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ABSTRACT 

John Paul Spence 

 

Nf1-DEFICIENT MICE DISPLAY SOCIAL LEARNING DEFICITS THAT ARE 

RESCUED BY THE DELETION OF PAK1 GENE 

 

Neurofibromatosis type 1 (NF1) is a neurocutaneous disorder that affects 

roughly 1 in 3500 individuals. In addition to physical features (e.g., 

neurofibromas), developmental disorders are also common that can affect 

cognition, learning, attention and social function. The NF1 gene encodes 

neurofibromin, a GTPase activating protein (GAP)-like protein that negatively 

regulates Ras GTPase activation. Mutation at the NF1 locus increases the output 

of MAPK and PI3K signal transduction from the cellular membrane to the 

nucleus. Similar to humans, Nf1+/- mice show spatial learning abnormalities that 

are potentially correlated with increases in GABA-mediated inhibition and deficits 

in long-term potentiation in the hippocampus. Here, we demonstrate for the first 

time that Nf1+/- mice exhibit a selective loss of long-term social learning / memory 

and increased GABAergic inhibition in the basolateral amygdala, a critical brain 

region for regulating social behaviors. Next, utilizing a genetic intercross, we 

show that the co-deletion of p21-activated kinase type 1 (Pak1-/-), which 

positively regulates MAPK activation, restores Nf1+/--dependent MAPK 

hyperactivation in neurons cultured from the frontal cortex. We found that the co-

deletion of Pak1 in Nf1+/- mice (Nf1+/- / Pak1-/-) also restores the deficits in long-
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term social learning / memory seen in Nf1+/- mice and normalizes the increases in 

GABA-mediated inhibition in the BLA, as compared to Nf1+/- mice. Together, 

these findings establish a role for Nf1 and Pak1 genes in the regulation of social 

learning in Nf1-deficient mice. Furthermore, proteomic studies identify 

dysregulation of F-actin and microtubule dynamics in the prefrontal cortex, and 

implicate proteins associated with vesicular release as well as neurite formation 

and outgrowth (e.g., LSAMP, STXBP1, DREB). In the BLA, disintegrin and 

metalloproteinase domain-containing protein 22 (ADAM22) was identified, and 

ADAM22 may play a role in the regulation of AMPA receptors. Finally, due to the 

increased co-occurrence of NF1 and autism, these findings may also have 

important implications for the pathology and treatment of NF1-related social 

deficits and some forms of autism. 

 

Anantha Shekhar, M.D., Ph.D., Chair 
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INTRODUCTION 

A. Background 

While illustrations of neurofibromatosis-like characteristics date to the 

second century and the first clinical description of neurofibromatosis type 1 (NF1) 

is likely that of a man with a plexiform neurofibroma dating back to the sixteenth 

century (Hecht, 1989; Zanca and Zanca, 1980), the term “neurofibroma” was first 

coined in 1882 by the physician Friedrich Daniel von Recklinghausen in his 

landmark report entitled “On multiple cutaneous fibromas and their relationship to 

multiple neuromas”. However, the specific forms of von Recklinghausen‟s 

disease were not clinically differentiated until the late 1970s. In addition to NF1, 

other neurocutaneous disorders include neurofibromatosis type 2, tuberous 

sclerosis, Von-Hipple Lindau syndrome and Sturge-Weber syndrome. NF1 

represents the most frequent among the disorders that were previously defined 

as von Recklinghausen‟s disease (see Ruggieri and Huson, 1999 for review). 

 

1. Epidemiology of NF1 

To date, the current epidemiological data compiled for NF1 has been 

largely generated from Caucasian and Japanese subjects; however, NF1 is 

observed world-wide and does not appear to be influenced by ethnicity (see 

Friedman, 1999 for review). NF1 is caused by mutation in one copy of the NF1 

gene (NF1+/-), and affects roughly 1 in every 3000-4000 individuals world-wide. 

NF1 is a simple autosomal dominant disorder that displays full penetrance in 

adulthood. To date, the homozygous deletion of the NF1 gene (NF1-/-) is has not 
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yet been detected in humans suggesting that NF1-/- genotype is likely lethal 

(Messiaen et al, 2000). Likewise, rodents that encode null mutations in both 

copies of the Nf1 gene (Nf1-/-) die in utero at 12-14 days of gestation due to heart 

malformations (Jacks et al, 1994; Brannan et al, 1994). While most cases of NF1 

can be diagnosed by eight years of age, nearly all cases are diagnosed by age 

20 (DeBella et al, 2000).  

The symptoms of NF1 are variably present between individuals as well as 

within families, and NF1 does not appear to be influenced by sex or race 

(Friedman and Birch, 1997). NF1 is a chronic disorder associated with lifelong 

morbidity and increased mortality. Likely due to the progressive nature of the 

disorder, the life expectancy of an affected individual is significantly lower than 

normal and ranges from 54-62 years of age compared to 70 in the general 

population (Rasmussen et al, 2001).  This high mortality rate has been attributed 

to an increased incidence of brain tumors, malignant cancers as well as 

hypertension and cardiovascular disease (Rasmussen et al, 2001).   

 

2. Physical features of NF1 

Established in 1987 by the National Institute of Health (NIH) Consensus 

Conference on Neurofibromatosis, the diagnostic criteria for NF1 summarize 

common physical features associated with the NF1 phenotype (NIH, 1988). 

Neurofibromas represent the most commonly found NF1-related tumor occurring 

in more than 95% of NF1 patients (see Bader, 1986 for review). Usually seen 

during early adolescence, cutaneous neurofibromas appear as soft, purplish 
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bumps on the skin, while subcutaneous neurofibromas usually appear as 

palpations of the skin (Riccardi, 1980). Dermal and subcutaneous neurofibromas 

are often associated with cosmetic problems, pain, and pruritus (i.e., intense 

itching of the skin; Creange et al, 1999). Plexiform neurofibromas are highly 

vascular encasing major nerves, blood vessels as well as other vital structures 

(Schorry et al, 1997; see Korf, 1999 for review). Therefore, neurofibromas can 

significantly impact the quality of life of NF1 patients leading to significant 

morbidity due to gross disfigurement. In addition, plexiform neurofibromas can 

transform into malignant peripheral nerve sheath tumors (MPNSTs) leading to 

metastasis and premature death (Tucker et al, 2005). 

NF1-affected individuals manifest a wide array of non-malignant physical 

features including café-au-lait spots, skin-fold freckling, optic gliomas, Lisch 

nodules and skeletal malformations (see Ferner et al, 2007 for review). Café-au-

lait spots are frequently observed in NF1 patients (roughly 95%) at early stages 

of development and appear light to dark brown in color (North, 1993). Crowe‟s 

sign or skin-fold freckling are present in roughly 30% of NF1 patients often 

observed under the armpit, in the groin area and around the base of the neck 

(North, 1993). Gliomas are tumors that arise from glial cells and can occur in the 

optic pathways, brainstem and cerebellum of NF1 patients (Creange, 1999). 

Detected in 15-20% of patients, optic pathway gliomas can lead to vision loss 

(Zeid et al, 2006; see Listernick for review). Unique to NF1 patients, Lisch 

nodules are yellow to brown dome-shaped elevations projecting from the surface 

of the iris (Richetta et al, 2004). NF1 patients can also exhibit a variety of skeletal 
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problems including scoliosis, tibial bowing and pseudarthrosis or a false joint 

associated with abnormal skeletal movement (Crawford and Bagamery, 1986). 

Other symptoms are also observed at an increased frequency in 

individuals with NF1. For instance, NF1 patients have an increased risk for 

developing epilepsy with an incidence of 4 to 6%, and epileptic seizures are often 

due to intracranial masses and other cytoarchitectural abnormalities (Vivarelli et 

al, 2003). Cardiovascular disorders are frequently observed in NF1 patients 

including vasculopathy, hypertension, and congenital heart defects (Friedman et 

al, 2002). Phaeochromocytomas or neuroendocrine tumors of glands in the 

adrenal medulla are detected in roughly 2% of NF1 patients, and approximately 

12% of these tumors are malignant (Bausch, 2005).  Macrocephaly is observed 

in 30-50% of patients diagnosed with NF1, and other minor features include short 

stature, angiomas as well as and thoracic abnormalities (Cnossen et al, 1998). 

