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VARIABLE SELECTION AND STRUCTURAL DISCOVERY IN JOINT MODELS OF

LONGITUDINAL AND SURVIVAL DATA

Joint models of longitudinal and survival outcomes have been used with increasing fre-

quency in clinical investigations. Correct specification of fixed and random effects, as well

as their functional forms is essential for practical data analysis. However, no existing meth-

ods have been developed to meet this need in a joint model setting. In this dissertation,

I describe a penalized likelihood-based method with adaptive least absolute shrinkage and

selection operator (ALASSO) penalty functions for model selection. By reparameterizing

variance components through a Cholesky decomposition, I introduce a penalty function of

group shrinkage; the penalized likelihood is approximated by Gaussian quadrature and opti-

mized by an EM algorithm. The functional forms of the independent effects are determined

through a procedure for structural discovery. Specifically, I first construct the model by pe-

nalized cubic B-spline and then decompose the B-spline to linear and nonlinear elements by

spectral decomposition. The decomposition represents the model in a mixed-effects model

format, and I then use the mixed-effects variable selection method to perform structural dis-

covery. Simulation studies show excellent performance. A clinical application is described

to illustrate the use of the proposed methods, and the analytical results demonstrate the

usefulness of the methods.
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Chapter 1

Introduction

Statistical modeling has played an increasingly important role in modern scientific investiga-

tion. In biomedical research, a significant number of discoveries were made using innovative

analytical models. But the validity of model-based scientific inquiry is usually contingent

on the correct specification of the model. Failure to include relevant independent variables,

for example, will result in questionable inference, while including irrelevant variables cre-

ates numerical instability and reduces analytical efficiency. Determination of the correct

model structure based on observed data has therefore become an essential component of

the modeling process. Ultimately, one hopes to achieve a parsimonious modeling structure

without sacrificing predictive or explanatory power.

The objective of this dissertation is to develop a set of model selection tools for joint

models of longitudinal and survival outcomes. In this chapter, I present my research ques-

tions, review the existing literature, and describe the general approach that I use in this

research.

1.1 Joint Models of Longitudinal and Survival Outcomes

The concept of joint models was first proposed by Tsiatis and colleagues to characterize

the longitudinal relationship between a disease marker and a time-to-event process (Wulf-

sohn and Tsiatis, 1997). Early applications of such models include HIV clinical trials that

prospectively measure CD4 counts (or viral loads) and disease mortality (De Gruttola and

Tu, 1994; Tsiatis et al., 1995). Here the repeatedly assessed CD4 counts are treated as lon-

gitudinal outcomes whereas HIV-related mortality is considered as the survival outcome,
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with the purpose of better delineating the relationship between the two. A similar approach

is used in studies of prostate cancer, where repeatedly measured prostate-specific antigen

(PSA) levels are used as longitudinal outcomes and time to disease reoccurrence is used as

the survival outcome (Wulfsohn and Tsiatis, 1997; Xu and Zeger, 2001a).

Joint models, in comparison with the traditional analysis of modeling one outcome at a

time, represent a significantly improved analytical approach. Among other things, it affords

an opportunity to investigate the intercorrelation, or mutual influences, of the longitudinal

and survival outcomes. In aforementioned HIV example, counts of CD4 lymphocytes in-

dicate the strength of host immunity against infectious pathogens, thus could be directly

related to patient mortality, which in turn censors the CD4 measurement. Failure to ac-

commodate the interdependency of the two outcomes thus not only deprives the possibility

of exploring the between-outcome association, but also introduces additional biases in es-

timation in the presence of measurement errors and early study dropout, especially if the

latter is caused by disease exacerbation as reflected by CD4 counts (Tsiatis and Davidian,

2004). To understand the limitations of the separate modeling approach, one only has to

look at the traditional two-stage modeling process. In the first stage, a linear mixed-effects

model is used to determine the mean levels of the longitudinal outcome; in the second stage,

the predicted values from the longitudinal model in the first stage are fed into the survival

model. Since deceased patients may have a different longitudinal outcome trajectory, com-

pared to those who survived, the two-stage modeling approach could introduce a significant

amount of bias into the estimation.

It is from this context that joint models are developed as an alternative modeling strat-

egy. By simultaneously accommodating both outcomes, joint models create a structure that

retains the natural correlations between the outcomes, thus alleviating the bias due to in-

formative missing such as early study dropout. In practice, this implies improved prediction
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accuracy of survival outcome based on longitudinal measurements. As noted in previous

research, joint models generally have better efficiency in parameter estimation (Faucett and

Thomas, 1996).

To link the two outcomes together, one often resorts to the use of a “shared latent pro-

cess” (Wulfsohn and Tsiatis, 1997). For example, in the context of HIV study, the shared

latent process is typically thought of as an unobserved disease progress that determines

both host immunity (or disease severity), as indicated by CD4 counts, and risk of mortality.

By depicting the latent process with a set of random effects and letting them be shared by

longitudinal and survival models, one connects the two models and introduces a patient-

specific measure of frailty. Such a joint model formulation has been successfully used in

many clinical investigations and it is increasingly being recognized as a mainstay analytical

method. Early application of joint model mainly focused on the HIV/AIDS trials (De Grut-

tola and Tu, 1994; Tsiatis et al., 1995), which remains an important tool in this area (Wu

et al., 2010). Another major application of the joint model is in the area of oncology trials

to evaluate the association between a patient’s quality of life and time to event end point

(Ibrahim et al., 2010), or in the cancer vaccine trials, to investigate the correlation between

repeatedly measured immunologic outcomes and patients’ survival outcomes, for example,

patients’ time to relapse (Brown and Ibrahim, 2003).

A practical barrier for a more widespread use of this effective analytical approach is

the lack of tools for model construction. Specifically, there is no specific guidance on the

inclusion and exclusion of independent effects (both fixed and random), the determination

of the functional forms of which the independent variables take, and the inclusion of time

interactions. In practice, these important questions are left to the analyst, who usually

decides in an empirical fashion. Conflicting results may arise as a consequence.
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Methodologically, there is no systematic study of model selection in a joint model setting.

Determination of an appropriate model structure is by no means trivial, even in traditional

model settings. The joint model structure has significantly magnified the challenge. The

goal of this dissertation is to develop a new class of methods for constructing valid joint

models. My research consists of three independent but interrelated topics: (1) Fixed and

random effect selection; (2) Determination of functional form of an independent variable,

also known as structural discovery; and (3) Selection of time-varying coefficients. The

ultimate goal is to produce a set of data-driven tools to assist analysts construct joint

models of longitudinal and survival outcomes.

1.2 Simultaneous Variable Selection

Variable selection has long been viewed as a necessary safeguard for model validity. In

a joint model, variable selection has taken on an additional importance of justifying the

simultaneous modeling formulation by testing the existence of the shared latent processes,

as embodied by the random effects. As a result, variable selection for joint models typically

includes the selection of both fixed and random effects.

Existing approaches for variable selection. There is a sizable literature on variable selec-

tion in generalized linear models and proportional hazard model settings. There are three

general approaches for variable selection. First, a traditional method is to exhaustively

compare all possible models based on a predefined criterion, typically an information-based

criterion, such as the Akaike information criteria (AIC, Akaike 1974) or Bayesian informa-

tion criterion (BIC, Schwarz 1978). This approach has been used widely in the last several

decades and a number of statistical tests, such as the likelihood ratio test, wald-type test,

or score test have been derived for variable selection, most notably in less complicated

modeling settings. A clear limitation of this approach is that the heavy computational

4



burden of fitting of all candidate models. Perhaps for this reason, the method has never

been extended to the joint modeling setting. The second approach is the stepwise variable

selection method. Although it is computationally more efficient than the first approach,

it does not search the entire model space, thus leaving open the possibility that the true

model could be missed. When the stepwise approach is applied to mixed-effects models,

the alternating procedure of fixing either the mean model for the fixed effects or the covari-

ance structure for the random effects yields no unified tests for both types of effects. This

could lead to erroneous results as it makes assumptions about the model by fixing part of

its structure. An ideal variable selection method for selecting fixed and random effects is

to simultaneously select the two parts and search though the full model space. The third

approach is the penalized likelihood method. This is a data-driven method requiring less

model assumptions and is computationally more efficient, and can perform simultaneous

selection of fixed and random effects in a unified framework.

Penalized likelihood method. In this research, I take the third approach - penalized

likelihood method - for variable selection in the joint modeling setting. Briefly, the penalized

likelihood approach was proposed in the mid-1990’s by Tibshirani (1996). He proposed a

least absolute shrinkage and selection operator (LASSO) for fixed-effect variable selection.

The “oracle” properties of the smoothly clipped absolute deviation (SCAD; Fan and Li,

2001) and the adaptive least absolute shrinkage and selection operator (ALASSO; Zou,

2006) further strengthened the applicability of this approach. The “oracle” property refers

to the consistency between the selected model and the underlying true model. A number

of variable selection methods based on the penalized likelihood approach have since been

developed for the longitudinal and survival models, although separately. Most of the studies

have focused on the selection of fixed effects. Even in the separate models, simultaneous

selection of mixed effects presents a formidable challenge. It is not until 2010, simultaneous
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selection of fixed and random effects in a linear mixed model setting has not been resolved

(Bondell et al., 2010). More recently, Ibrahim et al. (2011) studied the mixed-effect variable

selection in generalized linear mixed models. To the best of my knowledge, no work has

been done for simultaneous selection of fixed and random effects in the joint model setting.

Variable selection in joint models. The first part of my dissertation concerns the devel-

opment of a variable selection method to simultaneously select the mixed effects in a joint

model setting. All things considered, this is not a trivial extension of the previous work, as

the joint model structure is much more complicated than the separate model. The approach

will clearly identify the connections between the two model components, and to simultane-

ously select the mixed effects in the two components of the joint model. I reparameterize

the joint model to achieve the goal of selection by using a penalized likelihood method.

1.3 Structural Discovery for Joint Models

A logical question following variable selection is what functional form should a variable take.

Traditionally, all variables enter the model in a linear form, despite the fact that in biological

science, few factors have truly linear influences. I therefore ask how should one determine

the functional form of an independent variable? Should an effect be linear, nonlinear, or

partially linear? Linear effects are commonly assumed for convenience of model fitting

and result interpretation. But modeling a nonlinear effect as linear is a form of model

misspecification and may result in erroneous inference. On the other hand, specifying a

linear effect using splines or other nonparametric techniques while the true effect is linear

will result in reduced efficiency and difficulty in model interpretation.

A valid and efficient regression model requires correct specification of the effect pattern

for each independent variable. If an independent variable has a linear effect, one would

like to model it as such. Otherwise, if an independent variable’s effect is nonlinear, one
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wants to model it nonparametrically. A data-driven approach to the nonlinearity in an

independent variable is often referred to as “structural discovery”. Extensive studies have

been done on estimating parameters in a pre-specified linear or nonlinear model, in the

separate longitudinal or survival model settings. However, few studies have attempted to

detect nonlinearity for the purpose of specifying the functional form of an independent

variable. More recently, Zhang et al. (2011) proposed a method for structural discovery in

a partially linear model setting.

To ensure the validity of statistical inference, structural discovery procedures are needed

for joint models. Extensive literature search suggests that no work has been done in this

front. Given its complicated model structure, an ideal simultaneous structural discovery

tool should require minimal assumptions and must be implementable without exorbitant

computing resources. The second part of my dissertation focuses on this task.

1.4 Selection of Time-Varying Coefficients

Time-varying coefficient models. A more recent extension of linear regression is the ad-

dition of time-varying coefficient, which depicts the effect of an independent variable on

the outcome not as a constant but as a function of an independent variable (Hastie and

Tibshirani, 1993). Such an extension has greatly enhanced the modeling flexibility and

has been used to discover important, but nonlinear, biological influences that would have

been missed by traditional analysis. For example, the effect of sodium-retaining hormone

aldosterone on blood pressure may be dependent on the prevailing levels of extracellular

fluid volume, as reflected by plasma renin activity. Varying coefficient model provides a

flexible modeling framework to accommodate such interacting influences (Tu et al., 2014).

But more often, the effects of certain independent variables on the outcome change over

time, thus providing the incentive to model the effect as a function of time. Such a need
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gives rise to time-varying coefficient models. Similarly, in survival analysis, one often has

the need to model the time-dependent effect of an independent variable. For example, in an

analysis of sexually transmitted infections, Yu et al. (2012) showed the effect of number of

partners on infection acquisition tended to be age-dependent. In a childhood asthma study,

the effect of airway reactivity measurement on the risk of wheezing also changed over time

due to child growth (Yu et al., 2013).

Popular estimation methods for time-varying coefficients include kernel based local like-

lihood, smoothing spline and B-spline (Yan and Huang, 2012). Although the time-varying

coefficient could uncover the temporal pattern of an independent variable effect, unnec-

essary nonparametric estimation makes it difficult to interpret the model and also lose

some model efficiency. If the independent variable effect is constant over time, the model

with time-invariant coefficients is more favorable for better interpretability and increased

efficiency.

Selecting time-varying coefficient in joint models. In joint models, independent variables

could interact with time, creating a need for time-varying coefficient, although the effects of

the same independent variable on the two outcomes could take different functional forms.

A statistical tool that helps to determine the functional forms would be very useful in such

a modeling situation. Specifically, the tool should be able to consistently distinguish the

independent variables with time-invariant or time-varying coefficients.

Model selection tools for time-varying coefficient model is in general limited. For longitu-

dinal study, Wang et al. (2008) proposed a penalized likelihood method with SCAD penalty

on the expanded nonparametric basis functions of coefficients. For the survival analysis,

Yan and Huang (2012) proposed to use ALASSO to select time-invariant and time-varying

coefficients, as well as excluding the zero coefficients in the Cox model. Careful literature

search does not yield published work in selection of time-varying coefficient in joint model
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settings. I therefore focus on the development of such a procedure in the third part of my

dissertation.
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Chapter 2

Selection of Fixed and Random Effects

2.1 Introduction

Longitudinal and survival data often arise together in clinical investigations. In a given

subject, longitudinally measured clinical markers and patient survival are usually governed

by the same latent disease process, and thus are correlated. Separate modeling for the

longitudinal and survival outcomes could result in biases in parameter estimation (Faucett

and Thomas, 1996). Joint models are therefore recommended to alleviate biases and to

ensure valid inference concerning the correlation structure between the two outcomes. In

the past two decades, joint models have been studied extensively: Wulfsohn and Tsiatis

(1997) proposed a general framework in which the survival component was depicted by a

proportional hazard model, and the longitudinal component was accommodated by a linear-

growth-curve model. This basic structure was later extended by Xu and Zeger (2001b) to

a variety of data situations. Other noteworthy method developments and significant data

applications were presented by De Gruttola and Tu (1994), Nathoo and Dean (2008) and

Albert and Shih (2010). Notably missing in this literature is variable selection. As in any

modeling exercise, correct specification of the model and inclusion of the right independent

variables are of essential importance, for the preservation of scientific validity. For joint

models in particular, random variable selection serves the purpose of justifying the use of

shared random effects connecting the longitudinal and survival components.

Traditionally, variable selection has been performed through model comparisons using

information-based criteria, such as the Akaike and Bayesian information criteria (AIC and

BIC). But such criteria are not always feasible in complex model settings where the number
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of candidate models is large. As an alternative, penalized likelihood approach has gained

popularity since the mid-1990’s. Tibshirani (1996) proposed a least absolute shrinkage and

selection operator (LASSO) for fixed-effect selection. Asymptotic “oracle” properties of

the smoothly clipped absolute deviation (SCAD; Fan and Li, 2001) and the adaptive least

absolute shrinkage and selection operator (ALASSO; Zou, 2006) have provided a theoretical

assurance for mixed-effect selection. Along this line, Fan and Li (2004), Garcia et al. (2010)

and Johnson et al. (2008) discussed the application of penalized likelihood method to

select fixed effect variables in longitudinal model settings. Fan and Li (2002), Garcia et al.

