-AUC of 0.90 (Figure 2.4).  When a more stringent definition is used for high 

enrichment power (90% of the ROC-AUC of the crystal structure), the a priori 

identification of high enrichment power MD structures becomes more challenging as 

evidenced by a decrease in the ROC-AUC to 0.63.  For Src, a similar performance is found 

with ROC-AUC of 0.71 for a 50% threshold but less significant enrichment is obtained 

(0.76) using a 90% threshold.     

 

 

Figure 2.4 Filtering MD Snapshots for A Priori Identification of High Enrichment 

Structures 
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2.3.5 Rank-Ordering in Crystal and MD Structures 

While ROC-AUC data gives a measure of enrichment, it did not provide insight 

into the rank-ordering of compounds among MD snapshots.  Rank-ordering was compared 

for MD structures using Kendall’s τ.  The correlation metric is a measure of rank 

correlation, which provides insight into the similarity of the ordering of the data.  The 

correlation coefficient ranges from -1 (inversely correlated) to 1 (correlated).  We used τ 

to compare the rank-ordering of the X-ray and 50 MD snapshot to each other.  The data is 

illustrated in a 2D color-coded map in Figure 2.5.  The maps reveal that changes in the 

rank-ordering among structures can vary substantially from one protein to the other.  In the 

case of AChE and trypsin, for example, there was little similarity in the ordering of the 

compounds from snapshot to snapshot as evidenced by the relatively low τ values (Figure 

2.5).  In fact, there was a higher tendency for the rank-ordering to be inversely correlated.  

Src, CDK2, and MDM2, on the other hand, showed less inverse correlation than AChE and 

trypsin.  But the three proteins had more pronounced fluctuation in their rank-ordering.  

Two targets, p38 and EGFR, revealed an even higher τ values (greater than 0.5), suggesting 

less effect of conformational change on the binding of compounds.  Finally, rank-ordering 

of AR was the least sensitive to changes in the structure of the protein as evidenced by τ 

values exceeding 0.6 in the majority of structures.  Figure 2.5I shows τ comparing the rank-

ordering in the crystal structure versus all the 50 snapshots.  Interestingly, the correlation 

trends show similarity with correlation among MD snapshots.  Interestingly, AR was the 

only case that showed a strong correlation between the ordering of compounds in the MD 

and X-ray structures.  MDM2 snapshots showed the highest similarity in the ordering of 

 

 



52 

compounds with one snapshots exhibit very similar correlation with the X-ray structure of 

the protein.  AChE snapshots were the least similar to the X-ray structure of the protein. 

Overall, it was interesting that the ordering of compounds among MD structures 

did not correlate with enrichment performance.  For example, the ROC-AUC in p38 was 

relatively poor compared to EGFR (0.36 and 0.90, respectively), but they both showed 

similar 2D maps in Figure 2.5.  Conversely, ROC-AUC values were relatively similar in 

AChE and MDM2 (0.72 and 0.75, respectively), but their similarity maps were 

dramatically different. 
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Figure 2.5 Correlation in Rank-Ordering of Compounds between Different Structures  
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2.3.6 Virtual Screening Chemical Library against MD Structures Leads to ALDH2 

Small-Molecule Inhibitors 

We applied SVMSP restoring of MD structures to the aldehyde dehydrogenase 2 

(ALDH2) enzyme using SVMSP as the scoring approach.  The crystal structure of ALDH2 

in its apo form (PDB code: 1O04) was used to carry out explicit-solvent unbiased MD 

simulations.101-104 Five independent simulations with 7 ns in length (35 ns total) yielded 

25,000 snapshots. These were clustered by RMSD ptraj105 as described above. A set of 50 

representative snapshots were selected from the clusters. A focused set of the ChemDiv 

commercial library24 containing 50,000 compounds were docked to each of the 50 

snapshots by AutoDock Vina.94 Docked receptor-ligand complexes were rescored with 