 

3. Genetics of NF1 pathogenesis 

NF1 is a product of mutation in one copy of the NF1 gene. Using linkage 

analyses, the chromosomal region responsible for NF1 was localized to 

chromosome 17 (Goldgar, 1989; Wallace et al, 1990). Shortly thereafter, the NF1 

locus was mapped to chromosome 17q11.2 by positional cloning (Cawthon et al, 

1990). Utilizing cDNA walking strategies and DNA sequencing, the complete 

coding region of the NF1 transcript was cloned revealing that the NF1 gene 

encompasses over 300 Kb of genomic DNA with 60 exons (Xu et al, 1990; 

Marchuk et al, 1991). The chromosomal region linked to the NF1 gene is 
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unstable and prone to rearrangements, and represents a “hot spot” for sporadic 

mutation (Van Roy et al, 2002). Germline mutations in the NF1 gene were 

characterized utilizing DNA and RNA sequencing, and included nonsense, 

frame-shift, missense, and splice mutations as well as in-frame deletions and 

translocations (Messiaen et al, 2000). Accounting for roughly 30% of mutations, 

exons 10a-10c and 37 represent the most common regions for mutation 

(Messiaen et al, 2000). However, specific NF1 variants have not yet been 

correlated with NF1-related features or severity in human studies of association 

(Castle et al, 2003). 

 
4. Biochemistry of neurofibromin 

The NF1 gene encodes the protein product neurofibromin with 2818 

amino acids (Xu et al, 1990; see Gutmann and Collins for review). Neurofibromin 

is a cytoplasmic guanosine triphosphatase (GTPase)-activating protein (GAP)-

like protein that negatively regulates RAS-GTPase activity. The amino acid 

sequence of neurofibromin is highly homologous with mammalian GAP and yeast 

IRA proteins (Xu et al, 1990; Ballester et al, 1990). In yeast, the expression of 

neurofibromin leads to the inhibition of human RAS proteins that are 

coexpressed, and the deletion of neurofibromin is associated with increased RAS 

GTPase-stimulating activity (Ballester et al, 1990). Furthermore, a fragment of 

NF1 cDNA encoding the GAP-related domain (NF1-GRD) was expressed in vitro 

and tested for its effects on RAS-GTPase activity, and found that the NF1-GRD, 

a region located between amino acids 1125 and 1537, is primarily responsible for 

the inactivation of RAS-GTPase activity (Martin et al, 1990). Kinetic 
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measurements indicate that neurofibromin regulates RAS-GTPase activity, 

particularly at low concentrations (Martin et al, 1990).  Characterizing tumor cells 

isolated from NF1 patients, in vitro and in vivo studies found that neurofibromin 

negatively regulates RAS-GTPase activity, and demonstrate a “positive” growth 

role for RAS activity in NF1 tumorigensis (DeClue et al, 1992; Downward, 1992; 

Upadhyaya et al, 1997).  

Due to its role as a negative regulator of RAS activation, neurofibromin 

acts as a key regulator in signal transduction from the cell membrane to the 

nucleus (see Le and Parada, 2007 for review; Figure 1). RAS is recruited when a 

growth factor(s) binds to a receptor on the extracellular matrix of the cell 

membrane, and RAS-GDP is then converted to RAS-GTP through its interaction 

with the GRB2 adapter and guanine nucleotide exchange factor SOS (see 

Margolis and Skolnik for review). The active form of RAS or RAS-GTP is, in part, 

responsible for the propagation of the classical RAS-RAF-MEK-ERK or MAPK. 

RAS-GTP binds to RAF serine/threonine kinase (RAF; Stokoe et al, 1994), and 

activated RAF leads to the phosphorylation and activation of MAP kinase/ERK 

kinase (MEK; Kyriakis et al, 1992). In turn, MEK (active form) phosphorylates and 

activates members of the extracellular signal-regulated kinase (ERK) family 

(Crews and Erikson, 1993). Activated ERK then phosphorylates various targets 

including other kinases as well as transcription factors.  

In addition to the MAPK pathway, the active form of RAS or RAS-GTP 

propagates the phosphotidylinositol 3-kinase or PI3K cascades. RAS-GTP binds 
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Figure 1. Neurofibromin is a key regulator of RAS and adenylyl cyclase 

signal transduction from the cell membrane to the nucleus. Neurofibromin, a 

cytoplasmic GAP-like protein, negatively regulates RAS activation by 

accelerating the conversion of RAS-GTP to RAS-GDP and increasing RAS signal 

transduction. The RAS-GTP activates both PI3K and the classical MAPK 

pathway propagating complex interactions of cellular signaling pathways that 

regulate cellular functions. Neurofibromin also binds to microtubules, and 

interacts with adenylyl cyclase to decrease cAMP levels in the central nervous 

system. Thereby, neurofibromin represents a key node in the regulation of 

multiple cellular functions. 
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to and activates the p110 catalytic subunit of PI3K, thereby, resulting in 

increased activity of lipid kinase (Kodaki et al, 1994). PI3K activation leads to the 

activation of downstream effectors including RAC (rho family) and RAL GDP-

dissociation stimulator (RAL-GDS) (Stephens et al, 1996; Welch et al, 2003). 

Furthermore, the activated PI3K also binds to and phosphorylates protein kinase 

B (AKT), and AKT (active form) inactivates the TSC1-TSC2 complex and 

activates TOR or serine/threonine kinase target of rapamycin (Johannessen et al, 

2005). Additionally, neurofibromin binds to adenylyl cyclase (AC) and negatively 

regulates cyclic AMP (cAMP) levels in the CNS in mice (Tong et al, 2002; Brown 

et al, 2010). Neurofibromin has been shown to associate with microtubules (Xu 

and Gutmann, 1997).  

Together, these findings demonstrate that neurofibromin functions as a 

modulatory protein in the cell by accelerating the hydrolysis of RAS-GTP (its 

active form) to RAS-guanosine diphosphate (GDP), its inactive form (Ballester et 

al, 1990; Martin et al, 1990; DeClue et al, 1992). Thereby, neurofibromin reduces 

the strength and duration of RAS signal transduction. Unltimately, the Nf1+/- 

genotype results in dysregulation of MAPK and PI3K signal transduction and 

decreases in cAMP levels in the CNS. 

 

5. Pak1 regulation of Nf1-dependent pathways 

McDaniel et al (2008) demonstrates that the co-deletion of Pak1 in Nf1+/- 

mice restores MAPK hyperactivation and abnormalities in cellular proliferation 

and migration that are associated with the Nf1+/- genotype (Figure 2).  PAK1 is a 
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Figure 2. Pak1 inactivation corrects gain-in-function phenotypes seen in 

Nf1 haploinsufficient mast cells. The illustration depicts a hypothetical 

mechanism(s) explaining how Pak1 may interact with MAPK to restore 

abnormalities in cellular proliferation and migration seen in Nf1 haploinsufficient 

mast cells.  
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down-stream effector of the PI3K pathway, specifically Rac, and is abundantly 

expressed in the central nervous system (see Arias-Romero and Chernoff, 2008 

for review). In humans, PAK1 gene maps to 11q13-q14 (Bekri et al, 1997). PAK1 

encodes a protein product consisting of 545 amino acids that is 98% identical to 

mouse PAK1 and 52% identical to yeast Ste20 (Brown et al, 1996). PAK1 is 

enriched in neurons and oligodendrocytes and localized to pinocytic vesicles and 

cortical actin structures (Dharmawardhane et al, 1997). PAK1 is a member of a 

family of serine/threonine kinases and is highly homologous to PAK2 (γ-PAK) 

and PAK3 (β-PAK) (Brown et al, 1996).  