(2010) and Zhang and Lu (2007) discussed the selection of fixed effects in survival models.

Extending these previous work, Bondell et al. (2010) proposed a method for selecting fixed

and random effects in a linear mixed-effects model setting. Most recently, Ibrahim et al.

(2011) studied the mixed-effects selection in generalized linear mixed models through an

EM algorithm. To the best of our knowledge, no work has been done for simultaneous

selection of fixed and random effects in a joint model setting with longitudinal and survival

outcomes. To fill in this methodological gap, I propose a penalized likelihood method with

ALASSO penalty for fixed and random effect selection in joint models. I optimize the

penalized likelihood using an EM algorithm.

I illustrate the method by analyzing data from an observational study of heart failure

patients. The study cohort included 1702 patients with diagnosed congestive heart failure

(CHF) between Jan 1, 2004 and Dec 31, 2009, identified from a large electronic medical

record system. The analytical objective is to assess the effects of medication adherence on

disease exacerbation and on patient survival; I also like to assess the correlation between

CHF exacerbation and patient mortality. Specifically, I considered two outcomes: the

survival outcome is defined as the time from the first recorded CHF diagnosis to mortality,

or to Dec 31, 2009, which ever comes first; the longitudinal outcomes are the repeatedly

11



measured B-type natriuretic peptide (BNP) levels. BNP is a commonly used bedside marker

of CHF exacerbation; a higher BNP value indicates fluid volume overload in the left ventricle

and increased mortality risk. (Morrison et al., 2002). Although the two outcomes can

be modeled individually, separate modeling does not accommodate correlations between

BNP and survival. In this research, I consider a joint modeling approach. I consider

eight known risk factors and four interaction terms as candidate variables and develop an

ALASSO procedure to select the independent variables. In particular, I consider random-

effect selection as medical literature rarely avails information on the possible random slopes

(e.g., the effect of an independent variable varies across subjects). Misspecification of fixed

and random effects for the two outcome variables could result in erroneous inferences.

2.2 Method

2.2.1 Model Formulation

Suppose in a longitudinal study, I observe a survival outcome (ti, δi), and repeated mea-

surements of a continuous outcome yi, for subject i = 1, · · · , n. Here ti is the observed

event time subject to right censoring, and δi is a failure indicator with δi = 1 indicating the

occurrence of an event of interest, and δi = 0 indicating censoring, whereas yi is an ni × 1

vector of the ni repeated measurements. Let X1i ∈ Rni×p and Z1i ∈ Rni×q be the fixed

and random covariate matrices for the longitudinal outcome, respectively. Similarly, I let

x2i ∈ Rp1 and z2i ∈ Rq1 be the fixed and random covariate vectors for the survival outcome.

Combining these observations I write Oi = (yi,X1i,Z1i, ti, δi,x2i, z2i). I assume that the

observations Oi are independent across subjects.

Without loss of generality, I herein consider a case where the longitudinal and survival

components share the same set of fixed- and random-effect covariates. This model formula-
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tion could easily be generalized to situations where the two components have different sets

of covariates.

For the longitudinal outcome, I consider the following linear mixed-effects model:

yi = X1iβ1 +Z1iΓ1bi + εi, (2.1)

where β1 = (β10, β11, . . . , β1p)
T is the coefficient vector, and β10 is the intercept. εi =

(εi1, · · · , εini)T ∼ Nni(0, σ
2Ini) is the measurement error vector, and bi ∈ Rq1 is a

q−dimensional random effect vector following a multivariate normal distribution Nq(0, Iq),

with Iq as a q × q identity matrix. Γ1 is a q × q lower triangular matrix and Γ1bi follows

Nq(0,D1). Thus Γ1 represents a Cholesky decomposition of the covariance matrix D1.

For the survival outcome, I consider a frailty model, defined as follows:

h(ti) = h0(ti) exp(x2iβ2 + z2iΓ2bi), (2.2)

where h0(ti) is the baseline hazard function, and β2 = (β21, . . . , β2p)
T is the coefficient

vector. Γ2bi follows Nq(0,D2), and Γ2 is a Cholesky decomposition of the q× q matrix D2.

2.2.2 Variable Selection Using Penalized Likelihood

To select fixed and random effects, I propose a penalized likelihood to simultaneously iden-

tify the non-zero elements in (β1,β2,Γ1bi,Γ2bi). Let θ = (β1,β2,Γ1,Γ2,φ) be the collec-

tion of all the unknown parameters, where φ denotes parameters other than (β1,β2,Γ1,Γ2).

Writing the density function of (yi, ti, bi) as f(yi, ti, bi|X1i,Z1i,x2i, z2i, h0(ti), δi,θ), I have

the following log-marginal likelihood for θ:

lo(θ) =

n∑
i=1

log

∫
fy(yi|X1i,Z1i, bi,θ)fs(ti, δi|x2i, z2i, h0(ti), bi,θ)fb(bi)dbi, (2.3)
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where fb(bi) is a q−variate normal density function for bi. Functions fs(·) and fy(·) are

the conditional density functions of the survival time and repeated measurements when

bi is given, respectively. I note that in the absence of restrictions on the baseline hazard

h0(ti), the maximum of the marginal likelihood is infinity. To remedy the deficiency, one

could parameterize h0(ti) with a parametric distribution. For example, a natural choice is

to use a Weibull distribution with a baseline hazard h0(ti) = αλtα−1
i , where α is the shape

parameter and λ is the scale parameter. Alternatively, one could use a piece-wise constant

baseline hazard by dividing the study period into m intervals and assuming h0(t) to be a

constant within each interval as h0(t) = hk, tk−1 < t ≤ tk, k = 1 . . .m, where tks are knots

defining the intervals. This piece-wise constant baseline hazard have been shown to perform

well by Feng et al. (2005).

To select fixed and random effects simultaneously, I consider a penalized likelihood

PL(θ) = 1
n lo(θ) − κλ1(β1) − κλ2(β2) − κλ3(D1) − κλ4(D2). The penalty terms κλ1(β1)

and κλ2(β2) control for the sparsity of estimates of β1 and β2 so that the fixed effects are

selected. The penalty terms κλ3(D1) and κλ4(D2) control for the sparsity of estimates of

D1 and D2 to select the random effects. The penalty functions κλj (·), for j = 1, 2, 3, 4,

could be the adaptive LASSO, or the smoothly clipped absolute deviation (SCAD). For the

fixed-effect selection, I define the adaptive LASSO penalties as κλ1(β1) = λ1
∑p

j=1 ωβ1j
|β1j |

and κλ2(β2) = λ2
∑p

k=1 ωβ2k
|β2k|, where λ1 and λ2 are tuning parameters that control the

degree of penalties; ωβ1j
, ωβ2k

are the corresponding positive weights for penalties |β1j | and

|β2k|. The summation in κλ1(β1) = λ1
∑p

j=1 ωβ1j
|β1j | starts from 1 as I am not interested

in selecting intercept β10. Some of the estimates of β̂1j and β̂2k will be zero since |β1k| and

|β2k| are singular when |β1j | = 0 and |β2k| = 0.

For the random-effect selection, I note that D1 = Γ1ΓT1 and D2 = Γ2ΓT2 . Let γ1m

and γ2l be the mth and lth row vectors of Γ1,Γ2, respectively. In fact, γ1mγ
T
1m = D1mm
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and γ2lγ
T
2l = D2ll are the variance components of the mth and lth elements of the random

effects Γ1bi and Γ2bi. I form the penalty terms for the random effects in a group manner

so that the estimates of elements of the entire vectors γ1m and γ2l are either all zero or

at least one of the estimates is non-zero. The group penalties on γ1m and γ2l will ensure

selection for the covariance structure due to the following connection of covariance matrices

D1, D2 and the Cholesky decomposition matrices Γ1,Γ2 (Wang et al., 2010):

γ1m = 0⇔ D1mm = 0, D1mh = D1hm = 0, ∀h

γ2l = 0⇔ D2ll = 0, D2lh = D2hl = 0, ∀h.
(2.4)

From (2.4), it follows that if γ1m = 0, then the diagonal element D1mm, the variance of

the random effect (Γ1bi)m, is zero. Furthermore, for any h 6= m, the off-diagonal element

D1mh = D1hm = 0 implies that the covariance between (Γ1bi)m and all other random effects

are zero. Thus, the random effect (Γ1bi)m in longitudinal component is to be excluded from

the model and the positive-definiteness ofD1 will be preserved. This applies to the random-

effect selection in the survival component as well, which is to shrink the whole vector γ2l

to zero.

To perform group penalties on vectors γ1m and γ2m, I first summarize the penalties

using L2−norm: ||γ1m|| = (γ1mγ
T
1m)1/2 and ||γ2l|| = (γ2lγ

T
2l)

1/2 for m, l = 2, · · · , q. Fol-

lowing Yuan and Lin (2006), the adaptive LASSO penalties are defined as: κλ3(D1) =

λ3
∑q

m=2 ωγ1m
||γ1m|| and κλ4(D2) = λ4

∑q
l=2 ωγ2l

||γ2l||. I use adaptive LASSO penalties

in the simulation study. Note that the summation starts from m = 2, l = 2, as I keep the

random intercepts in both the longitudinal and survival components without eliminating the

possible minimal within-cluster correlation. λ3 and λ4 are the positive tuning parameters,

and ωγ1m , ωγ2l
, are the positive weights associated with penalties on ||γ1m|| and ||γ2l||. Let

p(θ) = λ1
∑p

j=1 ωβ1j
|β1j |+λ2

∑p
k=1 ωβ2k

|β2k|+λ3
∑q

m=2 ωγ1m ||γ1m||+λ4
∑q

m=2 ωγ2l ||γ2l||,
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and the penalized likelihood with the adaptive LASSO penalties can be written as

pl(θ) =
1

n
lo(θ)− p(θ). (2.5)

Penalized likelihood with SCAD penalties could be constructed by substituting the

penalty terms in (2.5) using SCAD. The estimator of θ can be obtained by maximizing

(2.5).

2.2.3 EM Algorithm for Optimization of the Penalized Likelihood

To maximize the penalized likelihood (2.5), I use an EM algorithm. I start with the penalized

log-complete likelihood for (Oi, bi) for i = 1, · · · , n, which is

plc(θ) =
1

n

n∑
i=1

log f(yi, ti, δi, bi|θ)− p(θ)

=
1

n

n∑
i=1

{log[fy(yi|bi,θ)] + δi log[h(ti|bi,θ)] + log[S(ti|bi,θ)] + log[fb(bi|θ)]} − p(θ).

(2.6)

In Equation (2.6), S(·) is the survival function of ti conditional on bi. Let λ =

(λ1, λ2, λ3, λ4)
T and ω = (ωβ1j

, ωβ2k
, ωγ1m , ωγ2l

)T . I denote gc,i1 = (yi,X1i,Z1i, bi), gc,i2 =

(ti, δi,x2i, z2i, bi) and gc,i = (yi,X1i,Z1i, ti, δi,x2i, z2i, bi) as the complete data for lon-

gitudinal, survival and both components, respectively, and go,i1 = (yi,X1i,Z1i), go,i2 =

(ti, δi,x2i, z2i) and go,i = (yi,X1i, Z1i,x2i, z2i) as the corresponding observed data.

E-step

I first derive the E-step of the EM algorithm for the given λ and ω. Assuming that I have

estimates θ(s) from the (s)th iteration of the maximization step, I take the expectation of

the penalized log-complete likelihood conditional on θ(s) and goi, for i = 1, . . . , n and obtain

16



the following penalized Q-function:

Qλ,ω(θ|θ(s)) =
1

n

n∑
i=1

{E[log fy(gc,i1,θ)|(go,i,θ(s))] + E[δi log h(gc,i2,θ)|(go,i,θ(s))]

+ E[logS(gc,i2,θ)|(go,i,θ(s))]} − p(θ) +
1

n

n∑
i=1

E[log fb(bi)|(go,i,θ(s))].

(2.7)

I write

E[H(bi)|(go,i,θ(s))] =

∫
H(bi)fb(bi|go,i,θ(s))dbi, (2.8)

for each of H(bi) = log fy(gc,i1,θ), H(bi) = δi log h(gc,i2,θ), and H(bi) = logS(gc,i2,θ).

Because integral (2.8) is intractable, I approximate it by using a multivariate Gaussian

quadrature method (Pinheiro and Bates, 1995). Since bi ∼ N(0, Iq), if I choose k quadra-

ture points in each dimension, there will be kq vector nodes of q × 1 dimension. Let

b
′
l = (b

′
l,1, b

′
l,2, · · · , b

′
l,q) denote the lth node, and wl denote the corresponding quadrature

weight, for l = 1, · · · , kq, integral in (2.8) can be approximated by

Ẽ{H(bi)|(go,i,θ(s))} ≈
kq∑
l=1

wlH(b′l)fb(b
′
l|go,i,θ

(s)). (2.9)

I therefore obtain the approximated penalized Q-function in the (s+ 1)th iteration

Q̃λ,ω(θ|θ(s)) =
1

n

n∑
i=1

{Ẽ[log fy(gc,i1,θ)|(go,i,θ(s))] + Ẽ[δi log h(gc,i2,θ)|(go,i,θ(s))]

+ Ẽ[logS(gc,i2,θ)|(go,i,θ(s))]} − p(θ).

(2.10)

The last term 1
n

∑n
i=1E[log fb(bi)|(go,i,θ(s)) in (2.7) does not involve any unknown

parameters, thus could be omitted from the optimization.
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M-step

I maximize (2.10) with respect to the fixed- and random-effect parameters alternatively.

When (Γ1,Γ2, φ) are fixed, I maximize (2.10) with respect to (β1,β2), and the penalty

function involving L1 penalty terms can be solved by applying the LARS/LASSO algorithm

(Efron et al., 2004) and the SCAD penalties could be solved according to Fan and Li (2001).

When (β1,β2,φ) are fixed, I maximize (2.10) with respect to (Γ1,Γ2). Following Lin and

Zhang (2006) and Wang et al. (2010), I transform the optimization problem to a two-

step equivalent objective function involving quadratic penalty term that is easier to solve.

Specifically, let

Q̃(θ|θ(s)) =
1

n

n∑
i=1

{Ẽ[log fy(gc,i1,θ)|(go,i,θ(s))] + Ẽ[δi log h(gc,i2,θ)|(go,i,θ(s))]

+ Ẽ[logS(gc,i2,θ)|(go,i,θ(s))]},

then for any given β̂ and (λ, ω), the following two optimization problems with respect to

γs achieve the same solution:

Q̃(β̂,Γ1,Γ2|θ(s))− λ3
q∑

m=2

ωγ1m ||γ1m|| − λ4
q∑
l=2

ωγ2l
||γ2l|| (2.11)

Q̃(β̂,Γ1,Γ2|θ(s))−
q∑

m=2

ζ21m −
1

4

q∑
m=2

(λ3ωγ1m)2

ζ21m
||γ1m||2 −

q∑
l=2

η22l −
1

4

q∑
l=2

(λ4ωγ2l
)2

η22l
||γ2l||2.