SVMSP.   For each of the 50,000 compounds, the 50 MD snapshots to which they were 

docked were ranked and the top score was selected.  The scores were used to rank the 

50,000 compounds.  The top 1,000 compounds were clustered into 150 sets that led to the 

selection of a representative compound from each set.  Among the 150 compounds, 111 

were commercially available and purchased for screening.  A dehydrogenase assay that we 

have previously developed106 was used to screen all 111 compounds at an initial 

concentration of 50 µM (Figure 2.6A).  Compounds that inhibited ALDH2 dehydrogenase 

activity by more than 50% were selected for a follow-up concentration dependent study.  

Among them, five compounds inhibited the enzyme in a concentration-dependent manner 

(Figure 2.6B).  The IC50s were 2.32, ~23, 0.62, 1.58, and 3.51 for ALDH400, ALDH417, 

ALDH423, ALDH427, and ALDH440, respectively (Figure 2.6C). 
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Three compounds had some structural similarity as highlighted in red in Figure 

2.6C.  ALDH417, ALDH423, and ALDH440 contain a phenylfuran moiety.  ALDH417 

and ALDH440 exhibited even greater similarity that includes a similar thiazolidinone ring.  

The benzene ring of the phenylfuran is disubstituted in ALDH417 with two chlorine atoms 

at the meta and para positions, while ALDH423 and ALDH440 possess a fluorine and 

chlorine atom at the para position, respectively (Figure 2.6C).  Inspection of ALDH427 

reveals that the compound possess a benzyloxy group that mimics the phenylfuran of 

ALDH417.  The position of the oxygen atom and benzene rings of the benzyloxy moiety 

mimic the oxygen atom of the furan and benzene ring of ALDH417, respectively.  In fact, 

Figure 2.6 SVMSP Rescoring of MD Snapshots Identifies ALDH2 Inhibitors 
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comparison of ALDH417, ALDH427, and ALDH440 reveals that there are five bonds 

between the oxygen atom and the pyrazole, pyrimidine, and pyran rings of ALDH417, 

ALDH440 and ALDH427 suggesting that the rings occupy a similar position within the 

binding pocket of ALDH2.   

 

2.4 Discussion 

We conducted a study to explore how enrichment in virtual screening of chemical 

libraries is affected by scoring MD structures of protein-compound complexes using a 

combined machine learning and statistical potential approach that we recently developed 

(SVMSP). We found that using an ensemble of MD structures showed similar enrichments 

to the crystal structure even as the size of the ensemble grew to 250 structures. It is worth 

mentioning that performance for the crystal structure was already good for most structures 

with four of the eight structures exhibiting ROC-AUC greater than 0.8. Interestingly, 

analysis of individual MD structures showed that there is a large number of snapshots that 

led to enrichment that significantly exceeded that of the crystal structure. Further probing 

revealed that enrichment was not correlated with structural deviation of the MD snapshots 

from the crystal structure. In addition, different MD snapshots resulted in different rank-

ordering of compounds, suggesting that MD snapshots may also enhance diversity of the 

compounds identified in virtual screening.  

These results prompted us to wonder whether using MD structures in the training 

of SVMSP may further improve enrichment. To test this, we picked two particularly 

challenging systems, namely, p38 and CDK2, for which enrichment was not better than 

random in the ensemble. In fact, none of the individual snapshots in p38 exhibited ROC-
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AUC values better than random, and for CDK2, the majority of the snapshots had ROC-

AUC lower than 0.6. When SVMSP was trained using compounds docked to MD snapshots 

(SVMSPMD) for the negative set, we found a substantial increase in the enrichment 

performance, particularly for p38. The ROC-AUC in the ensemble increased from 0.42 to 

0.64 for SVMSPMD and ROC-AUCMAX increased to 0.81 from 0.54 when negative set 

compounds docked to the crystal structure were used. Even greater enhancement was 

obtained when the positive set was strictly limited to kinases (SVMSPKINASE‑MD), with 

ROC-AUCMAX reaching 0.85. In CDK2, similar, but less pronounced, increases were 

observed.  