PAK1 is a downstream effector regulated by the Rho family of GTPases 

that include RAC, RHO, and CDC42 (Manser et al, 1995; see Bishop and Hall, 

2000 for review). The members of the Rho family of GTPases mediate diverse 

cellular functions that include cytoskeletal dynamics, vesicular transport, gene 

expression, and oxidant generation (see Nikolic, 2008 for review). Studies have 

established that the catalytic region in PAK1 (i.e., p21-binding domain or PBD) is 

located between amino acids 67 and 113 (Lei et al, 2000). To become 

biologically active, PAK1 and other PAK proteins interact with the active form or 

GTP-bound RAC or CDC42 (Manser et al, 1995). In its active state, the PBD of 

PAK1 dramatically increases the phosphotransferase activity of PAK1 on myelin 

basic protein (Knaus et al, 1995). In addition to the PBD in PAK1, an overlapping 

inhibitory switch regulates basal kinase activity, and amino acid domains in the 

N-terminus of PAK1 can bind to adapter proteins including NCK, GRB2, amng 

others (Bokoch et al, 1996). PAK1 can also be activated through mechanisms 
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that are GTPase-independent including lipid binding as well as 

autophosphorylation (Bokoch et al, 1998). 

PAK1 has been shown to interact with a variety of downstream targets. 

For example, PAK1 mediates cytoskeletal dynamics through the regulation of 

actin organization and polymerizes filamentous actin into orthogonal networks at 

the membrane (Vadlamudi et al, 2002). Furthermore, PAK1 regulates LIM kinase 

activity, leading to the destabilization cofilin and the inactivation and aggregation 

of F-actin fibers (Ishibashi, 2008). The overexpression of Pak1 leads to increases 

in cellular motility and actin polymerization, while the expression of dominant 

negative Pak1 results in decreases in migration and organized actin structures 

(Sells et al, 1999). Thereby, PAK1 regulates cellular motility driven by the 

assembly and disassembly of actin filaments. PAK1 also mediates microtubule 

dynamics through the phosphorylation and inactivation of the microtubule-

destabilizing protein stathmin (Daub et al, 2001). 

More recent studies demonstrate that PAK1 can positively regulate MAPK 

activation. PAK1 has been shown to activate RAF-1 kinase by directly binding to 

and phosphorylating Ser338 (Zang et al, 2002). Additionally, PAK1 directly binds 

to and phosphorylates Ser298 in MEK1, leading to increased RAF-1 activity for 

Ser217/221 as well as increased MEK activation (Coles et al, 2002). Gene 

silencing of Pak1 by small interfering RNA (siRNA) in cultured cells leads to 

significant decreases in ERK activation, and these decreases are associated with 

lower levels of activation in both RAF and MEK (Beeser et al, 2005). By binding 

to Ser338 on RAF-1 and Ser298 on MEK1, PAK1 increases the efficiency of ERK 
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for low-level stimuli, ultimately increasing the levels of ERK activation (Park et al, 

2007).  

Studies initially identified the existence of crosstalk between PI3K and 

MAPK, and implicated the PI3K downstream target RAC2 in the regulation of 

ERK1/2 activation (Ingram et al, 2001). For example, the genetic deletion of Rac 

restores MAPK hyperactivation associated with Nf1+/- genotype in mast cells 

(Ingram et al, 2001). These findings implicated Nf1 haploinsufficiency in 

increased in mast cell proliferation, survival, and colony formation in response to 

the activation of receptor tyrosine kinase (RTK) c-kit by stem cell factor (SCF). 

SCF is a glycoprotein that is both soluble and membrane-bound, and acts as the 

ligand of the transmembrane receptor tyrosine kinase (RTK) c-kit (Besmer et al 

1986). SCF/c-kit signal transduction is involved in the regulation multiple cellular 

functions including growth and development (Saito et al, 1994), cellular 

proliferation (Yee et al, 1994), cell survival (Iemura et al, 1994), and inflamatory 

response (see Reber et al, 2006 for review).  

In addition to the periphery, SCF and c-kit receptor are abundantly 

expressed in the CNS of mice during early stages of development and in 

adulthood (Zhang and Fedoroff, 1997), and has been implicated in neural tube 

organization during embryonic development (Keshet et al, 1991). Similar to the 

inactivation of RAC2, McDaniel et al (2008) found that the inactivation of Pak1 in 

Nf1 haploinsufficient mast cells leads to the correction of in vitro and in vivo gain-

in-function phenotypes that are mediated by SCF/c-kit signal transduction (see 

Figure 2). Based on these findings, the same genetic intercross (Nf1+/- / Pak1-/-) 
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method was implemented in our experimental design in an attempt to restore the 

disruptions in MAPK signaling and learning abnormalities associated with the 

Nf1+/- genotype. 

 

6. NF1 features associated with disruptions in higher CNS functions 

While physical abnormalities represent the “hallmark” characteristics of 

NF1, the heterozygous NF1 gene deletion also elicits significant effects on higher 

CNS function. When NF1 patients were assessed utilizing neuropsychological 

batteries, 80-90% of affected individuals show significant impairments including 

lower academic achievement, learning disabilities, attention, and social function 

(Hofman et al, 1994; North et al, 1997; Dilts et al, 1996; Brewer et al, 1997; 

Johnson et al, 1999; Kayl and Moore 2000; Noll et al, 2007). Similar to the 

physical manifestations associated with NF1, these CNS-related features exhibit 

a high level of variability between individuals, and do not appear to be correlated 

with sex, race or disease severity (North et al, 1995). Furthermore, these 

features also are independent of tumor predisposition (Moore et al, 1994). 

While early studies report a high frequency of mental retardation or an IQ 

less than 70 (Samuelsson and Riccardi, 1989), more recent findings utilizing a 

battery of cognitive assessments suggest that the rate of mental retardation in 

the NF1 population is only slightly higher (4-10%) than the general population 

(Ferner et al, 1996). However, the average IQ is significantly lower than normal 

(around 90) in NF1-affected individuals (Ozonoff, 1999). Multiple studies have 

examined verbal and performance IQ in NF1 patients, and these studies indicate 
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that the heterozygous deletion of NF1 (NF1+/-) is not selective, but impacts both 

verbal and nonverbal aspects of cognition (North et al, 1997).  

NF1 patients also exhibit learning disabilities associated with both visual-

spatial and verbal aspects of learning, affecting roughly 30-65% of NF1-affected 

individuals (see Rosser and Packer, 2003 for review). Visual-spatial deficits are 

most often seen in NF1 patients, as measured by the Judgement of Line 

Orientation task (Hofman et al, 1994). For example, cognitive and 

neuropsychological batteries found that NF1 patients show impairments in spatial 

memory (Varnhagen et al, 1988), visual-motor integration (Dilts et al, 1996), 

visual-spatial skills, and mathematics (Eliason, 1986; Varnhagen et al, 1988; 

North, 1993). Furthermore, tests of academic acheivement also found significant 

impairment in spelling, reading and language skills (Dilts et al, 1996; Cutting et 

al, 2000).  

Attention problems are observed in roughly 30-50% of NF1 children and 

adolescents (Keyhan et al, 2006; Koth et al, 2000; Mautner et al, 2002). As 

compared to controls, NF1 patients display significant deficits in attention 

including problems with concentration, attention, and hyperactivity (Eliason, 

1986; Eliason, 1988; Coude et al, 2007). It has been suggested that these 

problems with attention may contribute to learning disabilities and lower 

academic achievement seen in the NF1 children (Brewer et al, 1997). A meta-

analysis of 152 studies found that 75% of children with learning abnormalities 

also show problems with social skills, as compared to their peers (Kavale and 

Forness, 1996). Furthermore, psychological assessments found that the 
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presence of learning disabilities and attention problems were correlated with 

deficits in social skills, social competence, and other social problems (Barton and 

North, 2004).  