(2.12)

Let (γ̂1m, γ̂2l) be the maximizer of (2.11), and (ζ̃1m, γ̃1m, η̃2l, γ̃2l) be the maximizer of

(2.12), then I have

γ̂1m = γ̃1m, γ̂2l = γ̃2l (2.13)

ζ̃1m =

√
λ3ωγ1m

2
||γ̂1m||, η̃2l =

√
λ4ωγ2l

2
||γ̂2l||. (2.14)
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Equations (2.13) and (2.14) imply that one can optimize (2.12) iteratively with respect

to (γ1m,γ2l) and (ζ1m, η2l), instead of directly maximizing (2.12). Maximizing (2.12) with

respect to (γ1m,γ2l) when (ζ1m, η2l) is given is similar to a generalized ridge regression.

When (γ1m,γ2l) is given, (ζ1m, η2l) could be easily computed from (2.14).

Let Θ = (θ, ζ1m, η2l), where θ = (β1,β2,Γ1,Γ2,φ) are defined in section (2.2.2). I

propose the expectation conditional maximization procedures to optimize the penalized

likelihood as follows:

1. Initialize (β
(0)
1 ,β

(0)
2 ,γ

(0)
1m, ζ

(0)
1m,γ

(0)
2l , η

(0)
2l ,φ

(0)) with some plausible values.

2. For iteration s, update β1,β2 by adaptive LASSO,

β1
(s),β2

(s) = argmax
β1,β2

Q̃(β1, β2, Γ̂
(s−1)
1 , Γ̂

(s−1)
2 , φ̂(s−1)|β̂(s−1)

1 , β̂
(s−1)
2 ,

Γ̂
(s−1)
1 , Γ̂

(s−1)
2 , φ̂(s−1))− λ1

p∑
j=1

ωβ1j
|β1j | − λ2

p∑
k=1

ωβ2k
|β2k|.

3. Update γ1m,γ2l:

γ1m
(s),γ2l

(s) = argmax
γ1m,γ2l

Q̃(β̂
(s)
1 , β̂

(s)
2 ,Γ1,Γ2, φ̂

(s−1)|β̂(s)
1 , β̂

(s)
2 , Γ̂

(s−1)
1 , Γ̂

(s−1)
2 , φ̂(s−1))

− 1

4

q∑
m=2

(λ3ωγ1m)2

(ζ
(s−1)
1m )2

||γ1m||2 −
1

4

q∑
l=2

(λ4ωγ2l)
2

(η
(s−1)
2l )2

||γ2l||2.

4. Update ζ1m, η2l:

ζ
(s)
1m =

√
λγ1ωγ1m

2
||γ(s)

1m||, η
(s)
2l =

√
λγ2ωγ2l

2
||γ(s)

2l ||.

5. Update φ:

φ = argmax
φ

Q̃(β̂
(s)
1 , β̂

(s)
2 , Γ̂

(s)
1 , Γ̂

(s)
2 ,φ|β̂(s)

1 , β̂
(s)
2 , Γ̂

(s)
1 , Γ̂

(s)
2 , φ̂(s−1)).

19



6. Terminate the iteration when max|Θ(s) −Θ(s−1)| are small enough. Otherwise, let

s = s+ 1 and go back to step 2.

Before updating parameters in each step, the corresponding Q̃ function is approximated

by Gaussian quadrature in the E-step. To improve computation stability, smaller subset of

(β1,β2,Γ1,Γ2,φ) could be updated iteratively. I could update β1 when (β2,Γ1,Γ2,φ) is

fixed, and then update β2 when (β1,Γ1,Γ2,φ) is fixed, and sequentially for Γ1, Γ2, and φ

when other parameters are fixed. It is at the price of more iterations. The typical values

for the weights are selected as: ωβ1j
= |β̂∗1j |−1, ωβ2k

= |β̂∗2k|−1, ωγ1m =
√
m||γ̂1m∗||−1, ωγ2l

=

√
l||γ̂2l∗||−1, where β̂∗1j , β̂

∗
2k, γ̂1m

∗, γ̂2l
∗ are the unpenalized MLEs (Ibrahim et al., 2011;

Zou, 2006) and
√
m,
√
l are the normalizing constants for penalty parameters γ1m, γ2l to

accommodate the varying sizes of γ1m,γ2l.

2.2.4 Tuning Parameter Selection and Two-stage Estimation

A data-driven method for determining tuning parameters is essential for variable selection.

Criteria such as generalized cross-validation, k-fold cross validation, AIC, BIC, or GIC have

been used as the objective scores to minimize over a preselected grid of tuning parameters.

BIC is known to be consistent in the model selection (Pu and Niu, 2006; Shao, 1997). Wang

et al. (2009) showed that selecting tuning parameters via BIC consistently yielded the true

model in the linear model setting. Ibrahim et al. (2011) showed that selecting tuning

parameters for mixed-effects selection via BIC-type ICQ criterion also consistently yielded

true models in generalized linear mixed models; their simulation study further showed that

the approach worked well in finite sample situations. Thus, I propose to use the BIC-type

criterion to determine the values of tuning parameters, where

BICλ = −2lo(θ̂) + log(n)× dfλ, (2.15)
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In (2.15), θ̂ are the estimators obtained from penalized likelihood under the given λ, and

lo(θ̂) is the value of the observed likelihood lo(θ) at the estimates θ̂. The solution is chosen

to minimize the BICλ criterion. In this BIC-type criterion, the total sample size n is used.

I take d, the total number of non-zero estimates of θ̂ as the degree of freedom dfλ. In the

linear model, d is an unbiased estimator of dfλ. Our simulation shows this criterion works

well, as suggested by Pu and Niu (2006).

To reduce the estimation bias, I propose a two-stage process. In the first stage, I focus

on variable selection and use the penalized likelihood method to select the model that

minimizes the BIC value. In the second stage, I re-estimate parameters using selected

variables without penalty for selection, to reduce the estimation bias.

2.3 Simulation Study

2.3.1 Data Generation

I conduct a simulation study to examine the performance of the proposed method. I generate

data under six different scenarios.

For Scenarios 1 to 4, I generate the longitudinal outcome Yij from the following model:

Yij =1 + 1X1ij,1 + 0X1ij,2 + 3X1ij,3 + 0X1ij,4 + bli,0

+ bli,1Z1ij,1 + bli,2Z1ij,2 + bli,3Z1ij,3 + bli,4Z1ij,4 + εij ,

(2.16)

and the failure time from a Weibull distribution with the hazard function:

λi(t) = λ0(t) exp(1x2i,1 + 0x2i,2 + 0x2i,3 + 1x2i,4

+ bsi,0 + bsi,1z2i,1 + bsi,2z2i,2 + bsi,3z2i,3 + bsi,4z2i,4),

(2.17)

for i = 1, . . . , 250, j = 1, . . . , 5, where λ0(t) = αλtα−1 with α = 2, and λ = exp(1) = 2.718.
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Random effect vector bi is independently generated from N(0, I5). bli = (bli,0, bli,1, bli,2,

bli,3, bli,4) is obtained from bli = Γ1bi and bsi = (bsi,0, bsi,1, bsi,2, bsi,3, bsi,4) is obtained from

bsi = Γ2bi, where Γ1 = σDR1 and Γ2 = σDR2, with lower triangular matrix

R1 =



1 0 0 0 0

1
2

1
2 0 0 0

0 0 0 0 0

1
4

1
4

1
4

1
4 0

0 0 0 0 0



1
2

and

R2 =



1 0 0 0 0

1
2

1
2 0 0 0

0 0 0 0 0

0 0 0 0 0

1
5

1
5

1
5

1
5

1
5



1
2

CovariatesX1ij,1 = Z1ij,1, X1ij,2 = Z1ij,2, X1ij,4 = Z1ij,4 and x2i,1 = z2i,1, x2i,2 = z2i,2, x2i,4 =

z2i,4 are generated as independent N(0, 1) variables; X1ij,3 = Z1ij,3 and x2i,3 = z2i,3

are binary variables with equal probability taking value 0 or 1. The measurement error

εij ∼ i.i.d.N(0, 1). Censoring time is independently generated from an exponential distri-

bution to achieve the desired censoring percentage.

In Scenario 1, I set σD to
√

0.5 and censoring percentage to 30%; in Scenario 2, I set

σD to
√

1 and censoring percentage to 30%; in Scenario 3, I set σD to
√

0.5 and censoring

percentage to 10%; in Scenario 4: I set σD to
√

1 and censoring percentage to 10%.
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I additionally simulate data settings where there are higher proportions of censoring

(Scenario 5) and larger numbers of random effects (Scenario 6). For scenario 5, I generate

the longitudinal outcome Yij from the following model:

Yij =1 + 1.5X1ij,1 + 2X1ij,2 + 0X1ij,3 + 0X1ij,4 + bli,0

+ bli,1Z1ij,1 + bli,2Z1ij,2 + bli,3Z1ij,3 + bli,4Z1ij,4 + εij ,

and the failure time from a Weibull distribution with the hazard function:

λi(t) = λ0(t) exp(1.5x2i,1 + 2x2i,2 + 0x2i,3 + 0x2i,4

+ bsi,0 + bsi,1z2i,1 + bsi,2z2i,2 + bsi,3z2i,3 + bsi,4z2i,4),

for i = 1, . . . , 800, j = 1, . . . , 5, where λ0(t) = αλtα−1 with α = 2, and λ = exp(1) = 2.718.

Random effect bi is independently generated from N(0, I5). bli = (bli,0, bli,1, bli,2,

bli,3, bli,4) is obtained by bli = Γ1bi and bsi = (bsi,0, bsi,1, bsi,2, bsi,3, bsi,4) is obtained by

bsi = Γ2bi, where

Γ1 = Γ2 = σD



1 0 0 0 0

1
2

1
2 0 0 0

1
3

1
3

1
3 0 0

0 0 0 0 0

0 0 0 0 0



1
2

and σD =
√

0.5. Covariates X1ij,1 = Z1ij,1, X1ij,2 = Z1ij,2, X1ij,3 = Z1ij,3, X1ij,4 = Z1ij,4

and x2i,1 = z2i,1, x2i,2 = z2i,2, x2i,3 = z2i,3, x2i,4 = z2i,4 are generated as independent N(0, 1)

variables; The measurement error εij ∼ i.i.d.N(0, 1). The censoring time is independently

generated from an exponential distribution to achieve a 60% censoring percentage.
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In Scenario 6, I generate the longitudinal outcome Yij from the following model:

Yij =1 + 1.5X1ij,1 + 2X1ij,2 + 2.5X1ij,3 + 0X1ij,4 + 0X1ij,5 + 0X1ij,6 + 0X1ij,7+

bli,0 + bli,1Z1ij,1 + bli,2Z1ij,2 + bli,3Z1ij,3 + bli,4Z1ij,4 + bli,5Z1ij,5 + bli,6Z1ij,6+

bli,7Z1ij,7 + εij ,

and the failure time from a Weibull distribution with the hazard function:

λi(t) = λ0(t) exp(1.5x2i,1 + 2x2i,2 + 2.5x2i,3 + 0x2i,4 + 0x2i,5 + 0x2i,6 + 0x2i,7+

bsi,0 + bsi,1z2i,1 + bsi,2z2i,2 + bsi,3z2i,3 + bsi,4z2i,4 + bsi,5z2i,5+

bsi,6z2i,6 + bsi,7z2i,7),

for i = 1, . . . , 250, j = 1, . . . , 5, where λ0(t) = αλtα−1 with α = 2, and λ = exp(1) = 2.718.

Random effect bi is independently generated from N(0, I8). bli = (bli,0, bli,1, bli,2,

bli,3, bli,4 bli,5, bli,6, bli,7) is obtained by bli = Γ1bi and bsi = (bsi,0, bsi,1, bsi,2, bsi,3, bsi,4, bsi,5,

bsi,6, bsi,7) is obtained by bsi = Γ2bi, where

Γ1 = Γ2 = σD



1 0 0 0 0 0 0 0

1
2

1
2 0 0 0 0 0 0

1
3

1
3

1
3 0 0 0 0 0

1
4

1
4

1
4

1
4 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



1
2
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and σD =
√

0.5. Covariates X1ij,1 = Z1ij,1, X1ij,2 = Z1ij,2, X1ij,3 = Z1ij,3, X1ij,4 = Z1ij,4,

X1ij,5 = Z1ij,5, X1ij,6 = Z1ij,6, X1ij,7 = Z1ij,7 and x2i,1 = z2i,1, x2i,2 = z2i,2, x2i,3 =

z2i,3, x2i,4 = z2i,4, x2i,5 = z2i,5, x2i,6 = z2i,6, x2i,7 = z2i,7 are generated as independent

N(0, 1) variables; The measurement error εij ∼ i.i.d.N(0, 1). The censoring time is inde-

pendently generated from an exponential distribution to ahieve a 30% censoring percentage.

For each scenario, I generate 100 data sets and apply the proposed method to select

the non-zero fixed or random effects in the first-stage model. After obtaining the selected

variables, I fit the second-stage model including only the selected effects. The tuning pa-

rameters λ1, λ2, λ3, λ4 are determined by minimizing the BIC criterion, as defined in (2.15).

The model without variable selection is also fitted for comparison.

2.3.2 Simulation Results

For Scenarios 1 to 4, I present the fixed- and random-effect selection results in Table 2.1,

fixed-effect estimation results in Tables 2.2 and 2.3, and random-effect estimation results

in Table 2.4. For fixed effects, the average correct selection rates are 100% for both non-

zero and zero effects in longitudinal component, and 100% for non-zero and 98% for zero

effects in survival component. The longitudinal fixed-effect estimates do not show severe

biases in the first-stage estimation, and the biases are further reduced to less than 1% in

the second-stage estimation. The survival fixed-effect estimates show 15% to 25% biases

in the first-stage estimation, and the biases are reduced to below 4% in the second-stage

estimation.

For random effects, the average rates of correct selection are 100% for non-zero and

94% for zero effects in longitudinal component, and approximately 96% for non-zero and

90% for zero effects in survival component. For non-zero random effects, the estimates in

longitudinal component have biases ranging from 8% to 17% in the first-stage estimation,
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and the biases are reduced to below 6% in the second-stage estimation. The survival non-

zero random effect estimates show up to 42% biases in the first-stage estimation; in the

second stage, the biases are reduced to less than 8%. For zero random effects, both the

first- and second-stage estimates in longitudinal component have biases below 2%. The

survival zero random effect estimates generally have less than 10% biases in both stage

estimations.

Simulation results for settings with higher proportions of censoring and larger numbers

of random effects are reported in Tables 2.5, 2.6, 2.7, 2.8, 2.9 and 2.10. Briefly, I find that

the probabilities of correct selection remain excellent for these data settings.

One consequence of including more random effects is the increased computing time.

The complexity of Gaussian quadrature increases exponentially with the dimension of the

random effect vector. In this research, I used 3 quadrature points. With 3 quadrature

points, each data set in Scenarios 1 to 4 took approximately 20 minutes to complete the

first stage variable selection under one tuning parameter; and it took another 10 minutes

in the second stage estimation. When I increased the number of random effects to 8 (as in

Scenario 6), the computation time increased to 10 and 5 hours, respectively. The computing

time is estimated on a single CPU (Intel(R) Xeon(R) CPU E7- 4830 @ 2.13GHz) and 4 GB

memory in the Unix system. The total computing time depended on the number of tuning

parameters. Other factors, such as the shape of the likelihood function could also influence

the approximation accuracy of Gaussian quadrature and the computing time.