We applied SVMSP scoring to MD snapshots to the mitochondrial aldehyde 

dehydrogenase 2 (ALDH2), which catalyzes the NAD+-dependent oxidation of a broad 

spectrum of endogenous and biogenic aldehydes to their corresponding carboxylic acids. 

In humans, aldehyde dehydrogenases comprise a diverse gene family with approximately 

20 members in the human genome sequence. ALDH2 may be an important drug target that 

has been implicated in drug addiction and other neurological disorders. We applied 

SVMSP to rank-order compounds docked to MD structures of ALDH2. The purpose of 

this exercise was not only to put SVMSP scoring of MD snapshots to the test but also for 

the discovery of small molecule ALDH2 inhibitors that can be pursued in future drug 

discovery efforts for this important class of enzyme family. The screening of 50 000 

commercially available compounds against 50 MD snapshots of ALDH2 led to five 

compounds that inhibited the enzyme’s dehydrogenase activity in a concentration- 

dependent manner. One compound (ALDH423) had submicromolar activity, while another 

three (ALDH400, ALDH427, and ALDH440) inhibited with IC50s lower than 5 μM. 
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Interestingly, three compounds showed structural similarity. These compounds offer an 

opportunity to develop small-molecule inhibitors of the ALDH2 with higher affinity and 

selectivity across members of the ALDH family. The discovery of inhibitors does not 

validate SVMSP scoring of MD structures, but, combined with the extensive studies using 

validation sets that we have conducted, this work demonstrates that this approach can result 

in effective library enrichment. 

In summary, we applied our SVMSP scoring approach to rank-order small 

molecules docked to conformational ensembles of proteins collected from explicit-solvent 

MD simulations. We found that a larger number of MD structures does not affect 

enrichment. But MD structures lead to greater diversity in the conformation of small 

molecules identified in virtual screening. Overall, the performance of SVMSP was better 

than other scoring functions for X-ray and MD structures. It is worth mentioning that we 

did not assess whether the docking methods generated accurate poses. This would be 

difficult to test particularly for the MD snapshots. However, SVMSP is trained using high 

quality protein−ligand crystal structures as positive set, and we expect that the scoring 

approach will favor native-like structures. In our previous work, we have shown that 

filtering protein−ligand MD snapshots with SVMSP resulted in significantly better rank-

ordering of these complexes based on the binding affinity. Interestingly, MD simulations 

generated individual MD snapshots that showed significantly better enrichment than the 

X-ray structure. Two proteins were particularly challenging, and both X-ray and MD 

structures exhibited random enrichment. To overcome this challenge, we used MD 

snapshots to train SVMSP models and discovered a remarkable increase in performance in 

enrichment. We also embarked on an effort to identify high-performance MD structures a 
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priori from an MD simulation of the apo protein. We found that it was possible to enrich 

apo protein MD structures by scoring randomly selected compounds docked to these 

structures using SVMSP. Finally, we put SVMSP rescoring to the test by rescoring a 

commercially available chemical library docked to the ALDH2 enzyme. Enzymology 

studies for the top candidates that emerged from a set of 50,000 compounds led to four 

compounds that had IC50s below 5 μM. These compounds serve as leads for the design and 

synthesis of more potent and selective ALDH2 inhibitors. 
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Appendix A Supporting Information: Tables 

 

  

Table A.1 Atom Types Used in Developing Knowledge-Based Pair Potentials 
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Table A.2 Parameters Used in MM-PBSA/MM-GBSA Calculations (AMBER9) 
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Appendix B Supporting Information: Figures 

 

 

  

Figure B.1 Comparison of Dynamics of Free Ligand and Protein to the Protein-Ligand 

Complex 
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Figure B.2 Regression Plots between Mean SVMSP Score of DUD Compounds and 

ROC-AUC of Correspond Snapshots 
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