NF1 patients manifest significant problems with social function compared 

to their unaffected siblings affecting roughly 50% of NF1-affected individuals. For 

example, NF1 children are often socially withdrawn, and show difficulty forming 

friendships and have fewer friends than their peers (Dilts et al, 1996, Johnson et 

al, 1999; Barton and North, 2004; Noll et al, 2007). In addition, NF1 children often 

show problems with social perception in that they inappropriately perceive and 

interpret social cues (i.e. facial expressions, body gestures, and tone of voice) 

(Eliason, 1986). Related to these problems with social function, NF1 shows a 

dramatically increased frequency in autistic patients with an estimated 

prevalence of 1.2% in autistic subjects (Martin et al, 2007), and human genetic 

studies found that the NF1 locus is linked to autism (IMGSAC, 2001). However, 

the prevalence of autism in the NF1 population has not yet been determined, and 

the relationship between NF1 and autism is not clearly defined in the literature. 

NF1 patients also display more emotional problems relative to their 

unaffected siblings and the general population (Johnson et al, 1999). For 

instance, Samuelsson and Riccardi (1989) found that 33% of NF1 patients 

showed increased rates of mental illness with the most commonly occurring 

psychiatric diagnoses being depression and anxiety. Another study found that 

roughly one-third of the NF1 subjects fulfilled the criteria for a psychiatric 

disorder, and diagnosed 21% of the NF1 cohort with the mood disorder 
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dysthymia (Zoller and Rembeck, 1999). Similarly, Belzeaux and Lançon (2006) 

observed mental illness in 33% of NF1 patients with dysthymia as the most 

frequent diagnosis (21% of patients). A higher prevalence of depressive mood 

(7%), anxiety (1-6%), and personality (3%) disorders were also observed, and 

the risk of suicide was four times greater than in the general population 

(Belzeaux and Lançon, 2006). Together, these findings indicate that anxiety and 

mood disorders (i.e., depression, dysthymia) are observed at a modestly higher 

frequency in NF1 patients.  

 

7. Mouse models of NF1 

Homologous recombination strategies were utilized to disrupt Nf1, the 

murine homolog of NF1, in an attempt to create an animal model of 

neurofibromatosis (Jacks et al, 1994; Brannan et al, 1994). In mice, the Nf1 locus 

is highly conserved encoding an amino acid sequence that is 98% identical to 

human neurofibromin (Bernards et al, 1993). Similar to humans, the homozygous 

deletion of Nf1 gene is lethal in mice. Nf1-/- mice die in utero at 12-14 days of 

gestation due to heart malformations (Jacks et al, 1994; Brannan et al, 1994). 

Heterozygous mice were developed that carry a null mutation at one copy of the 

Nf1 locus (Nf1+/-). While these Nf1+/- mice do not develop several features 

associated with the NF1 phenotype, Nf1+/- mice do show increased rates of 

myeloid leukemia and phaeochromocytomas or tumors of the neural crest-

derived adrenal medulla (Jacks et al, 1994). Thus, other mechanisms also 

contribute to Nf1+/--related tumorigenesis including the inactivation of a second 
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allele, gene x gene interactions, NF1 hapolinsufficiency, and environmental 

factors.  

The NF1 gene functions as a classic tumor suppressor gene (Colman et 

al, 1995). In chimeric mice partially composed of Nf1-/- cells, the complete loss of 

Nf1 gene leads to the development of neurofibromas (Chichowski et al, 1999).  

Furthermore, mice that have mutations in both Nf1 and p53 genes develop 

malignant peripheral nerve sheath tumors (MPNSTs), soft tissue sarcomas and 

abnormalities in neural crest formation, indicating that the development of 

malignant tumors can also result from gene x gene interactions (Chichowski et al, 

1999; Vogel et al, 1999). By intercrossing Nf1+/- mice with c-kit mutant mice, 

Ingram et al (2000) demonstrates that Nf1 haploinsufficiency leads to enhanced 

MAPK activity and increases in SCF-mediated mast cell proliferation, survival, 

and colony formation. Therefore, Nf1 gene dosing effects alter the interactions 

between mast cells, Schwann cells, fibroblasts, and endothelial cells contributing 

to the tumor microenvironment and tumorigenesis (see Staser et al, 2010 for 

review).  

In addition to the periphery, neurofibromin is abundantly expressed in the 

rodent CNS, and immunostaining of tissue sections localized neurofibromin 

expression to neurons, oligodendrocytes, and nonmyelinating Schwann cells 

(Daston et al, 1992). In the rat brain, neurofibromin is most abundantly expressed 

in large projection neurons including cortical and hippocampal pyramidal cells as 

well as cerebellar Purkinje cells (Nordlund et al, 1993). Neurofibromin is present 

in both cell bodies and axons, and is highly enriched in dendrites and associates 
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with smooth vesiculotubular elements, cisternal stacks as well as multivesicular 

bodies (Nordlund et al, 1993). Neurofibromin is not abundantly expressed in the 

plasma membrane, nucleus, nuclear envelope, Golgi apparatus, mitochondria, or 

rough endoplasmic reticulum (Nordlund et al, 1993).  

Similar to humans NF1 patients, it has been well-established that Nf1+/- 

mice show spatial learning deficits, as measured by the Morris water maze (Silva 

et al, 1997). Costa et al (2002) found that Nf1+/− mice also display increases in 

inhibitory postsynaptic potentials (IPSPs) in cornu Ammon 1 (CA1) pyramidal 

cells of hippocampal slices (Costa et al, 2002). This increase in IPSPs is 

consistent with postsynaptic changes that decrease the likelihood of postsynaptic 

action potentials in CA1 pyramidal cells in the hippocampus. Nf1+/- mice also 

exhibit no differences in long-term potentiation (LTP), whereas LTP induced at 

the stimulation strength of 60mA is larger than LTP induced at 35mA in WT mice 

(Costa et al, 2002). For a review of IPSPs, refer to Functions of the basolateral 

amygdala section on page 28, and for a review of LTP mechanisms, refer to 

Processes involved in learning and memory section on page 21. 

Pharmacological and genetic manipulations in Nf1+/− mice that restore 

RAS signaling can reverse the spatial learning abnormalities as well as the 

increases in IPSPs and deficits in LTP seen in CA1 pyramidal cells of 

hippocampal slices (Costa et al, 2002). For instance, mice heterozygous for 

mutations in both Nf1 and K-ras genes (Nf1+/- / K-ras+/-) show similar 

performance on the hidden water maze task as WT mice, and display restored 

IPSPs and LTP (Costa et al, 2002). These deficits can also be restored in the 
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Nf1+/- mutant mice by administering farnesyl-transferase inhibitors. Farnesyl-

transferase inhibitors block the post-translational farnesylation of RAS protein, a 

process necessary for RAS activation (Costa et al, 2002; Li et al, 2005). 

Therefore, these findings demonstrate that Nf1+/--mediated deficits in spatial 

learning and associated abnormalities in IPSPs and LTP are mediated by RAS-

dependent processes (see Costa and Silva, 2003 for review).  

To further characterize the mechanism(s) underlying the spatial learning 

deficits seen in Nf1+/- mutant mice, Cui et al (2008) generated heterozygous Cre-

mediated deletions of the Nf1 gene in various cell types in the brain. The 

resulting mice expressed deletions of Nf1 in the following cell types: both 

excitatory and inhibitory neurons (Nf1synI; with synapsin I-Cre), forebrain 

GABAergic neurons (Nf1Dlx5/6; with Dlx5/6-cre), forebrain pyramidal neurons 

(Nf1aCaMKII; with aCaMKII-Cre), and most astrocytes (Nf1GFAP; with GFAP-Cre). 