Generally, mis-selection rate increases as the censoring rate increases or the variance

magnitude σD decreases, since smaller variance σD means less resolution between non-zero

and zero random effects. The mis-selection subsequently leads to larger estimation bias. The

influence of censoring rate on selection accuracy is greater than that of variance. Increased

number of random effects does not necessarily lead to worse selection accuracy, but it
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tends to slightly increase estimation bias, which may be due to the reduced approximation

accuracy of Gaussian quadrature method. The estimates from the model without variable

selection generally have more biases than the second-stage estimates, especially for the zero

effects. In summary, I contend that the proposed variable selection and estimation method

works well even under high proportions of censoring and large number of random effects.

The two stage procedure ensures good selection performance in the first stage and reduced

biased parameter estimation in the second stage.
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2.4 Data Application

To illustrate the method, I analyzed observational data from the CHF study. As previously

stated, the main purpose of the investigation is to assess the effects of medication adherence

on disease exacerbation and patient survival. For the survival outcome, I modeled the time

from the first recorded CHF diagnosis to patient mortality, which could be censored on Dec

31, 2009. For the longitudinal outcome, I modeled the repeatedly measured BNP levels

as markers of disease exacerbation. Because the distribution of BNP skewed strongly to

the right, I used the logarithmic-transformed BNP (log(BNP)) in the model. Medication

adherence, the independent variable of primary interest, was the average proportion of

days covered (PDC) by all prescribed medications within each patient (Choudhry et al.,

2009). Besides PDC, seven other risk factors were considered, including systolic blood

pressure (SBP), diastolic blood pressure (DBP), BMI, gender, age at CHF diagnosis date

(IndexAge), number of comorbidities (NumComorbid) and number of medications taken

(NumMed). I also considered interactions among SBP, DBP, BMI, PDC and gender.

In the study sample, 58.3% of the subjects were females and the average BMI was 32.7

(kg/m2). The average age for the study cohort at the CHF diagnosis date was 62.7 years.

On average, the study subjects had 5.1 comorbidities and took 8.4 medications with a mean

PDC of 0.327. Among the covariates, concurrently measured SBP (mean: 134.8mmHg; SD:

24.2 mmHg) and DBP (mean: 77.0mmHg; SD: 16.0 mmHg) were recorded at the time

of BNP assessment; the remaining variables were collected as baseline covariates. The

censoring percentage was 64.1%, and median time to death was 4115 days (11.3 years).

For longitudinally measured BNP levels, I use linear mixed-effects model log(BNP )ij =

x1,ijβ1 + z1,ijΓ1bi + εij for i = 1, ..., 1702, and j = 1, ..., ni. I let x1,ij = (1, DBPij , SBPij ,

BMIi, PDCi, Genderi, DBPij × Genderi, SBPij × Genderi, BMIi × Genderi, PDCi ×

Genderi, NumComorbidi, NumMedi, IndexAgei) be the design matrix of the fixed effects
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and z1,ij = (1, DBPij , SBPij , BMIi, PDCi) be the design matrix of the random effects. I

assume that bi follows N(0, I5) and I let εij ∼ i.i.d.N(0, σ2) be the measurement error.

For mortality, I assume that the survival time ti follows a Weibull distribution. I use

a proportional hazard model h(ti) = h0(ti) exp(x2,iβ2 + z2,iΓ2bi), with baseline hazard

h0(ti) = αλtα−1
i for i = 1, ..., 1702, where α is the shape parameter and λ is the scale pa-

rameter. I let x2,i = (1, DBPi1, SBPi1, BMIi, PDCi, Genderi, DBPi1 ×Genderi, SBPi1 ×

Genderi, BMIi × Genderi, PDCi × Genderi, NumComorbidi, NumMedi, IndexAgei) be

the design matrix for the fixed effects and z2,i = (1, DBPi1, SBPi1, BMIi, PDCi) be the

design matrix for the random effects. Given the random effect bi, I assume that log(BNP )ij ,

log(BNP )ij′ and ti are conditionally independent.

Data analytical results are presented in Table 2.11. For longitudinally measured BNP,

our procedure selects DBP, BMI, NumComorbid, and IndexAge as non-zero fixed effects;

SBP and PDC as non-zero random effects. For the survival outcome, NumMed is selected

as the non-zero fixed effect; PDC as non-zero random effect. The residual plots Figure 2.1

show no violation of basic model assumptions for the two outcomes. The selected model

has a smaller BIC value than the full model and a reduced model including all fixed effects

and random intercept.

The effects of the selected variables on the outcomes are in expected directions. In the

longitudinal model, DBP is positively associated with BNP (β = 0.0145) (greater diastolic

dysfunction is associated with increased BNP level). BMI exhibits a significant negative

association with BNP. For each unit of increase in BMI, log-BNP level decreases by 0.0299

(β = −0.0299). This result is not surprising as patients at advanced stage of CHF (indicated

by greater BNP values) tend to have deteriorated health and much reduced body weight.

Interestingly, blood pressure is not found to be associated with the survival outcome, which

is influenced more strongly by the number of medications. Patients taking more medica-
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Table 2.11: Results for the heart failure patient data analysis.

Longitudinal component Survival component

Variance Variance

Fixed Effecta Componentb Fixed Effecta Componentb

Intercept 5.0042±0.2321 2.6735 - 0.9657

DBP 0.0145±0.0016 0 0 0

SBP 0 0.0133 0 0

BMI -0.0299±0.0030 0 0 0

PDC 0 2.8857 0 1.7911

Gender 0 - 0 -

DBP × Gender 0 - 0 -

SBP × Gender 0 - 0 -

BMI × Gender 0 - 0 -

PDC × Gender 0 - 0 -

Num. of comorbidities 0.1197±0.0196 - 0 -

Num. of drugs 0 - -0.1163±0.0121 -

Index Age -0.0033±0.0022 - 0.0044±0.0024 -

a Estimate of β1 ± SE and β2 ± SE.
b Estimate of diag(

√
D1) and diag(

√
D2).

tions have reduced mortality risk (β = −0.1163). Patients who are older at CHF diagnosis

tend to have significantly increased mortality risk (β = 0.0044). PDC, our primary vari-

able of interest, has non-zero random effects in both longitudinal (SD=2.8857) and survival

(SD=1.7911) components, which implies that medication adherence is the underlying latent

process influencing both the BNP level and patient survival, and further suggests that the

effects of medication adherence on the outcomes may vary across subjects. The shared ran-

dom intercepts in the longitudinal component (SD=2.6735), and in the survival component

(SD=0.9657) are also non-zero, which implies a strong within-patient correlation between

the two outcomes as well.
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Figure 2.1: Residual plots for data application diagnostics. The circles are the standardized
residuals. The black lines are the LOESS estimates.
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2.5 Discussion

Despite the increasing popularity of joint models in practical data analysis, few variable

selection tools are available for identifying appropriate models. In this paper, I propose a

method that simultaneously selects random and fixed effects in a joint model setting. For

random effect selection, I apply a Cholesky parametrization to the covariance matrix of

random effects and use a group penalty, as previous studies have done (Bondell et al., 2010;

Ibrahim et al., 2011). This parametrization has made the mixed-effects selection easily

adaptable in the complicated joint model settings. Our simulation study shows that the

proposed method could correctly identify important fixed and random effects simultane-

ously, even in the presence of a high proportion of censoring and a large number of random

effects. The two-stage model fitting process has helped to control the estimation biases

caused by the inclusion of penalty.

A major challenge of using penalized likelihood for variable selection is the compu-

tational complexity. The observed likelihood or the E-step in the EM algorithm involves

analytically intractable integration. The MCMC method for integral approximation is com-

putationally intensive. Laplace approximation could be a useful alternative, as it has been

shown to offer improved computation efficiency at the expense of extra estimation bias (Ye

et al., 2008a). The Gaussian quadrature method used in the current study exhibits excel-

lent stability (At the threshold of 10−7, our simulation shows a 100% convergence rate in

Scenarios 2-6, and 92% convergence rate in Scenario 1; Generally, the simulation converges

within 60 iterations). As I have demonstrated in the simulation, the proposed method can

easily handle up to eight random effects. A possible alternative of Gaussian quadrature

is the pseudo-adaptive Gauss-Hermite quadrature rule, which has been shown to be faster

in computation with comparable accuracy in the joint model setting (Rizopoulos, 2012).

In practice, considering the fact that most biomedical applications use random effects to
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accommodate structured data dependency, thus will have a relatively small numbers of ran-

dom effects, I contend that the proposed method is likely adequate for most applications.

Additionally, as I have demonstrated through simulation, the number of quadrature points

has limited impact on the accuracy of model selection. As a result, for complicated models

one could use a smaller number of quadrature points to enhance computational efficiency

in the first stage, and then increase the number of quadrature points in the second stage to

achieve desired estimation accuracy. Comparing our simulation results with the reported

performance in linear mixed-effects models (Bondell et al., 2010), generalized linear mixed

models (Ibrahim et al., 2011), and survival models (Zhang and Lu, 2007), I note that our

method has achieved comparable selection and estimation accuracy.

In summary, I show that penalized likelihood method can be used for variable selection

in joint model settings. The procedure can be modified for the simultaneous mixed-effects

selection in other bi-component models. Our research has demonstrated, through a real

data example, that the proposed method provides a useful tool for practical data analysis.

The method is easy to implement and it is efficient in computation.
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Chapter 3

Structural Discovery

3.1 Introduction

Nonparametric additive models proposed by Friedman and Stuetzle (1981) and Hastie and

Tibshirani (1990) can be extended to multivariate settings. These models are generally

more flexible in the accommodation of potentially nonlinear effects as compared with linear

models, and require fewer model assumptions, thus reducing the risk of model misspecifica-

tion. Additionally, nonparametric additive models are free of the “curse of dimensionality”

caused by the use of multivariate smoother. This gain in flexibility comes at the price of

increased model complexity and reduced parameter interpretability. In practice, when a

large number of independent variables are considered, naively assuming nonparametric ef-

fects for all independent variables in an additive structure could greatly increase the burden

of parameter estimation and reduce the model efficiency. An ideal model should represent

a sensible compromise between the efficiency of a linear model and the flexibility of a non-

parametric model. In other words, if the true effect of an independent variable is linear,

one would like to model it as such; if the true effect of an independent variable is nonlinear,

one would like to model it nonparametrically; if an independent variable has no effect, one

would like to exclude it from the model.

A semiparametric model combines the strength of both the linear models and non-

parametric additive models. There is sizable literature on semiparametric additive models.

Among the most significant developments, Martinussen and Scheike (1999) studied semi-

parametric additive regression models for longitudinal data. In a survival analysis setting,

Huang et al. (1999) presented a semiparametric additive Cox model with polynomial splines.
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More recently, Yu et al. (2012) developed a semiparametric frailty model for clustered fail-

ure time data through smoothing splines estimated by using a penalized partial likelihood

method. A recent extension of the semiparametric additive model is in a joint model set-

ting. Joint modeling of longitudinal and survival outcomes through shared latent processes

provides a useful way to alleviate biases while ensuring valid inference concerning the cor-

relation structure between the two outcomes (Faucett and Thomas, 1996). Wulfsohn and

Tsiatis (1997) proposed a general framework in which the survival component was depicted

by a proportional hazard model, and the longitudinal component was represented by a lin-

ear mixed-effects model. The semiparametric additive model extends the applicability of

joint models. Ye et al. (2008b) incorporated smoothing spline component into joint models.

Zhangsheng and Liu (2011) used a penalized spline method for joint models for recurrent

and terminal events.

So far, most of the published papers have focused on the estimation of semiparametric

additive models. Little has been discussed about the selection of the functional forms of

the independent variables. In practice, it is of essential importance to correctly specify the

functional form of an independent variable, thus serving as a safeguard for constructing a

valid semiparametric model. Such a procedure is often referred to as “structural discovery”

(SD). Unfortunately, the existing literature on this topic is rather limited. A naive approach

to determine the functional form is to simply specify a nonparametric function for each

independent effect, and then determine the functional form of each term by visualizing

the independent effects. This method may be useful in some circumstances, but it lacks

theoretical justifications. Another commonly used method is to test the linearity of each

independent variable effect. But in complex model settings, such as in joint models, it

is usually difficult to derive proper testing statistics. When there is a large number of

independent variables, the power of the tests could be low and type I error rate may be
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inflated due to multiple testing. More recently, a data-driven structural discovery method

has been proposed by Zhang et al. (2011) in a partially linear model setting. Exhaustive

literature search reveals that no similar work has been done for joint models. This may be

due to the complexity of the joint model structure. The need to simultaneously perform

structural discovery in both longitudinal and survival components also presents a daunting

challenge as the longitudinal and survival outcomes are modeled separately through different

structures.

The purpose of the current chapter is to fill in this methodology gap for nonparametric

additive model in a joint model setting by using a penalized likelihood method based model

selection approaches. Specifically, I propose to start from the semiparametric joint model

with unspecified functional forms depicted by cubic B-splines. Then by following Wand

and Ormerod (2008)’s approach, I decompose the cubic B-splines into linear and nonlinear

elements. I then use variable selection methods to select the linear and nonlinear elements.

This decomposition represents the model in a mixed-effect model format, which serves as

a bridge to connect the structural discovery and mixed-effect selection, where the selection

of linear elements mimics the fixed-effect selection, and the selection of nonlinear elements

mimics the random-effect selection. Mixed-effect selection through data-driven methods has

received increasing attentions in recent years. Bondell et al. (2010) studied mixed-effect

selection in linear mixed-effects model. Ibrahim et al. (2011) studied mixed-effect selection

in generalized linear mixed models. Most recently, He et al. (2014) studied mixed-effect

selection in a joint model setting. I propose to use penalized likelihood to mimic the mixed-

effect selection for structural discovery in the semiparametric additive joint models, in which

a penalized likelihood will be optimized through an EM algorithm.
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3.2 Method

3.2.1 Model Formulation

To perform structural discovery in a semiparametric additive joint model, I introduce a

semiparametric linear mixed-effects model for the longitudinal component and a semipara-

metric frailty model for the survival component, in which the functional forms of continuous

variables with unknown effects are modeled by cubic B-splines.

Suppose in a longitudinal study, I have a survival outcome (ti, δi), and repeated mea-

surements of a continuous outcome yi for i = 1, · · · , n subjects. Here ti is the observed event

time subjected to right censoring, and δi is a failure indicator with δi = 1 indicating the oc-

currence of an event of interest, and δi = 0 indicating censoring, whereas yi = {yi1 . . . yini}

is an ni × 1 vector of the ni repeated measurements. For the longitudinal component, let

X1i ∈ Rni×p be the covariate matrix for unknown effects with j th row vector x1ij ∈ Rp1 and

W1i ∈ Rni×d be the covariate matrix for effects already identified as linear with j th row

vector w1ij ∈ Rd1. For the survival component, let x2i ∈ Rp1 and w2i ∈ Rd1 be the covariate

vectors for unknown effects and known linear effects, respectively. I denote Z1i ∈ Rni×q and

z2i ∈ Rq1 as the random effect covariate matrix and vector in the two model components.

Without loss of generality, I let the longitudinal and survival components have the same set

of covariates and random effects here. This could be easily generalized to the situation with

different sets of covariates and random effects in each component. Combining these obser-

vations I write Oi = (yi,X1i,W1i,Z1i, ti, δi,x2i,w2i, z2i). I assume that the observations

Oi are independent across subjects.
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Then, for the longitudinal component, I assume a semiparametric linear mixed-effects

model:

yij = β0 +

p∑
h=1

fh(x1ij,h) +wT1ijγ1 + zT1ijbi + εij , (3.1)

and for the survival component, I assume a semiparametric frailty model:

h(ti) = h0(ti) exp{
p∑

h=1

gh(x2i,h) +wT2iγ2 + zT2ibi}, (3.2)

where x1ij,h and x2i,h are the hth elements in the independent variable vectors x1ij and

x2i; fh(·) and gh(·) are the corresponding unknown cubic B-spline functions; γ1 and γ2

are regression coefficients for linear effects; bi = (b1, · · · , bq) ∈ Rq1 is a random effect vector

following a multivariate normal distribution MVN(0, D(φ)); εij ∼ N(0, σ2) is the mea-

surement error, which is assumed to be independently and identically distributed; β0 is the

intercept of regression function and h0(ti) is the baseline hazard function. The baseline

hazard function h0(ti) could be modeled nonparametrically through B-spline. One could

also parameterize h0(ti) with a parametric distribution. For example, a natural option is

to use a Weibull distribution with a baseline hazard h0(ti) = αλtα−1
i , where α is the shape

parameter and λ is the scale parameter. Alternatively, one could use a piece-wise constant

baseline hazard by dividing the study period into m intervals and assuming h0(t) to be a

constant on each interval as

h0(t) = hk, tk−1 < t ≤ tk, k = 1 . . .m, (3.3)

where tks are knots that define the intervals. This piece-wise constant baseline hazard had

been shown to perform well by Feng et al. (2005) and Ding and Wang (2008).
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Let η =
{
fh(·), gh(·),γ1,γ2,φ, σ, h0(·)

}
be the vector of all unknown parameters. The

marginal likelihood of η could be written as:

Lo(η) =
n∏
i=1

∫
f(yi, ti, δi|bi,X1i,W 1i,Z1i,x2i,w2i, z2i,η)fb(bi)dbi

=
n∏
i=1

∫ ni∏
j=1

fy(yij |x1ij ,w1ij , z1ij , bi,η)fs(ti, δi|x2i,w2i, z2i, bi,η)fb(bi)dbi,

(3.4)

where fb(·) is a q−variate normal density function for bi, fs(·) is the likelihood of the survival

component parameters conditional on bi, and fy(·) is the density function of repeated

measurements conditional on bi.

3.2.2 Penalized Smoothing Splines

Penalized cubic B-spline is used to estimate fh(·) and gh(·). To illustrate penalized cubic B-

spline, I use f(·) as an example. For simplicity, I omit the subscription. Let B1, . . . , BK+4 be

the cubic B-spline basis functions with K inner knots for f(x), and suppose we have n obser-

vations (x1, . . . , xn), thus we could set up the n×(K+4) design matrixB, with row vector as

(B1(xi), . . . , BK+4(xi)). Let θ = (θ1, . . . , θK+4)
T be the corresponding B-spline regression

coefficients. Then Bθ̂ can be used to estimate f(x). The penalty term could be written as:

θTΩθ, where Ω(K+4)×(K+4) is the penalty matrix with Ωkk′ =
∫
B

(2)
k (s)B

(2)
k′ (s)ds. Then

the penalized likelihood for estimating fh(·) and gh(·) can be written as

ploriginal = lo(η)− λ1
p∑

h=1

θTf,hΩf,hθf,h − λ2
p∑

h=1

θTg,hΩg,hθg,h (3.5)

where lo(·) = log Lo(·) and Lo(·) is defined in (3.4), and λ1 and λ2 are the smoothing

parameters controlling the goodness of fit and the smoothness of the curves. Derivation for

each of fh(·)s and gh(·)s can be done in the same way.
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3.2.3 Structural Discovery Using Reparametrized Penalized Smoothing Splines

The penalized likelihood in (3.5) only estimates the cubic B-spline functions fh(·)s and

gh(·)s. It does not by itself perform the structural discovery for identifying the true effects

as depicted by fh(·)s and gh(·)s. To discover the true effects, I decompose fh(·)s and gh(·)s

into linear and nonlinear elements, and then use a variable selection method to select these

elements.

Following Wand and Ormerod (2008), by spectral decomposition, I decompose the

penalty matrix Ω as Ω = Udiag(d)UT . Matrix U consists of column eigenvectors and

vector d consists of eigenvalues arranged in descending order. Let d = (dT+, d
T
0 )T , where

dT+ is the vector of K + 2 descending positive eigenvalues, and dT0 is the vector of two zero

eigenvalues. Let U = [U+, U0], where U+ is a matrix of dimension (K + 4) × (K + 2),

corresponding to d+, and U0 is a matrix of dimension (K + 4)× 2, corresponding to d0,

Under this decomposition, cubic B-spline could be written as:

Bθ = BUUT θ

= B[U0U
T
0 θ + U+diag(d

−1/2
+ )diag(d

1/2
+ )UT+θ]

= B[U0β + U+diag(d
−1/2
+ )u]

= Cβ +Au,

(3.6)

whereC = BU0, β = UT0 θ,A = BU+diag(d
−1/2
+ ), and u = diag(d

1/2
+ )UT+θ. The penalty

term can be written as:

θTΩθ = θTUdiag(d)UT θ

= θTU0diag(d0)UT0 θ + θTU+diag(d+)UT+θ

= uTu.

(3.7)
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Thus the decomposition represents the model in a mixed-effect model format, in which

Cβ mimics the fixed effect and Au mimics the random effect. As in Wand and Ormerod

(2008), C is the basis for the linear space and A is the basis for nonlinear effect, and β

and u are the corresponding regression coefficients. Thus selection of linear and nonlinear

effects mimics the seletion of mixed effects. A simple specification of the linear basis is

C = [1, xi] (Speed, 1991; Wand and Ormerod, 2008). To ensure identifiability, I omit the

intercept in C = [1, xi] and centralize xi by following Yu et al.,(2012).

With this reparameterization, I re-write the nonlinear functions in Equation (3.1) as

fh(x1ij,h) = C1ij,hβ1h+A1ij,hu1h and the nonlinear functions in Equation (3.2) as gh(x2i,h) =

C2i,hβ2h+A2i,hu2h. The reparameterized semiparametric linear mixed-effects model there-

fore takes the following form:

yij = β0 +

p∑
h=1

(C1ij,hβ1h +A1ij,hu1h) +wT1ijγ1 + zT1ijbi + εij , (3.8)

and the reparameterized semiparametric frailty model can be written as:

h(ti) = h0(ti)exp{
p∑

h=1

(C2i,hβ2h +A2i,hu2h) +wT2iγ2 + zT2ibi}, (3.9)

where C2i,h = (x2i,h − x̄02h) and x̄02h =
∑rh

k=1 x
0
2hk/rh, where x02hk (k = 1, . . . , rh) are the

ordered rh distinct independent variable values for the hth independent variable x2h. Sim-

ilarly, C1ij,h = (x1ij,h − x̄01h).

Let ζ = (β0, β1h, β2h,u1h,u2h,γ1,γ2,φ, σ, h0(ti)), then ploriginal in (3.5) could be writ-

ten as the smoothing spline analysis of variance (SSANOVA) type penalized likelihood

plSSANOV A = lo(ζ)− λ1
p∑

h=1

uT1hu1h − λ2
p∑

h=1

uT2hu2h. (3.10)
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However, the penalty terms of plSSANOV A in Equation (3.10) do not possess the sparsity

property for variable selection of regression coefficients u1h and u2h for the nonlinear effects.

In addition, the penalized likelihood plSSANOV A does not allow the selection of regression

coefficients β1h and β2h for linear effects. To perform structural discovery, I propose the

following penalized likelihood plSD with penalty terms having sparsity on estimation of β1h,

β2h, u1h and u2h:

plSD(ζ) =
1

n
lo(ζ)− λ1,β

p∑
h=1

κλ1,β
(β1h)− λ2,β

p∑
h=1

κλ2,β
(β2h)

− λ1,u
p∑

h=1

κλ1,u(u1h)− λ2,u
p∑

h=1

κλ2,u(u2h).

(3.11)

The penalty functions κλ1,β
(β1h) and κλ2,β

(β2h) control the sparsity of estimates of β1h

and β2h so that the linear effects are selected, where λ1,β and λ2,β are the associated positive

tuning parameters. The penalty terms κλ1,u(u1h) and κλ2,u(u2h) control the sparsity of

estimates of u1h and u2h for selection of the nonlinear effects, where λ1,u and λ2,u are the

associated positive tuning parameters; κλ1,β
(β1h) and κλ1,u(u1h) jointly determine the effect

of hth independent variable x1h in the longitudinal component; κλ2,β
(β2h) and κλ2,u(u2h)

jointly determine the effect of hth independent variable x2h in the survival component.

Here, I define the partially linear effect as β and u are both nonzero. The functions κλ1,β
(·),

κλ2,β
(·), κλ1,u(·), κλ2,u(·) could be the adaptive LASSO or the smoothly clipped absolute

deviation (SCAD) penalties.

For linear-effect selection, I define the adaptive LASSO penalty as κλ1,β
(β1h) = ωβ1h

|β1h|

and λ2,β2h
= ωβ2h

|β2h|, where ωβ1h
, ωβ2h

are the corresponding positive weights for penalty

|β1h| and |β2h|. I choose the weights as ωβ1h
= |β̃1h|−1, ωβ2h

= |β̃2h|−1, where β̃1h and β̃2h

are the optimizers of the SSANOVA type penalized likelihood defined in Equation (3.10).
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Some of the estimates of β̂1h and β̂2h for penalized likelihood (3.11) will be zero since |β1h|

and |β2h| are singular when |β1h| = 0 and |β2h| = 0.

For nonlinear effect selection, I note that a nonlinear effect could be excluded if and

only if u1h = 0 and u2h = 0. As u1h and u2h are vectors, I propose to perform the group

penalty on u1h and u2h. I first summarize it using an L2−norm: ||u1h|| = (uT1hu1h)1/2

and ||u2h|| = (uT2hu2h)1/2. Following Yuan and Lin (2006), I define the adaptive LASSO

penalties for nonlinear effect as: κλ1,u(u1h) = ωu1h ||u1h|| and κλ2,u(u2h) = ωu2h ||u2h||.

The weights are chosen as ωu1h = ||ũ1h||−1, ωu2h = ||ũ2h||−1, where ũ1h and ũ2h are the

optimizers of the SSANOVA type penalized likelihood defined in Equation (3.10). The pe-

nalized likelihood with the SCAD penalty terms could be constructed in a similar way by

substituting the penalty term in (3.11) with SCAD penalty on (|β1h|, |β2h|, ||u1h||, ||u2h||).

The estimator of ζ = (β0, β1h, β2h,u1h,u2h,γ1,γ2,φ, σ, h0(ti)) can be obtained by maxi-

mizing Equation (3.11). I use adaptive LASSO penalty in the simulation study.

3.2.4 EM Algorithm for Optimization of the Penalized Likelihood

To maximize the penalty likelihood (3.11), I use an EM algorithm. Let

p(ζ) =λ1,β

p∑
h=1

ωβ1h
|β1h|+ λ2,β

p∑
h=1

ωβ2h
|β2h|+

λ1,u

p∑
h=1

ωu1h ||u1h||+ λ2,u

p∑
h=1

ωu2h ||u2h||
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denote the penalty terms. I start with the penalized complete likelihood for (ζ) for i =

1, · · · , n, which is

plc(ζ) =
1

n

n∑
i=1

log f(yi, ti, δi, bi|ζ)

− λ1,β
p∑

h=1

κλ1,β
(β1h)− λ2,β

p∑
h=1

κλ2,β
(β2h)

− λ1,u
p∑

h=1

κλ1,u(u1h)− λ2,u
p∑

h=1

κλ2,u(u2h)

=
1

n

n∑
i=1

{log[fy(yi|bi, ζ)] + δi log[h(ti|bi, ζ)] + log[S(ti|bi, ζ)] + log[fb(bi|ζ)]} − p(ζ).

(3.12)

In Equation (3.12), S(·) is the survival function of ti conditional on bi. Let λ =

(λ1,β, λ2,β, λ1,u, λ2,u) and ω = (ωβ1h
, ωβ2h

, ωu1h , ωu2h). Here I denote the complete data as

gc,i = (yi,X1i,x2i, ti, δi,W 1i,w2i,Z1i, z2i, bi), the complete longitudinal data as gc,i1 =

(yi,X1i,Z1i,W 1i, bi), the complete survival data as gc,i2 = (ti, δi,x2i, z2i,w2i, bi), the ob-

served data as go,i = (yi,X1i,x2i, ti, δi,W 1i,w2i,Z1i, z2i), the observed longitudinal data

as go,i1 = (yi,X1i,W 1i,Z1i), and the observed survival data as go,i2 = (x2i, ti, δi,w2i, z2i).

E-step

I first derive the E-step of the EM algorithm for the fixed tuning parameter and weights

λ, ω. Letting ζ(s) be from the sth iteration of maximization, I take the expectation of the

penalized log-complete likelihood conditional on ζ(s) and goi, for i = 1, . . . , n, and obtain
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the following penalized Q-function:

Qλ,ω(η̃|ζ(s)) =
1

n

n∑
i=1

{E[log fy(gc,i1, ζ)|(go,i, ζ(s))] + E[δi log h(gc,i2, ζ)|(go,i, ζ(s))]

+ E[logS(gc,i2, ζ)|(go,i, ζ(s))]} − p(ζ) +
1

n

n∑
i=1

E[log fb(bi)|(go,i, ζ(s))],

(3.13)

where

E[H(bi)|(go,i, ζ(s))] =

∫
H(bi)fb(bi|go,i, ζ(s))dbi, (3.14)

for each of H(bi) = log fy(gc,i1, ζ), H(bi) = δi log h(gc,i2, ζ), H(bi) = logS(gc,i2, ζ) and

H(bi) = log fb(bi). Because the integral in Equation (3.14) is intractable, I approximate it

by using a multivariate Gaussian quadrature (Pinheiro and Bates, 1995). Since bi ∈ Rq1, if I

choose k quadrature points, there will be a total of kq vector nodes of q× 1 dimension. Let

b
′
l = (b

′
l,1, b

′
l,2, · · · , b

′
l,q) denote the lth node, and wl denote the corresponding quadrature

weight, for l = 1, · · · , kq, the integral (3.14) can be approximated by:

Ẽ{H(bi)|(go,i, ζ(s))} ≈
kq∑
l=1

wlH(b′l)fb(b
′
l|go,i, ζ

(s)) (3.15)

Therefore, I obtain the approximated expected function to be maximized in the (s + 1)th

iteration as

Q̃λ,ω(ζ|ζ(s)) =
1

n

n∑
i=1

{Ẽ[log fy(gc,i1, ζ)|(go,i, ζ(s))] + Ẽ[δi log h(gc,i2, ζ)|(go,i, ζ(s))]

+ Ẽ[logS(gc,i2, ζ)|(go,i, ζ(s))]} − p(ζ) +
1

n

n∑
i=1

Ẽ[log fb(bi)|(go,i, ζ(s))]

(3.16)
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M-step

I maximize (3.16) with respect to the (β1, β2)s and (u1,u2)s alternatively. When (β0,u1h,

u2h,γ1,γ2,φ, σ, h0(ti)) are fixed, I maximize (3.16) with respect to (β1h, β2h), and the

penalty function involving L1 penalty terms can be solved by applying the Least Angle

Regression (LARS)/LASSO algorithm (Efron et al., 2004) and the SCAD penalty could be

solved according to Fan and Li (2001). When (β0, β1h, β2h,γ1,γ2,φ, σ, h0(ti)) are fixed, I

maximize (3.16) with respect to (u1h,u2h).

The expectation conditional maximization procedures are proposed as follows:

1. Initialize (β
(0)
0 , β

(0)
1h , β

(0)
2h ,u

(0)
1h ,u

(0)
2h ,γ

(0)
1 ,γ

(0)
2 ,φ(0), σ(0), h0(ti)

(0)) with some plausible

values.