Cui et al (2008) found that only synapsin I and Dlx5/6 Cre-mediated deletions of 

the Nf1 gene result in spatial learning deficits mice, thereby, implicating inhibitory 

interneurons in Nf1-related spatial learning deficits. These inhibitory interneurons 

branch locally and innervate other neurons, thereby, decreasing their likelihood 

of a postsynaptic action potential. 

Using electrophysiological studies, Cui et al (2008) further demonstrates 

that these Cre-mediated deletions of Nf1 gene result in increased miniature 

inhibitory postsynaptic current (mIPSC) frequency under periods of high-

frequency stimulation (12.5 mM KCl) in CA1 pyramidal cells of hippocampal 

slices. Similar to previous findings (Costa et al, 2002), these Cre-mediated 
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deletions of Nf1 gene also lead to deficits in LTP (Cui et al, 2008). Additionally, 

the pharmacological inhibition of MAPK using MEK inhibitors can reverse the 

increases in mIPSC frequency seen in Nf1+/- mice suggesting that these 

increases in mIPSC frequency are mediated by a MAPK-dependent mechanism 

(Cui et al, 2008).  

In a separate study using a different animal model of NF1, Costa et al 

(2001) characterized the effect(s) of a spice variant of the Nf1 gene in mice. The 

Nf1 gene encodes mRNA with two alternative splices (Danglot et al, 1995). Exon 

23a represents an alternatively spliced region of the Nf1 gene that encodes 21 

amino acids within the NF1-GRD domain (Martin et al, 1990). The type 1 isoform 

of NF1 excludes exon 23a, while the type 2 isoform includes this region. 

Compared to the type 1 isoform, the type 2 isoform has lower GAP activity, but 

greater affinity for Ras (Viskochil, 1999). Like the Nf1+/- mice, mice with a 

homozygous deletion of exon 23a in Nf1 gene also exhibit impairments in spatial 

learning, as measured by the Morris water maze (Costa et al, 2001). Unlike the 

Nf1+/- mice, mice with the homozygous deletion of exon 23a are viable and do not 

show an increased tumor predisposition (Costa et al, 2001). Similar to the Nf1+/- 

mice, the Nf123a-/- exhibit increases in IPSPs and abnormal LTP in the 

hippocampus that can be rescued by decreasing RAS function (Costa et al, 

2001). These findings further implicate the NF1-GRD in the spatial learning 

deficits and abnormalities in IPSPs and LTP associated with the Nf1 gene 

deletion in mice. 
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8. Processes involved in learning and memory 

Learning and memory involves complex processes and the integration of 

multiple structures in the CNS (see Purves et al, 2004 for review). Encoding 

represents the initial process whereby sensory information induces cellular and 

molecular changes to neurons. Sensory inputs can generate either short-term 

memories that only last for seconds to minutes or long-term memories that can 

last for days or even indefinitely. During consolidation these cellular and 

molecular changes lead to persistent alterations in “synaptic strength” within 

neuronal circuits (i.e., memory storage and retention). Memories are encoded by 

modifications of synaptic strength in the CNS, and these changes to sypapses 

are defined as synaptic plasticity. 

 Long-term potentiation (LTP) is a cellular mechanism that is thought to 

contribute to memory storage underlying synaptic plasticity (see Tronson and 

Taylor, 2007 for review). In hippocampal slices, LTP results from a brief, high-

frequency train of stimuli to the same axon (i.e., Schaffer collaterals) leading to a 

long-lasting enhancement in excitatory postsynaptic potentials (EPSPs) in CA1 

neurons in the hippocampus (see Cooke and Bliss, 2006 for review). 

Mechanistically, LTP is triggered by the expolsion of the Mg2+ block from the 

NMDA channel in the postsynaptic neuron. If the postsynaptic neuron is 

sufficiently depolarized, Ca2+ ions freely enter the NMDA channel activating 

postsynaptic protein kinases, and these protein kinases insert new AMPA 

receptors into the postsynaptic spine increasing the sensitivity to glutamate (i.e., 

the major excitatory neurotransmitter in the brain), and ultimately defining the 



 

22 

 

number, size and shape of dendritic spines (see Bliss and Collingridge, 1993 for 

review).  

Memory recall refers to the ability to retrieve stored information previously 

encoded from past experience. Memory has been categorized into two main 

constructs including declarative and procedural memories (see Fernald 1997 for 

review). Declarative memory is recalled by a deliberate and conscious effort, 

while non-declarative memory is retrieved automatically with no deliberate or 

conscious effort (e.g., procedural memory). Encoding new declarative memories 

requires an intact hippocampus and associated midline diencephalic and medial 

temporal lobes (Corkin, 1984; Corkin et al, 1997). In contrast, procedural memory 

is largely regulated by the premotor cortex, basal ganglia and cerebellum. 

Thereby, learning and memory processes enable an organism to process past 

experiences enabling a more effective adaptive response to environment stimuli.  

Learning and memory requires morphological changes at the synapse, 

including the formation of new synapses or the strengthening of existing 

synapses (see Cooke and Bliss for review). In recent years, accumulating 

evidence has demonstrated that the MAPK signaling pathway plays an important 

role in the regulation of learning and memory (see Peng et al, 2010 for review). 

Studies have identified increases in ERK activation during long-term memory 

encoding and consolidation following training (Feld et al, 2005). In addition, 

increased ERK activation was detected for training in the Morris water maze 

(Blum et al, 1999) and following contextual fear conditioning learning (Atkins et 

al, 1998; Bozon et al, 2003). Merino and Maren (2006) measured the effects of a 
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Ras antagonist administered in the BLA on fear conditioning, and found that 

MAPK is required for the acquisition of long-term fear. Therefore, MAPK 

signaling is thought to play an important role in regulating memory encoding (see 

Giovannini for review). 

 

9. Neural basis of social behavior 

In humans, social behavior is mediated by complex processes involving 

multiple brain regions functioning in concert to coordinate a response to a social 

stimulus (Figure 3; see Insel and Fernald, 2004 for review). Cortical regions 

perceive socially relevant stimuli and communicate this information to the 

amygdala, orbitofrontal cortex, anterior and posterior cingulate cortices, and 

somatosensory-related cortices (see Adolphs, 2009 for review). These brain 

regions define the stimuli based on motivation or reward, emotions, and 

cognition, and then communicate this information to motor and emotional outputs 

(see Adolphs et al, 2002a-b for review). Therefore, the neural substrates that 

mediate social behavior consist of complex, integrated circuits within and 

between brain regions that perceive social stimuli (e.g., olfactory, visual, 

auditory), define their emotional valence (prefrontal cortex, amygdala, temporal 

cortex), evaluate social motivations (ventral tegmental area, nucleus accumbens, 

ventral pallidum), and ultimately provides this information to the appropriate brain 

regions that determine an adaptive social response (see Insel and Fernald, 

2004). 
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Figure 3. A simplified model of processes involved in social learning and 

memory. The figure above illustrates a theoretical model of the processes and 

brain regions involved in social learning and memory. Sensory information is 

initially processed by the accessory olfactory bulb, fusiform area or superior 

temporal gyrus. This sensory information is then defined by complex integrated 

networks in the CNS. Emotional valence is determined by projections to the 

prefrontal cortex, amygdala and temoporal cortex. Social motivation is processed 

by the VTA, nucleus accumbens, and ventral pallidum. These brain regions 

integrate sensory information, determine the appropriate emotional and/or 

motivational relevance, and then provide the information to the other brain 

regions affecting social behavior. AOB - accessory olfactory bulb; FFA - fusiform 

area; STF - superior temporal gyrus; VTA - ventral tegmental area 

Social cues (input) AOB (olfaction), FFA (vision), STG (auditory)

Emotional valence Prefrontal cortex, amygdala, temporal cortex

Social motivation VTA, nucleus accumbens, ventral pallidum

Social behavior (output) Hypothalamus, motor and autonomic pathways

Adapted from Insel and Fernald, Annu Rev Neurosci (2004)