2. For iteration s, update β1h, β2h by adaptive LASSO,

β
(s)
1h , β

(s)
2h = argmax

β1h,β2h

Q̃λ,ω(β
(s−1)
0 , β1h, β2h,u

(s−1)
1h ,u

(s−1)
2h ,γ

(s−1)
1 ,γ

(s−1)
2 ,φ(s−1), σ(s−1),

h0(ti)
(s−1)|β(s−1)

0 , β
(s−1)
1h , β

(s−1)
2h ,u

(s−1)
1h ,u

(s−1)
2h ,γ

(s−1)
1 ,γ

(s−1)
2 ,

φ(s−1), σ(s−1), h0(ti)
(s−1))

3. Update u1h,u2h,

u
(s)
1h ,u

(s)
2h = argmax

u1h,u2h

Q̃λ,ω(β
(s−1)
0 , β

(s)
1h , β

(s)
2h ,u1h,u2h,γ

(s−1)
1 ,γ

(s−1)
2 ,φ(s−1), σ(s−1),

h0(ti)
(s−1)|β(s−1)

0 , β
(s)
1h , β

(s)
2h ,u

(s−1)
1h ,u

(s−1)
2h ,γ

(s−1)
1 ,γ

(s−1)
2 ,

φ(s−1), σ(s−1), h0(ti)
(s−1))
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4. Update β0,γ1,γ2, σε, h0(ti), φ:

β
(s)
0 ,γ

(s)
1 ,γ

(s)
2 ,φ(s), σ(s), h0(ti)

(s) = argmax
β0,γ1,γ2,φ,σ,h0(ti)

Q̃λ,ω(β0, β
(s)
1h , β

(s)
2h ,u

(s)
1h ,u

(s)
2h ,γ1,γ2,φ,

σ, h0(ti)|β(s−1)
0 , β

(s)
1h , β

(s)
2h ,u

(s)
1h ,

u
(s)
2h ,γ

(s−1)
1 ,γ

(s−1)
2 ,φ(s−1),

σ(s−1), h0(ti)
(s−1))

5. Terminate the iteration when max|ζ(s) − ζ(s−1)| are small enough. Otherwise, let s =

s+ 1 and go back to step 2.

Before updating parameters in each step, the corresponding Q̃λ,ω function is approxi-

mated by Gaussian quadrature in the E-step.

3.2.5 Tuning Parameter Selection and Two-stage Estimation

Similar to section (2.2.4), I propose to use the BIC-type criterion to determine the values

of tuning parameters, where

BICλ = −2lo(ζ̂) + log(n)× dfλ, (3.17)

In (3.17), ζ̂ are the estimators obtained from penalized likelihood defined in Equation (3.11)

under the given λ, and lo(ζ̂) is the value of the observed likelihood lo(ζ) evaluated at the

estimates ζ̂. The tuning parameters are chosen to minimize the BICλ criterion. The total

sample size n is used. I take d, the total number of non-zero estimates of ζ̂ as the degree of

freedom dfλ.

To reduce the estimation bias, I propose a two-stage process. In the first stage, I

focus on using the penalized likelihood method to perform structural discovery to select the

model that minimizes the BIC value. In the second stage, to reduce the estimation bias,
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I re-estimate parameters using SSANOVA type penalized likelihood with selected model

structure from the first stage.

3.3 Simulation Study

3.3.1 Data Generation

I conducted a simulation study to evaluate the performance of the proposed estimation

procedure. I generated the longitudinal outcome Yij from the following model:

Yij =2 + 2x1ij,1 + sin(x1ij,2) +
(
x1ij,3

π )2−1(1− x1ij,3

π )5−1

Beta(2, 5)
+

0x1ij,4 + 0x1ij,5 + 0x1ij,6 + 0x1ij,7 + 0x1ij,8 + b0i + εij ,

(3.18)

in which, x1ij,1, x1ij,2, and x1ij,3 have the linear, nonlinear and partially linear effects. The

failure time was generated from the proportional hazard:

λi(t) = λ0(t) exp
{

3x2i,1 +
(
x2i,2

π )5−1(1− x2i,2

π )2−1

Beta(5, 2)
+ sin(x2i,3)+

0x2i,4 + 0x2i,5 + 0x2i,6 + 0x2i,7 + 0x2i,8 + b0i
}
,

(3.19)

in which, x2i,1, x2i,2, and x2i,3 have the linear, partially linear and nonlinear effects, for

i = 1, . . . , 500, j = 1, . . . , 5, where λ0(t) = αλtα−1 with α = 2, and λ = exp(1) = 2.718.

Random intercept b0i was independently generated from N(0, 1). Covariates x1ij,h, and

x2i,h, h = 1, . . . , 8 were generated from Uniform(0, π) distributions and the measurement

error εij ∼ i.i.d.N(0, 1). Censoring time was independently generated from an exponential

distribution to achieve 30% censoring percentage. I generated three different correlations

among the independent variables. Let ρ1 = corr(x1ij,h, x1ij,h′) and ρ2 = corr(x2i,m, x2i,m′)

denote the correlations between the covariates. In Scenario 1, ρ1 = ρ2 = 0; in Scenario 2,

ρ1 = ρ2 = 0.3; in Scenario 3, ρ1 = ρ2 = 0.6.
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For each scenario, I generated 100 data sets and applied the proposed method to discover

the functional forms of independent variables in the first stage and fitted the second-stage

model according to the discovered model structure. The tuning parameters λ1, λ2, λ3, λ4

were determined by minimizing the BIC criterion, as defined in (3.17). I also fitted the

model using SSANOVA type penalized likelihood without performing structural discovery

for comparison.

3.3.2 Simulation Results

I present the structural discovery results of the three scenarios in Table 3.1. In Scenario

1, for the longitudinal component, the discovery accuracy for nonlinear and partially linear

effects are 100%. The accuracy of linear effect discovery is 98%. For the five noise indepen-

dent variables with no effects, four of them have the discovery accuracies of over 98% and

the remaining one has the accuracy of 93%. The structural discovery accuracies of indepen-

dent variables for longitudinal component of Scenario 2 are similar to those of Scenario 1,

while Scenario 3 has slightly reduced accuracies. For the survival component, the discovery

accuracies in Scenarios 1 (>96%) and 2 (>91%) are excellent for all independent variables.

The accuracies of Scenario 3 are slightly lower, and the accuracy is 81% for the partially

linear effect.

To evaluate whether the method could improve the estimation of the functional forms,

I compare our first- and second-stage models with the SSANOVA model without any struc-

tural discovery. For each of the 100 simulated data, I calculate the integrated squared

error (ISE) for each independent variable as ISE1h = EX1h
{fh(X1h) − f̂h(X1h)}2 and

ISE2h = EX2h
{gh(X2h)−ĝh(X2h)}2 via a Monte Carlo integration on X1h and X2h for longi-

tudinal and survival components, respectively. X1h and X2h are Uniform(0,π) random vari-

ables generated for the simulation study. I then calculate the average ISEs over the 100 real-
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izations as AISE1h and AISE2h for each of the three models: the SSANOVA, first-stage and

second-stage models. The total AISEs (TAISE) are defined as TAISE1 =
∑p

h=1AISE1h

and TAISE2 =
∑p

h=1AISE2h. The estimation results are summarized in Table 3.2. For

longitudinal component, the TAISEs of first-stage model are much smaller than those of

SSANOVA model and the second-stage model could further improve the estimation with

even reduced TAISEs. When the pairwise correlation of the independent variables increases,

the TAISEs increase, but both the first-stage and second-stage model still perform much

better than the SSANOVA model. For survival component, the TAISEs of first-stage model

is larger than that of SSANOVA model, which is probably due to the increased bias caused

by introducing penalty terms for structural discovery to the likelihood. The bias could be

greatly reduced by the second-stage model. The TAISEs of the second-stage model are the

smallest among the three models. The pairwise correlation of independent variables seems

to have more influence on the survival component. The average curve estimate of functional

form for each independent variable over the 100 simulated data sets are shown in Figures

3.1, 3.2, 3.3, 3.4, 3.5, and 3.6. As shown in the figures, for the independent variables with

nonzero effects, the SSANOVA and second-stage model estimates are very close to the true

curves. However, for the independent variables with no effects, the SSANOVA model has

much more pronounced bias than the second-stage model.

Computation time of the proposed method is reasonable given the complexity of the joint

models. I used 3 quadrature points for Gaussian quadrature integration. With 3 quadrature

points, each data set took approximately 90 minutes to complete the first-stage structural

discovery under one tuning parameter, and it took another 1 minute in the second-stage

estimation under one tuning parameter. The computing time is estimated based on a sin-

gle CPU (Intel(R) Xeon(R) CPU E7- 4830 @ 2.13GHz) and 4 GB memory in the Unix

system. The total computing time depended on the number of tuning parameters. Other
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factors, such as the number of random effects could also influence the approximation accu-

racy of Gaussian quadrature and the computing time. The reduction of computation time

from first-stage to second-stage model also reflects the power of our method to construct a

parsimonious model by clearly identifying the functional form of each independent variable.

In summary, the structural discovery accuracy is close to 100% for the longitudinal com-

ponent, and it is robust to the existence of noise variables even when the pairwise correlation

of independent variables is strong. For the survival component, the structural discovery ac-

curacy is nearly perfect when pairwise correlation is low or moderate. When the correlation

is high, the structural discovery accuracy decreases slightly for the partially linear effect.

The structural discovery accuracy in the survival component is also robust to the existence

of noise variables. The estimation of the functional forms could be improved though the

two-stage procedure, and the improvement is more significant when the pairwise correlation

is stronger. In summary, I contend that the proposed structural discovery method works

well even under strong correlations of independent variables. The two-stage procedure en-

sures good structural discovery performance in the first stage and reduced estimation error

in the second stage.
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Table 3.1: Structural discovery accuracy in longitudinal and survival components for Sce-
narios 1 to 3

Discovery Accuracy (%) for Longitudinal component

Scenarios 2X1,1 sin(X1,2)
(
X1,3
π )(1−X1,3

π )4

Beta(2,5) 0 0 0 0 0

La NLa PLa Noise

1. ρ = 0 98 100 100 98 98 99 93 100

2. ρ = 0.3 95 100 100 98 99 96 99 98

3. ρ = 0.6 92 100 100 92 94 94 93 92

Discovery Accuracy (%) for Survival component

Scenarios 2X2,1
(
X2,3
π )4(1−X2,3

π )

Beta(5,2) sin(X2,2) 0 0 0 0 0

La PLa NLa Noise

1. ρ = 0 97 100 100 96 98 97 96 100

2. ρ = 0.3 98 91 96 99 99 98 100 99

3. ρ = 0.6 92 81 97 96 96 98 96 97
a L: linear effect; NL: nonlinear effect; PL: partial linear effect

Table 3.2: TAISE of longitudinal and survival components for Scenarios 1 to 3

Longitudinal component

Scenarios SSANOVA 1st Stage 2nd Stage

1. ρ = 0 0.17544 0.14995 0.13679

2. ρ = 0.3 0.17684 0.13609 0.13186

3. ρ = 0.6 0.21076 0.14486 0.14976

Survival component

Scenarios SSANOVA 1st Stage 2nd Stage

ρ = 0 0.45742 0.58991 0.44554

ρ = 0.3 0.47172 0.62455 0.46467

ρ = 0.6 0.61915 0.67122 0.55319
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Figure 3.1: Curve estimates in the longitudinal component for Scenario 1.

Figure 3.2: Curve estimates in the survival component for Scenario 1.
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Figure 3.3: Curve estimates in the longitudinal component for Scenario 2.

Figure 3.4: Curve estimates in the survival component for Scenario 2.
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Figure 3.5: Curve estimates in the longitudinal component for Scenario 3.

Figure 3.6: Curve estimates in the survival component for Scenario 3.
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3.4 Discussion

The proposed structural discovery method provides a practically useful tool for joint models.

It helps analysts to achieve parsimonious models without sacrificing the accommodation of

nonlinear effects. The method uses penalized likelihood method for sparse computation

for the linear and nonlinear elements of cubic B-splines, respectively. Linear and nonlinear

elements are separated using the spectral decomposition, and through this, I bridge the

selection of linear and nonlinear elements with the simultaneous selection of fixed and

random effect in mixed model in the joint model setting (He et al., 2014). The proposed

method performs as expected in identifying linear, nonlinear effects, or their combination,

the partially linear effect with good accuracy and very little bias. Computationally, the

estimation procedure is robust as the algorithm converges 100% in all simulation settings

at the threshold of 10−7.

The proposed method has the potential to be adopted or extended in several different

directions. First, the method is applicable for recognizing functional forms for additive

models. Although in most applications, additive model assumption is sufficient, researchers

may be interested in the joint influence of independent variables on the response variables.

For example, within the current additive model setting, we are unable to model the inter-

action between two independent variables. How to jointly determine the functional forms

of independent variables would be of interest and practically important for the future work.

Another natural extension is for single index models. The current methodology can be

extended to recognize the functional forms of the variables involved in the linear predictors,

which gives analysts increased modeling flexibility.

In summary, I have shown that representation of cubic B-spline by mixed-effect model

and penalized likelihood method could be used for structural discovery in joint model set-

tings. Our research has demonstrated, through a simulation study, that the proposed
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method provides a useful structural discovery tool and the method is easy to implement

and efficient in computation.
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Chapter 4

Selection of Time-Varying Coefficients

4.1 Introduction

Linear regression is one of the most frequently used approaches in scientific research. Lin-

ear models have well-established properties. However, the assumed linear relationship is

not always realistic in practice. When the linear model assumption is violated, the linear

model will be at risk of being mis-specified, which could result in questionable results. Non-

parametric models, which require fewer model assumptions, offer much greater modeling

flexibility. But when the dimension of independent variable is high, nonparametric mod-

els could be subject to increased modeling complexity, which makes the model harder to

fit and interpret. An alternative approach is to loosen the restrictions on the fixed linear

effect and let the regression coefficient vary as a nonlinear function. Such a model can be

viewed as an extension of the traditional linear regression model. It is often referred to

as the varying coefficient model (Hastie and Tibshirani, 1993). Varying coefficient model

depicts the effect of an independent variable as a function of another independent variable

instead of being a constant. The appeals of varying coefficient models stem not only from

mathematical elegance, but also from the practical needs. In many situations, it might

not be reasonable to assume constant effects of independent variables, and this is typically

the case for more complex biological systems. Varying coefficient models greatly enhance

the modeling flexibility and they have been widely used for discovering nonlinear effects

that would have been missed by traditional parametric models. For example, the effect

of sodium-retaining hormone aldosterone on blood pressure may be dependent on the pre-

vailing levels of extracellular fluid volume, as reflected by plasma renin activity. Varying
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coefficient model provides a flexible modeling framework to accommodate such interacting

influences (Tu et al., 2014). But more often, by allowing the effects of certain independent

variables on the outcome to vary over time, this new class of models provides the neces-

sary flexibility to depict time-changing effects of independent variables. Similarly, such a

need may extend to survival analysis, for needs to model the time-dependent effect of an

independent variable. For example, in an analysis of sexually transmitted infections, Yu

et al. (2012) showed the effect of number of partners on infection acquisition tended to be

age-dependent. In a childhood asthma study, the effect of airway reactivity measurement

on the risk of wheezing is known to change over time due to child growth (Yu et al., 2013).

In practice, if a study collects a large number of independent variables, it is not always

feasible to assume all of them have the time-varying effects. Modeling all independent vari-

ables with time-varying coefficients could significantly decrease the modeling efficiency and

interpretability. If an independent variable effect is approximately constant over time, a

time-invariant coefficient is clearly preferable. In addition, I also want to exclude from the

model variables that have no effects on the outcome. In joint models of longitudinal and

survival outcomes, both model components may have independent variables that interact

with time. A statistical method that consistently selects the important variables and cor-

rectly distinguishes their temporal effects as time invariant or time varying would be helpful

in the construction of joint models. To the best of our knowledge, no such work has been

done for joint models.

Literature of model selection for time-varying coefficients is limited. For longitudinal

data analysis, Leng (2009) proposed a method to select between time-invariant and time-

varying coefficients, but the method does not exclude zero coefficients. Wang et al. (2008)

proposed a penalized likelihood method with smoothly clipped absolute deviation (SCAD,

Fan and Li 2001) penalty on the expanded nonparametric basis functions of coefficients.
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For the survival analysis, Leng and Helen Zhang (2006) extended the component selection

and applied smoothing operator proposed by Lin and Zhang (2006) to the Cox model

with varying coefficients. More recently, Yan and Huang (2012) proposed to use adaptive

LASSO to select time-invariant and time-varying coefficients as well as exclude the zero

coefficients in the Cox model. In this research, I develop a penalized likelihood method to

simultaneously distinguish the time-invariant coefficients from time-varying coefficients in

both the longitudinal and survival components in joint models. I propose to use B-spline

to model the unknown temporal effects of independent variables and decompose the B-

spline into the time-invariant and time-varying parts, then use the variable selection tools

to select the two parts separately to distinguish the time-invariant coefficients from time-

varying coefficients. The selection process is similar to mixed-effect selection, which has

been described for joint models in Chapter 2.

4.2 Method

4.2.1 Model Formulation

In a longitudinal study, one has a survival outcome (tsi, δi), and repeated measurements

of a continuous outcome yi for i = 1, · · · , n subjects, measured at a series of times ti.

Here tsi is the observed event time subjected to right censoring, and δi is a failure indi-

cator with δi = 1 indicating the occurrence of an event of interest, and δi = 0 indicating

censoring, whereas yi = {yi1 . . . yini} is an ni × 1 vector of the ni repeated measurements

and ti = (ti1, ti1, . . . , tini) is a vector of corresponding measuring times. For the longitu-

dinal component, I denote the p independent variables with unknown temporal effects as

x1ij = (x1ij,1, x1ij,2, . . . , x1ij,p), which are measured at time tij , for j = 1, . . . , ni. For the

survival component, I denote the p independent variables with unknown temporal effects

measured at event time or censoring time tsi as x2i = (x2i,1, x2i,2, . . . , x2i,p). Without loss
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of generality, I herein consider a case where the longitudinal and survival components share

the same set of independent variables. This model formulation could easily be generalized to

situations where the two components have different sets of independent variables. I denote

the random effect covariate vectors for longitudinal and survival components as r1ij ∈ Rq1

and r2i ∈ Rq1, respectively. I would then construct the time-varying coefficient joint model

as follows.

I present the time-varying coefficient linear mixed-effects model for longitudinal compo-

nent as:

yij = β0 +

p∑
k=1

β1k(tij)x1ij,k + rT1ijbi + εij , (4.1)

and the hazard function with time-varying coefficients for survival component as:

h(tsi) = h0(tsi) exp(

p∑
k=1

β2k(tsi)x2i,k + rT2ibi) (4.2)

where β0 is the intercept; β1k(tij)s and β2k(tsi)s are the regression coefficients for unknown

temporal effects in the two components; bi = (b1, · · · , bq) ∈ Rq1 is a q−dimensional random

effect vector following a multivariate normal distribution MVN(0, D(φ)), where D(φ) is

the random effect covariance matrix; when bi is given, I assume that longitudinal outcome Yi

and survival outcome Tsi are independent; εij ∼ N(0, σ2) is the measurement error, which is

assumed to be independently and identically distributed, and h0(tsi) is the baseline hazard.

4.2.2 Representing the Model by Decomposed B-spline

To determine the temporal effects, one needs to identify the forms of β1k(t) and β2k(t). To

perform this, I firstly model β1k(t) and β2k(t) by B-spline and then decompose the B-spline

into two parts: one is used to explain the time-invariant effect, and the other is used to
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explain the time-varying effect. The decomposition would allow us to use variable selection

method to select the two parts separately, and thus discriminating the two effects.

To illustrate the decomposition of the B-splines, I use β1k(t) as an example and note that

β2k(t) could be decomposed and represented with the same approach. By following Yan and

Huang (2012), I assume β1k(t) = B1(t)θ1k, k = 1 . . . , p, withB1 = (1, B11(t), . . . , B1q−1(t)).

B̃1 = (B11(t), . . . , B1q−1(t)) (q > 1) is a set of B-spline basis of q−1 degrees of freedom on a

predetermined time interval and knots without intercept, and I could rewrite B1 = (1, B̃1).

The corresponding regression coefficients θ1k are decomposed as θ1k = (θ1k,1,θ1k,−1). I

then represent the coefficient β1k(t) as β1k(t) = θ1k,1 + B̃1θ1k,−1. Through this decomposi-

tion, I construct the nonparametric function of β1k(t) in such a way that θ1k,1 is associated

with the intercept in B1 representing an overall time-invariant effect, whereas θ1k,−1 repre-

sents the time-varying effect relative to the intercept. As a result, I could represent the linear

mixed-effects model for longitudinal component defined in Equation (4.1) by decomposed

B-splines as:

yij = β0 +

p∑
k=1

B1(tij)θ1k · x1ij,k + rT1ijbi + εij

= β0 +

p∑
k=1

[θ1k,1 + B̃1(tij)θ1k,−1] · x1ij,k + rT1ijbi + εij (4.3)

Similarly, for the survival component, I assume β2k(t) = B2(t)θ2k, k = 1 . . . , p, where

B2 = (1, B21(t), . . . , B2q−1(t)), and B̃2 = (B21(t), . . . , B2q−1(t)) (q > 1) is a set of B-

spline basis of q− 1 degrees of freedom on a predetermined time interval without intercept.

Regression coefficients θ2k are decomposed as θ2k = (θ2k,1,θ2k,−1) and β2k(t) is represented

as β2k(t) = θ2k,1 + B̃2θ2k,−1. I could represent the model for survival component defined
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in Equation (4.2) by decomposed B-splines as:

h(tsi) = h0(tsi) exp{
p∑

k=1

B2(tsi)θ2k · x2i,k + rT2ibi}

= h0(tsi) exp{
p∑

k=1

[θ2k,1 + B̃2(tsi)θ2k,−1] · x2i,k + rT2ibi} (4.4)

Let η = (β0,θ1k,θ2k,φ, σ, h0(tsi)) denote all the unknown parameters. The marginal

likelihood of η could be obtained as:

Lo(η) =
n∏
i=1

∫ ni∏
j=1

{
[fy(tsi)|bi,x2i, r2i, δi,η][fs(tsi)|bi,x2i, r2i, δi,η]

}
fb(bi)dbi, (4.5)

and the log-marginal likelihood is lo(η) = log Lo(η), where fb(·) is a q−variate normal

density function for bi, fs(·) is the likelihood of survival component parameters conditional

on bi, and fy(·) is the conditional distribution of repeated measurements when bi is given.

The hazard h0(tsi) could be modeled nonparametrically or parametrically as described in

Chapter 3.

4.2.3 Selection of Time-Varying Coefficients by Penalized Likelihood

To estimate the nonparametric functions in Equation (4.3) and (4.4), a frequently used

method is the ridge type penalized likelihood with quadratic penalty terms:

plRidge(η) =
1

n
lo(η)− λ1

p∑
k=1

||θ1k,−1||2 − λ2
p∑

k=1

||θ2k,−1||2 (4.6)

However, the penalty terms in (4.6) do not possess the sparsity property and could not

perform selection of the time-varying effects. The penalized likelihood (4.6) also lacks the

penalty terms for selection of time-invariant coefficients. To perform selection of both the
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time-invariant and time-varying coefficients, I propose the following penalized likelihood:

plo(η) =
1

n
lo(η)− p(θ) (4.7)

where p(θ) = λ1
∑p

k=1 κ1(θ1k,1) +λ2
∑p

k=1 κ2(θ2k,1) +λ3
∑p

k=1 κ3(θ1k,−1)

+λ4
∑p

k=1 κ4(θ2k,−1). The penalty functions κ1(θ1k,1) and κ2(θ2k,1) control the sparsity

of estimates of θ1k,1 and θ2k,1 so that the time-invariant coefficients are selected, where λ1

and λ2 are the associated positive tuning parameters. The penalty terms κ3(θ1k,−1) and

κ4(θ2k,−1) control the sparsity of estimates of θ1k,−1 and θ2k,−1 to select the time-varying

coefficients, where λ3 and λ4 are the associated positive tuning parameters. The penalty

functions κ1(·), κ2(·), κ3(·), κ4(·) could be the adaptive LASSO, or the smoothly clipped

absolute deviation (SCAD).

For the selection of time-invariant coefficients, I define the adaptive LASSO penalty

as κ1(θ1k,1) = ω1k|θ1k,1| and κ2(θ2k,1) = ω2k|θ2k,1|, where ω1k, ω2k are the corresponding

positive weights for penalties |θ1k,1| and |θ2k,1|. I choose the weights as ω1k = 1/|θ̃1k,1|, ω2k =

1/|θ̃2k,1|, where θ̃1k,1 and θ̃2k,1 are the optimizers of the ridge type penalized likelihood (4.6).

Some of the estimates of θ̂1k,1 and θ̂2k,1 for penalized likelihood (4.7) will be zero since |θ1k,1|

and |θ2k,1| are singular when |θ1k,1| = 0 and |θ2k,1| = 0.

For the selection of time-varying coefficients, I noted that the time-varying effect could

be excluded if and only if θ1k,−1 = 0 and θ2k,−1 = 0, and I propose to select θ1k,−1 and

θ2k,−1 in a group manner. I first summarize the penalty terms using L2−norm: ||θ1k,−1|| =

(θT1k,−1θ1k,−1)1/2 and ||θ2k,−1|| = (θT2k,−1θ2k,−1)1/2. Following Yuan and Lin (2006),

the adaptive LASSO penalties for time-varying coefficients are defined as: κ3(θ1k,−1) =

ω3k||θ1k,−1|| and κ4(θ2k,−1) = ω4k||θ2k,−1||. I choose the weights as ω3k = p1k/||θ̃1k,−1||

and ω4k = p2k/||θ̃2k,−1||, where θ̃1k,−1 and θ̃2k,−1 are the optimizers of the ridge type

penalized likelihood (4.6). p1k and p2k are the sizes of θ̃1k,−1 and θ̃2k,−1, respectively. I
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use adaptive LASSO penalty in the simulation study. Penalized likelihood with the SCAD

penalty terms could be constructed in a similar way by substituting the penalty terms in

(4.7) with penalties on (|θ1k,1|, |θ2k,1|, ||θ1k,−1||, ||θ2k,−1||) using SCAD. The estimator of

η = (β0, θ1k,1, θ2k,1, θ1k,−1,θ2k,−1,φ, σ, h0(tsi)) can be obtained by maximizing Equation

(4.7).

4.2.4 Optimization of the Penalized Likelihood

To maximize the penalized likelihood (4.7), I firstly construct the marginal likelihood as:

Lo(η) =
n∏
i=1

∫ ni∏
j=1

{
[fy(yij |bi,x1ij , r1ij ,η)][h(tsi|bi,x2i, r2i,η)]δi

[S(tsi|bi,x2i, r2i,η)]
}
fb(bi|η)dbi,

(4.8)

where h(tsi|bi,x2i, r2i,η) is the hazard function. S(tsi|bi,x2i, r2i,η) is the survival func-

tion, which is expressed as:

S(tsi|bi,x2i, r2i,η)

= exp
{
−
∫ tsi

0
h(u)du

}
= exp

{
−
∫ tsi

0
h0(u) exp{

p∑
k=1

β2k(u) · x2i,k + rT2ibi}du
}

= exp
{
− exp (rT2ibi)

∫ tsi

0
h0(u) exp{

p∑
k=1

B2(u)θ2k · x2i,k}du
}

= exp
{
− exp (rT2ibi)

∫ tsi

0
h0(u) exp{

p∑
k=1

[θ2k,1 + B̃2(u)θ2k,−1] · x2i,k}du
}

= exp
{
− exp (rT2ibi +

p∑
k=1

θ2k,1 · x2i,k)
∫ tsi

0
h0(u) exp{

p∑
k=1

[B̃2(u)θ2k,−1] · x2i,k}du
}
.

(4.9)

Because both the survival function and the marginal likelihood involve intractable integrals,

I propose to use a Gaussian quadrature method to approximate the intractable integrals.
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By using Gauss-Legendre quadrature, I could approximate the intractable integral in

the survival function (4.9) as

∫ tsi

0
h0(u) exp{

p∑
k=1

[B̃2(u)θ2k,−1] · x2i,k}du

=
tsi − 0

2

∫ 1

−1
h0(

tsi − 0

2
z +

tsi + 0

2
) exp{

p∑
k=1

B̃2(
tsi − 0

2
z +

tsi + 0

2
)θ2k,−1 · x2i,k}dz

≈ tsi
2

nnode∑
h=1

ωhh0[
tsi
2

(zh + 1)] exp{
p∑

k=1

B̃2[
tsi
2

(zh + 1)]θ2k,−1 · x2i,k},

(4.10)

where zh and wh are the corresponding Gauss-Legendre quadrature nodes and weights.

To approximate the marginal likelihood, I use multivariate Gaussian-Hermite quadrature

to integrate the random effect bi out by following (Pinheiro and Bates, 1995). Since bi ∈ Rq1,

if I choose k quadrature points, there will be a total of kq vector nodes of q × 1 dimension.

Let b
′
l = (b

′
l,1, b

′
l,2, · · · , b

′
l,q) denote the lth node, wl denote the corresponding quadrature

weight, for l = 1, · · · , kq. Let goi be all the observed data and let

A(goi|bi,η) =[fy(yij)|bi,x1ij , r1ij ,η]

[hs(tsi)|bi,x2i, r2i,η]δi [Ss(tsi)|bi,x2i, r2i,η],

then the integral (4.8) can be approximated by:

∫
A(goi|bi,η)fb(bi|η)dbi ≈

kq∑
l=1

wlA(goi|b′l,η)fb(b
′
l|η). (4.11)

The approximated penalized likelihood is

pl(η) =
n∑
i=1

{
log

kq∑
l=1

wlA(goi|b′l,η)fb(b
′
l|η)

}
− p(θ) (4.12)
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I maximize Equation (4.12) with respect to (|θ1k,1|, |θ2k,1|) by applying the LARS/ LASSO

algorithm (Efron et al., 2004), and maximize Equation (4.12) with respect to (||θ1k,−1||,

||θ2k,−1||) by following Wang et al. (2010) and Chapter 3.

4.2.5 Tuning Parameter Selection and Two-stage Estimation

Similar to Chapters 2 and 3, I propose to use the BIC-type criterion to determine the values

of tuning parameters, where

BICλ = −2lo(η̂) + log(n)× dfλ, (4.13)

In (4.13), η̂ is a vector of the estimates obtained from penalized likelihood under a given λ,

and lo(η̂) is the value of observed likelihood lo(η) at the estimated value of η̂. The solution

is chosen to minimize the BICλ criterion. In this BIC-type criterion, the total sample size

n is used. I take d, the total number of non-zero estimates of θ̂ as the degree of freedom

dfλ.