Information Processing in the Social Brain
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Facial recognition represents a core component of social behavior and 

social learning in humans. Prosopagnosia or “face blindness” is particularly 

relevant to understanding the neurosubstrates involved in social learning due to 

its selective impairment of facial recognition. In addition to other brain regions, 

functional imaging studies and lesion studies suggest that facial recognition is 

regulated by the frontal cortex (Hornak et al, 1996) and the amygdala (LeDoux, 

1992; Luo et al, 2007). For instance, a functional imaging study that measured 

delayed matching to emotional expressions on human faces found that the 

prefrontal cortex and amygdala are recruited during working memory for social 

cues (LoPresti et al, 2009). Utilizing functional imaging studies and tractwise 

analyses, a recent study measured the effects of damage to the two tracts in the 

human CNS on facial recognition (Philippi, 2009). The findings demonstrate that 

damage to the tract connecting the occipital cortex with the anterior temporal 

lobe and amygdala, or damage to the tract connecting the occipital cortex, the 

temporal cortex, and the orbitofrontal cortex leads to impairment in facial 

recognition (Philippi, 2009). Therefore, these findings implicate the prefrontal-

amygdala circuit in facial recognition processing (Philippi, 2009). 

The prefrontal-amygdala circuit defines a primary processing center for 

emotional aspects of social response, and its dysregulation can have profound 

effects on social function in humans (see Blair, 2008 for review). For example, 

individuals with damage to the frontal cortex can show blunted affect, impaired 

goal-directed behavior and inappropriate social conduct (Barrash et al, 2000). 

Additionally, lesion studes demonstrate that damage to the frontal cortex impairs 
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the ability to react to emotionally charged pictures (Damasio et al, 1990). 

Similarly, damage to the amygdala leads to impairment in the facial recognition 

that are associated with emotions (Adolphs et al, 2003). While amygdala-

dependent learning is often associated with fearful or negative emotional 

response, the amygdala also actively processes cues associated with a positive 

emotional valence (see Bachevalier and Malkova for review). For instance, the 

amygdala is activated when a child is presented with his mother‟s face (Todd et 

al, 2010). The amygdala is also essential for the regulation of social perception in 

that humans with amygdala lesions lack any sense of personal space during 

face-to-face interactions (Kennedy et al, 2009; Todd et al, 2009). Together, these 

findings demonstrate that the prefrontal-amygdala circuit is critical for processing 

cues during social encounters.  

 

10. Social behavior and social learning in mice 

In the natural environment, social behavior in mice is necessary for 

reproduction, territoriality, and the establishment of dominance. Dyadic social 

interactions represent a core component of social behaviors, and these 

interactions are defined by both innate and learned responses to social cues. In a 

laboratory setting, social interaction can be characterized by measuring the 

approach verses avoidance of a mouse toward a conspecific (Brodkin et al, 

2004; Sankoorikal et al, 2006; Crawley et al, 2007). Social approach verses 

social avoidance is thought to be a product of multiple, sometimes opposing 

motivations that drive social behavior in mice (Sankoorikal et al, 2006). For 



 

27 

 

example, motivations that lead to social approach might include social 

investigation, play, reproduction, or offensive aggression, while social avoidance 

can potentially be a product of generalized anxiety, social anxiety, or fear of the 

other mouse.  

In addition to innate response, mouse behavior is influenced by the ability 

to learn and then remember cues associated with individual conspecifics 

(Crawley et al, 2007; see Silverman et al, 2010 for review). Behavioral tests have 

been designed to test various aspects associated with social learning and 

memory utilizing approach and avoidance paradigms (Crawley et al, 2007). In the 

present dissertation, the amount of time the “test” mice spent sniffing (i.e., nose 

pointed toward cage and within one inch of cage) novel verses familiar 

conspecifics were determined in order to generate a quantitative measure of 

social approach, as defined by “preference for social novelty” (Nadler et al, 2004; 

Crawley et al, 2007). Thereby, short-term and long-term social learning / memory 

in mice were assessed based on their ability to discriminate between social cues 

associated with different conspecifics (Crawley et al, 2007). While three main 

stages contribute to memory formation including acquisition, consolidation, and 

retrieval (see Purves et al, 2004 for review), learning and memory is presented 

as a single construct throughout this body of work. 

Social learning and the motivations that underlie social approach and 

avoidance to a conspecific are mediated by multiple brain regions (see Figure 3). 

However, these brain regions do not process social information exclusively, but 

process sensory information that is independent of a social context. The 
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amygdala has been implicated in both anxiety and fear-based learning (see 

LeDoux, 1993 for review). For instance, both electrical and pharamacological 

stimulation of the amygdala induces an enhanced cardiovascular response and 

behavioral arousal consistent with a fight-or-flight response (Kapp et al, 1982; 

Maskati and Zbrozyma, 1989). Likewise, when presented with a conspecific, 

social avoidance behavior can reflect anxiety or fear of the other mouse. By 

selectively targeting the basolateral amygdala (BLA) using pharmacological 

manipulation, previous studies demonstrate that the amygdala also regulates 

social aspects of anxiety and fear-based learning (Sanders and Shekhar, 1996; 

Sajdyk and Shekhar, 2000; Shekhar et al, 2001; Sajdyk et al, 2008). Thereby, 

learning and memory processes and brain regions that mediate social memory 

overlap with those that mediate anxiety and fear memory. 

 

11. Functions of the basolateral amygdala 

NF1 is associated with a higher incidence of learning disabilities, attention 

deficits, social problems and psychiatric disorders, including anxiety and 

depression (see NF1 features associated with disruptions in higher CNS 

functions section for review). Due to its role in regulation and processing of 

emotional information, the amygdala network represents a brain region of 

particular interest to these NF1-related features (see McGaugh, 2002 for review). 

The amgydala is composed of multiple sub-nuclei that work in concert to 

coordinate a response to emotional information (Figure 4). These sub-nuclei 

include the basolateral (BLA), lateral (LA), medial (ME) and central (CE). The LA  
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Figure 4. A simplified schematic representation of the neurochemical 

circuitry within the BLA and its connectivity to the PFC involved in the 

regulation of emotional response. Glutamatergic projection neurons within the 

BLA are regulated by excitatory input (+) from the LA and other cortical regions 

(direct sensory information) and by inhibitory input (-) from local inhibitory 

interneurons. These inhibitory neurons process input from the PFC regarding the 

predicted ability to cope with sensory inputs. Additionally, serotonin from the 

dorsal raphe nucleus and norepinephrine from the locus coeruleus provide 

modulatory input to the BLA that mediates the balance of the stimulus and coping 

inputs from these cortical regions. Therefore, the BLA functions utilizing multiple 

feedback loops containing many neurotransmitters (i.e., Glu, GABA, 5-HT, NE) 

and neuropeptides (i.e., CB, CCK, CR, NPY, PV, SOM, VIP) to regulate 

cardiovascular, autonomic and behavioral response. 5-HT - serotonin; BLA, 

basolateral amygdala; CB - calbindin; CCK -  cholecystokinin; CeA - central 

nuclelus of the amygdala; CR - calretinin; DRN - dorsal raphe nucleus; GABA - 

gamma-aminobutyric acid; Glu - glutamate; LA - lateral amygdala; LC - locus 

coeruleus; ME - medial nucleus of the amygdala; NE, norepinephrine; NPY - 

neuropeptide Y; PFC - prefrontal cortex; PV - parvalbumin; SOM, somatostatin; 

VIP - vasoactive intestinal peptide 
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and BLA sub-nuclei are the major sites of afferent inputs, while the ME and CE 

are the major efferent areas (Amaral et al, 1992). The BLA is hypothesized to 

play a central role in the mediation of amygdala-dependent response integrating 

a wide range of sensory information, determining the appropriate emotional 

valence, and then providing the information to the relevant brain regions 

(LeDoux, 1993).  

The BLA is comprised of large spiny pyramidal (i.e., glutamatergic 

projection neurons) and non-pyramidal neurons while the non-pyramidal cells are 

predominantly GABAergic (McDonald, 1984). Similar to cortical structures, these 

glutamatergic projection neurons in the BLA are tonically inhibited by local 

GABAergic interneurons (Rainnie et al, 1991a,b). In the BLA, glutamatergic 

projection neurons are regulated by excitatory inputs from cortical and subcortical 

centers (largely sensory information) and inhibitory inputs from local GABAergic 

interneurons (Truitt et al, 2007). Glutamate and GABA are the main exicitatory 

and inhibitory neurotransmitters in the CNS, respectively. In addition to glutamate 

and GABA, other neurotransmitters are localized to the BLA including serotonin 

from the dorsal raphe (Norita and Kawamura, 1980) and norepinephrine from the 

locus coeruleus (Fallon et al, 1978). Other minor neurotransmitters include 

epinephrine, dopamine, and acetylcholine.  

Neuropeptides are also abundantly expressed in the basolateral 

amygdala. The most common neuropeptides include somatostatin (SOM; Amaral 

et al, 1989), neuropeptide Y (NPY; Gustafson et al, 1986), and cholecystokinin 

(CCK; Kritzer et al, 1988). In the basolateral and lateral amygdala, SOM and 
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NPY are extensively colocalized with GABA (McDonald and Pearson, 1989), and 

CCK is also found to be colocalized with GABA in these subnuclei as well 

(McDonal and Pearson, 1989). Neuropeptides observed at a lower abundance in 

the BLA include vasoactive intestinal peptide (VIP; McDonald and Pearson, 

1989), substance P (Cassell and Gray, 1989), galanin (Kohler et al, 1989), and 

neurotensin (Quirion, 1987), and other neuropeptides observed in the BLA 

include calbindin (CB), calretinin (CR), and parvalbumin (PV; see Shekhar et al, 

2005 for review).  

Electrophysiological recordings were previously conducted in order to 

characterize the interactions between excitatory amino acid (EAA) induced 

EPSPs (i.e. postsynaptic potential changes that depolarize the cell increasing the 

likelihood of initiating a post-synaptic action potential) and GABA-mediated 

IPSPs (i.e., postsynaptic changes that decrease the likelihood of a postsynaptic 

action potential) in the BLA (Rainnie et al, 1991a,b). Even without stimulation, 

single vesicles can occasionally be released into the synapse generating 

miniature EPSPs (mEPSPs) and IPSPs (mIPSPs), and can be characterized by 

amplitude (i.e., quantal size) and frequency (i.e, number of vesicles) defining the 

synaptic response to the release of neurotransmitter in response to a nerve 

impulse (see Purves et al, 2004 for review).   

The electrical stimulation of afferent neurons to the BLA leads to EPSPs 

that are mediated by glutamate, and these EPSPs can be blocked by the 

administration of NMDA antagonists (i.e., AP5) and AMPA and Kainate receptor 

antagonists (CNQX; Rainnie et al, 1991a). In addition, the stimulation of afferents 
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to the BLA also elicits IPSPs that are mediated by GABA, and these IPSPs can 

be blocked by the administration of GABAA antagonists (i.e., BMI) and GABAB 

antagonists (i.e., 2-hydroxy-saclofen; Rainnie et al, 1991b). Therefore, the BLA is 

regulated by multiple feedback loops containing many neurotransmitters and 

neuropeptides that mediate the balance of excitatation and inhibition associated 

with inputs defined by largely sensory inputs and coping inputs from cortical 

regions (see Shekhar et al, 2005 for review).  
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B. Rationale and Objectives 

Developmental disorders are seen at a higher frequency in NF1 patients, 

and can impact cognition, learning, attention and social function. To date, the 

treatment options for NF1-related learning disabilities and social dysfunction are 

lacking at best. The identification of behavioral markers in rodents that are 

relevant to sequelae of a human disease like NF1 represents an important first 

step in advancing this medical research. Understanding the biological 

mechanism(s) that contribute to these gene x phenotype associations can 

provide important targets for developing pharmaceutical treatments as well as 

other forms of clinical intervention.  

The overall hypothesis of this thesis proposal is that mutation at the 

NF1 locus leads to disruptions in social and emotional learning with unique 

disruptions in Pak1-dependent cellular processes in key CNS structures 

that are crucial for the development of normal rodent behaviors. The 

objectives for this thesis were to first screen for behavioral deficits in Nf1+/- mice 

that are associated with social dysfunction, anxiety-like behavior and depression-

associated response and (2) then to characterize the biochemical and cellular 

mechanism(s) that may underlie these deficits. The following five hypotheses 

were generated in light of these main objectives: 

Hypothesis 1:  Nf1+/- mice, as compared to WT, will show deficits in either 

general sociability and social learning, anxiety, and / or behavioral despair and 

learned helplessness, but not olfaction or locomotion. 



 

35 

 

Rationale:  Previous studies indicate that NF1 patients display problems 

with social function (Johnson et al, 1999; Barton and North, 2004; Noll et al, 

2007), and studies have found that NF1 patients display a higher frequency of 

anxiety and mood disorders, including dysthymia and depression (Samuelsson 

and Riccardi, 1989; Zoller and Rembeck, 1999). Objective(s): The first series of 

experiments were designed in order to screen Nf1+/- and WT mice for differences 

in sociability, anxiety, locomotion and olfactory sensory habituation. Due to the 

high rate of emotional learning disabilities associated with NF1, emotional 

learning and memory components were also incorporated to assess short-term 

and long-term social learning and behavioral despair / learned helplessness. 

Olfaction and locomotion were also measured as experimental controls. In 

rodents, olfaction is the primary sensory input for social interactions; therefore, 

olfaction habituation was measured, and locomotor activity was also montitored 

in order to identify differences in movement that could potentially affect measures 

of social behavior and anxiety.   

Hypothesis 2:  The co-deletion of Pak1 in Nf1+/- mice (Nf1+/- / Pak1-/-) will 

restore the deficits in long-term social learning seen in Nf1+/- mice, but will not 

affect preference for social interaction, short-term social learning, anxiety, 

behavioral despair / learned helplessness, olfactory sensory habituation or 

locomotor activity.  

Rationale: PAK1 is a down-stream effector of PI3K that has been shown 

to activate MAPK signaling and mediates crosstalk between PI3K and MAPK 

pathways (Ingram et al, 2001). The in vitro and in vivo inactivation of Pak1 
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normalizes Nf1-related abnormalities seen in cellular proliferation that are MAPK-

dependent and differences in migration seen in mast cells (McDaniel et al, 2008; 

see Figure 2). While no differences were detected in anxiety or behavioral 

despair / learned helplessness between Nf1+/- mice and WT, these phenotypes 

were also characterized to control for potential Pak1-dependent effects on these 

behavioral measures. Objective(s): This series of experiments was designed to 

determine whether the genetic intercross (Nf1+/- / Pak1-/-) would restore the 

deficits in long-term social learning seen in Nf1+/- mice. Behavior tests were 

performed on Nf1+/-, Nf1+/- / Pak1-/-, and Pak1-/- genotypes to assess their 

preference for social interaction, short-term social learning, anxiety, behavioral 

despair / learned helplessness, olfactory sensory habituation and locomotor 

activity. 

Hypothesis 3:  Nf1+/- mice, as compared to WT, will show increases in 

MAPK activation (ERK / p-ERK) in neuronal cells cultured from the frontal cortex. 

The co-deletion of Pak1 in Nf1+/- mice (Nf1+/- / Pak1-/-) will normalize the 

hyperactivation in MAPK associated with the Nf1+/- genotype.  