As in previous chapters, a two-stage process is used to reduce estimation bias. In the first

stage, I perform selection of time-invariant and time-varying coefficients using the proposed

penalized likelihood (4.7) to select the model that minimizes the BIC value. In the second

stage, I refit the model with selected time-invariant and time-varying effects through the

ridge type penalized likelihood to reduce the estimation bias.
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4.3 Simulation Study

4.3.1 Data Generation

I conducted a simulation study to examine the performance of the proposed method. I

generated the longitudinal outcome Yij from the following model:

Yij =5 + β11(t)x1ij,1 + β12(t)x1ij,2 + β13(t)x1ij,3+

β14(t)x1ij,4 + β15(t)x1ij,5 + β16(t)x1ij,6 + β17(t)x1ij,7 + β18(t)x1ij,8 + b0i + εij ,

(4.14)

and the failure time from the distribution with the hazard function:

λi(t) = λ0(t) exp
{
β21(t)x2i,1 + β22(t)x2i,2 + β23(t)x2i,3+

β24(t)x2i,4 + β25(t)x2i,5 + β26(t)x2i,6 + β27(t)x2i,7 + β28(t)x2i,8 + b0i
}
,

(4.15)

for i = 1, . . . , 500, j = 1, . . . , 5, where λ0(t) = αλtα−1 with α = 2, and λ = exp(1) = 2.718.

In the longitudinal component, the coefficients β11(t) = 5, β12(t) = 3.5 +
( t

2
)5−1(1− t

2
)2−1

Beta(5,2) ,

β13(t) = 2.5 +
( t

2
)2−1(1− t

2
)5−1

Beta(2,5) , β14(t) = 0, β15(t) = 0, β16(t) = 0, β17(t) = 0, and β18(t) = 0.

I generated five measurement times t for each subject from Uniform (0.01,2), plus the

baseline measurement t=0. The measurement time could be truncated by the survival time.

In the survival component, the coefficients are β21(t) = −2, β22(t) = 0.5 +
( t

2
)5−1(1− t

2
)2−1

Beta(5,2) ,

β23(t) = −2.5− ( t
2
)2−1(1− t

2
)5−1

Beta(2,5) , β24(t) = 0, β25(t) = 0, β26(t) = 0, β27(t) = 0, and β28(t) = 0.

Random intercept b0i was independently generated from N(0, 0.5) distribution. In-

dependent variables x1ij,k and x2i,k, k = 1, . . . , 8 were generated from Uniform(0,1) vari-

ables; The measurement error εij ∼ i.i.d.N(0, 0.5). Censoring times were generated from

a mixture distribution of a point mass at 2 and Uniform(0,2) to achieve 25% censoring

percentage. I generated two different correlations among the independent variables. Let
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ρ1 = corr(x1ij,k, x1ij,k′) and ρ2 = corr(x2i,k′ , x2i,k′) denote the correlations between the

independent variables. In Scenario 1, I set ρ1 = ρ2 = 0; in Scenario 2, I set ρ1 = ρ2 = 0.3.

In this simulation study, I used the cubic B-spline.

For each scenario, I generated 100 data sets and applied the proposed method to select

the temporal effects for the independent variables and fit the second-stage model according

to the selected effects. The tuning parameters λ1, λ2, λ3, λ4 are determined by minimizing

the BIC criterion, as defined in (4.13). I also fit the ridge type penalized likelihood without

performing model selection for comparison.

4.3.2 Simulation results

For Scenarios 1 and 2, I present the model selection results in Tables 4.1 and 4.2. For the

longitudinal outcome, our method could select the nonzero time-invariant and time-varying

coefficients perfectly, as well as exclude the zero ones nearly perfectly, even when there is

moderate correlation among the independent variables. In the survival component, for time-

invariant coefficient selection, our method selects the non-zero ones with 100% accuracy,

and selects the zero ones with 95% accuracy for both scenarios. For time-varying coefficient

selection, our method selects non-zero ones with 92% accuracy and selects zero ones with

90% accuracy when there is no correlation among the independent variables. When the

correlation increases to 0.3, both the accuracies decrease to about 85%.

To evaluate the estimation performance of the proposed method, I calculated the total

average integrated squared error (TAISE) for each estimate of the time-varying coefficients

over the 100 simulated data, and the approach was the same as that described in Chapter

3. I compare three procedures, the ridge penalized likelihood without performing model se-

lection, first-stage and second-stage models and report the total TAISEs in Table 4.3. The

TAISEs of the proposed method in the second stage are much smaller (about 90% reduction)
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Table 4.1: Selection frequency of time-invariant coefficients (TIC)

Selection Frequency (%) for Longitudinal component

Scenarios β11(t) β12(t) β13(t) 0 0 0 0 0

Nonzero TIC Zero TIC

ρ = 0 100 100 100 0 0 0 0 0

ρ = 0.3 100 100 100 0 0 0 0 0

Selection Frequency (%) for Survival component

Scenarios β21(t) β22(t) β23(t) 0 0 0 0 0

Nonzero TIC Zero TIC

ρ = 0 100 100 100 2 4 4 3 2

ρ = 0.3 100 100 100 6 5 3 5 2

as compared to the ridge estimates in the longitudinal component. In the survival compo-

nent, the TAISEs of the second stage are reduced (about 10% reduction) when compared to

the ridge estimates. To evaluate the estimation performance of time-invariant coefficients, I

present the average of the estimates and the empirical standard deviation over the 100 data

sets in Tables 4.4 and 4.5. In the longitudinal component, the ridge estimates have 10% to

20% biases, and these biases are much reduced in the second-stage estimates (less than 5%).

In the survival component, the biases of the ridge estimates for time-invariant coefficients in

β22(t) and β23(t) are much larger, and could not be reduced in the second-stage estimates.

One possible reason for the suboptimal estimation performance for the intercept in survival

component might be due to the lack of sufficient survival outcomes that are close to time

zero, which makes it difficult to accurately estimate the time-invariant effect (the intercept)

in the presence of time-varying effects.
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Table 4.2: Selection frequency of time-varying coefficients (TVC)

Selection Frequency (%) for Longitudinal component

Scenarios β11(t) β12(t) β13(t) β14(t) β15(t) β16(t) β17(t) β18(t)

Zero TVC Nonzero TVC Zero TVC

ρ = 0 0 100 100 0 0 1 0 0

ρ = 0.3 0 100 100 0 0 1 2 0

Selection frequency (%) for Survival component

Scenarios β21(t) β22(t) β23(t) β24(t) β25(t) β26(t) β27(t) β28(t)

Zero TVC Nonzero TVC Zero TVC

ρ = 0 1 100 92 9 5 6 10 10

ρ = 0.3 8 100 85 14 14 6 13 13

Table 4.3: TAISE in longitudinal and survival components for time-varying coefficients

Longitudinal component

Scenarios SSANOVA 1st Stage 2nd Stage

ρ = 0 0.84214 0.04730 0.07720

ρ = 0.3 1.10202 0.07870 0.11380

Survival component

Scenarios SSANOVA 1st Stage 2nd Stage

ρ = 0 1.80373 1.63000 1.61000

ρ = 0.3 1.81513 1.70272 1.64596
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Table 4.4: Estimation results of nonzero time-invariant coefficients (TIC)

Estimation results for Longitudinal component

Scenarios β11(t) β12(t) β13(t)

TIC True value 5 3.5 2.5

SSANOVA 4.9012±0.0572 3.7284±0.0557 2.9641±0.0488

ρ = 0 1st stage 5.0015±0.0410 3.5198±0.0796 2.5088±0.0773

2nd stage 5.0006±0.0447 3.4935±0.0561 2.5887±0.0523

SSANOVA 4.8823±0.0639 3.7462±0.0584 3.0423±0.0599

ρ = 0.3 1st stage 4.9954±0.0445 3.5061±0.0651 2.5006±0.0619

2nd stage 5.0031±0.0418 3.4810±0.0646 2.6121±0.0628

Estimation results for Survival component

Scenarios β21(t) β22(t) β23(t)

TIC True value -2 0.5 -2.5

SSANOVA -2.0054±0.1958 1.6885±0.1890 -3.3324±0.2173

ρ = 0 1st stage -1.8925±0.1883 1.3669±0.2825 -3.1082±0.2321

2nd stage -1.9942±0.1777 1.6642±0.2048 -3.3107±0.2287

SSANOVA -2.0297±0.2059 1.6587±0.1962 -3.3285±0.2236

ρ = 0.3 1st stage -1.8818±0.1944 1.3124±0.2813 -3.1063±0.2276

2nd stage -1.9955±0.1880 1.6423±0.2051 -3.3034±0.2326
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4.4 Discussion

In this research, I developed a model selection method to simultaneously identify time-

invariant and time-varying effects in a joint model setting through the penalized likelihood

approach. As indicated by the simulation study, the method has achieved good accuracy in

distinguishing the time-invariant effects from time-varying effects for both longitudinal and

survival model components. The method provides a tool that is particularly useful for the

analysts who are interested in evaluating the temporal effects of independent variables. This

approach essentially provides a way to identify potential interactions between a nonlinear

independent effect and time, thus is particularly suitable to characterize independent vari-

able effects that change with time. In clinical applications, it helps to identify and quantify

temporal influences of independent variables with nonlinear effects on the longitudinal and

survival outcomes, while accounting for the connections between the two outcomes.

Methodologically, the development of the method is no trivial extension of previously

published work. The main challenges come from the complex structures of joint models.

In a joint model, an independent variable could have completely different temporal effects

on the longitudinal and survival outcomes, and thus simultaneously selecting time-invariant

and time-varying coefficients in the two model components is technically difficult. Although

it is easier to perform model selection for one model component while fixing the structure

of the other component, such a piecewise approach fails to take into account of the natural

connections between the two components; this may be the primary reason for the lack of

development of simultaneous model selection for joint models, especially in the presence of

time-varying coefficients. This research uses a penalized likelihood approach, which does not

require assumptions of fixing parts of the model. This work demonstrates that simultaneous

selection of time-varying coefficients in joint models through penalized likelihood is possible

and its implementation is relatively straightforward in complicated modeling situations.

84



An essential step in the proposed method is the decomposition of the B-spline for inde-

pendent variable effect into time-invariant and time-varying parts. This decomposition, in

practice, is easy to implement. The B-spline basis without intercept could be generated by

the R function “bs” with the option “intercept=F”, and the computation of the proposed

method could be adapted to the existing packages, such as the SAS PROC NLMIXED, thus

further extending its applicability. The decomposition may still be improved, as the time-

invariant effect is depicted solely by the intercept. When there is limited data information

at time zero, the estimation of the intercept, or the time-invariant coefficient may not be

sufficiently accurate. In practical data analysis, such as survival analysis, it is not uncom-

mon that most of the observed survival or censoring times are greater than zero. Future

work on improving the decomposition may help to improve the estimation of time-invariant

effects.

In summary, I showed that by decomposing the B-spline into time-invariant and time-

varying parts and then using a penalized likelihood method to select these components, one

can identify the time-varying coefficients in joint models. With this in mind, this research

has the potential to be used as a practical tool for data analysis.
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Chapter 5

Conclusion

Variable selection plays an important role in scientific investigation. To a large extent, the

validity of scientific inference depends on the correct specification of the model. In prac-

tical data analysis, the analyst has to decide whether a variable should be included in the

model, what functional form it should take, and whether the variable interacts with time.

In the past several decades, useful model selection procedures have been developed along

with necessary selection criteria and statistical tests for most of the commonly encountered

statistical models, including linear and proportional hazard models. None of the exist-

ing methods, however, are readily applicable to joint models of longitudinal and survival

outcomes. The complexity of the joint model has greatly complicated the selection process.

Introduction of LASSO approximately 20 years ago has changed the way in which an-

alysts approach the selection problem. By placing a penalty on model complexity, the

method fundamentally simplifies for the selection process. Along this line, various selection

methods have been developed for most of the standard statistical models, including gener-

alized linear mixed effects models and proportional hazard models, allowing for selection of

both fixed and random effects.

A noticeable gap in the existing literature is the lack of selection procedures for joint

statistical models of longitudinal and survival outcomes. The increasing popularity and

the widespread use of the joint models present an urgent demand to fill this gap. This

dissertation addresses this need in a systematic way, by proposing a series of model selection

tools that aid the joint model construction.
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In this chapter, I would review the main methodological contribution and practical

impact of this research.

First, this dissertation has presented the method to simultaneously select fixed and

random effects for the joint model. While the selection of the fixed effects helps to identify

independent variables that are related to the outcomes, selection of the random effects

serves the dual purpose of specifying the underlying correlation structure and justifying for

the joint model structure. Importantly, the reparametrization by Chelosky decomposition

allows the random effects in the two model components to retain their own covariance

structures, while not restricting the model space by pre-excluding candidate models. Such

an approach thus enables researchers to simultaneously perform random effect selection by

identifying their corresponding covariance structures. Additionally, the reparametrization

also allows the random effects in the longitudinal and survival models to be linked in a

common structure. Practically, this reparametrization through Chelosky decomposition

has made the selection of random effects by group penalty feasible. This reparametrization

and the random effect selection is not restricted to the joint model setting for studying the

correlation between the longitudinal and survival outcomes. Actually, it could be extended

to any model settings with multiple outcomes to investigate their correlations, which should

have wide applicability in clinical investigations.

Second, this thesis developed a method to identify the functional forms of indepen-

dent variables in an additive joint model. It provides a general semiparametric framework

for structural discovery in such a model setting. The decomposition of the B-spline ba-

sis clearly partitions the independent variable effect into a parametric (linear) part and a

nonparametric (nonlinear) part. I then present the model in a mixed-effect model formu-

lation. Methodologically, the basis decomposition and mixed model representation serve as

a bridge between variable selection and structural discovery. Practically, it clearly depicts
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the independent variable effects as linear and nonlinear other than lumping them together,

thus retaining the model interpretability. The same approach could be similarly extended

to other additive models for identifying independent variable effects hidden in the data.

Third, I have also developed a general semiparametric framework to select and estimate

the temporal patterns of the independent variable effect. In this framework, a decom-

position method is used to partition the temporal effect of a independent variable into

time-varying and time-independent parts. This decomposition then allows the application

of existing variable selection method to work through the penalized likelihood, eventually

distinguishing the temporal effects.

Finally, this dissertation presents a general computational strategy for multiple com-

ponent models connected by shared random effects. Variable selection and parameter es-

timation in such models result in intractable integrals. Multivariate Gaussian quadrature

method and EM algorithm proposed in this dissertation produce good approximations of

the intractable integrals while ensuring computation stability. The deterministic property

of the multivariate Gaussian quadrature provides a better way to empirically validate the

statistical methods than the Bayesian MCMC approach when dealing with intractable inte-

gration, as the latter tends to add another layer of uncertainty during the MCMC sampling.

Furthermore, the application of the proposed variable selection and structural discovery

method with multivariate Gaussian quadrature is highly adaptable to some widely used

existing statistical packages, such as SAS procedure “PROC NLMIXED”. This procedure

is user friendly and generally suitable to a wide variety of problems.

At the conclusion of this dissertation, I remain hopeful that the applicability of the

methods will increase over time. The development of more sophisticated and easier to

use packages for implement of the methods will further strengthen the applicability. The

methods here are mainly depicted but shall not be limited in the joint model setting.
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I anticipate that further modifications and extensions of the current work will become

necessary. Future extensions could include variable selections for multiple outcome models

and recurrent event failure time models. Dealing with the missing data is an important

aspect that I did not study in the current dissertation. Notwithstanding these limitations,

I hope that increased application of these procedures will stimulate new thinking for the

improvement of the proposed methods.
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