Rationale: Previous studies have implicated MAPK hyperactivation in 

learning abnormalities seen in Nf1+/- mice (Cui et al, 2008; see Le and Parada, 

2007 for review). Utilizing a genetic intercross to disrupt both Nf1 and Pak1 in all 

cells, it was shown that co-deletion of Pak1, which positively regulates MAPK 

activation, normalizes MAPK hyperactivation in Nf1+/- mast cells (McDaniel et al, 

2008). Objective: To establish that Pak1 co-deletion restores MAPK 

hyperactivation associated with Nf1+/- genotype in neurons in the CNS as it does 
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in mast cells, neuronal cells were cultured from the frontal cortex for each 

respective genotype (WT, Nf1+/-, Nf1+/- / Pak1-/-, Pak1-/-), and Western blotting was 

used to quantify the relative activation of ERK (ERK vs. p-ERK) at basal levels 

and following SCF stimulation. 

Hypothesis 4:  Nf1+/- mice, as compared to WT, will show increases in 

inhibitory synaptic currents (IPSCs) in the BLA, and the co-deletion of Pak1 in 

Nf1+/- mice will restore these differences. 

Rationale: Using electrophysiological measures of inhibitory synaptic 

currents, previous studies demonstrate increases in miniature IPSCs (mIPSCs) 

frequency under periods of high-frequency stimulation (12.5 mM KCl) in the 

hippocampus from Nf1+/- mice (Cui et al, 2008). Because the BLA is critical for 

emotional processing of social behavior, abnormalities in IPSCs in the BLA could 

affect processes involved in social learning by reducing neurotransmission from 

glutamatergic projection neurons to various brain regions, including the PFC. 

Objective: In this experiment the whole-cell patch-clamp was used to measure 

isolated spontaneous and miniature inhibitory synaptic currents (IPSC) recorded 

from glutamatergic projection neurons in the BLA of WT, Nf1+/-, Nf1+/- / Pak1-/-, 

Pak1-/- mice.  

Hypothesis 5: Nf1+/- mice, as compared to WT, will show dysregulation in 

proteins in the frontal cortex and BLA that are associated with cellular 

mechanisms involved in social learning, and increases in IPSCs observed in the 

BLA. The co-deletion of Pak in Nf1+/- mice will restore these differences in protein 

expression.    
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Rationale: The BLA interacts with the frontal cortex to mediate emotional 

processing and the saliency to sensory cues that are thought to underlie various 

aspects of social behavior, including social learning (see Neural basis of social 

behavior section for review). Objective: To identify potential down-stream targets 

that contribute to the deficits seen in long-term social learning in Nf1+/- mice, 

mass spectrometry was utilized to screen for differences in protein expression 

associated with the heterozygous Nf1 gene deletion (Nf1+/-) in the frontal cortex 

and the BLA. 

 
ADDENDUM 

 
To measure inhibitory synaptic currents (IPSCs) in glutamatergic 

projection neurons dissected from WT, Nf1+/-, Nf1+/- / Pak1-/- and Pak1-/- mice, I 

worked with Dr. Andrei Molosh who is an expert in the field of electrophysiology. 

While we worked closely together during this experiment, Dr. Molosh was the 

primary investigator for these electrophysiological studies. The results from these 

proposed studies are included as an addendum to this dissertation in order to 

better represent and define the scope of this body of work. 
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MATERIALS AND METHODS 

The experimental protocols in this section were designed to address the 

five main hypotheses that are outlined in the Rationale and Objectives section. 

The following section provides a detailed summary of the animals, behavioral 

tests, electrophysiological procedures and protein studies (i.e., Western blotting, 

mass spectrometry) that were utilized in each respective experiment. 

 

A. Animals 

All of the mouse strains tested in these experiments were bred on a 

C57BL/6J background and included the following: (1) Wild-type (WT), (2) Nf1+/-, 

(3) Nf1+/- / Pak1-/- and (4) Pak1-/- mice. The Nf1+/- mice were obtained from Tyler 

Jacks at the Massachusetts Institute of Technology (Cambridge, MA). The Nf1 

allele was genotyped as described previously (Zhang et al, 1998). The Pak1-/- 

strain was obtained from Dr. Jonathan Chernoff (Philadelphia, Pennsylvania). To 

generate the Nf1+/- / Pak1-/- mice, Pak1-/- mice were intercrossed with the Nf1+/- 

strain as previously described (McDaniel et al, 2008). All mice used in these 

experiments were bred in the Indiana University Laboratory Animal Research 

Center.  

 

B. Behavioral Testing 

For all behavioral experiments, adult mice were tested at approximately 

ten weeks of age. To minimize confounds for the behavior studies, the mice were 

male, age-matched and experimentally naïve. Upon arrival at the animal facility, 



 

40 

 

the mice were individually housed in a temperature controlled room (72˚F), and 

were given food and water ad libitum. The housing room was maintained on a 12 

hour light-dark cycle (7:00 am / 7:00 pm). Before testing began, the mice were 

acclimated to the animal facility for six days, and behavioral testing was 

conducted between 8:00 am and 5:00 pm. A battery of behavioral assessments 

were performed including tests of general sociability, social learning / memory, 

anxiety, locomotion, behavioral despair and olfactory sensory habituation (Figure 

5). All procedures were reviewed and approved by the Indiana University School 

of Medicine Institutional Animal Care and Use Committee.  

 

1. Tests of social behaviors and social learning / memory: 

Utilizing a three-chambered apparatus (Sankoorikal et al, 2006), the 

following tests were conducted: (1) preference for social interaction, (2) short-

term social learning / memory, and (3) long-term social learning / memory (see 

Figure 6). The three-chambered apparatus consisted of a rectangular box (20 

inches length x 10 inches width x 9 inches height) that was constructed entirely 

of black Plexiglas. For our experiments, the Plexiglas was lightly sanded to 

minimize reflection. The apparatus was open both on top and bottom, and had 

three interconnecting chambers. The chambers at opposite ends of the 

apparatus were equal in size (7.5 inches x 10 inches), while the middle chamber 

was slightly smaller (4.75 inches x 10 inches).  

Two identical cylinders (3 inches diameter, 5 inches height) constructed of 

black wire were used to house “stimulus” mice (i.e., novel vs. familiar).  For these  
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Figure 5. Timeline for behavioral testing. A battery of behavioral assessments 

was performed to measure sociability, social learning, anxiety, locomotion, 

behavioral despair and olfactory sensory habituation. The mice were acclimated 

to the animal facility for six days before testing began, and were followed by the 

social behavior tests. Four ten minute sessions were conducted that included 

acclimation, preference for social interaction, short-term learning, and long-term 

learning (performed 24 hours later). The elevated plus maze was then utilized to 

measure anxiety-like behavior and then one-trial learning in the EPM (performed 

24 hours later), and the open field test was employed to measure both anxiety-

like behavior and locomotor activity. Next, the forced swim test was used to 

measure behavioral despair and learned helplessness over two days of testing. 

Finally, the olfactory habituation test was utilized to control for differences in 

olfaction and olfactory learning. Each behavioral component was separated by 

48 hours. 
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Figure 6 

(a) Acclimation period (b) Preference for social interaction

(c) Short-term social learning (d) Long-term social learning

Novel Mouse
Now-familiar 

Mouse Familiar MouseNovel Mouse

Novel MouseEmpty cage Empty cage Empty cage

“Test” mouse“Test” mouse

“Test” mouse“Test” mouse

(e) Dimensions of the social behavior apparatus
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Figure 6. Tests of social behaviors and social learning / memory. To 

measure social behavior and social learning / memory, a three-chambered 

rectangular apparatus was utilized consisting of black Plexiglas (Sankoorikal et 

al, 2006). Two wire cages were placed at opposite ends of the apparatus to 

house “stimulus” mice. The behavioral testing apparatus is viewed from above. 

Four ten minute sessions were sequentially conducted to measure preference for 

social interaction and short-term and long-term social learning. (a) During the 

acclimation period, the “test” mouse was presented with two empty cages. (b) 

During the preference for social interaction session, the “test” mouse was 

presented with an empty cage and a cage that housed a novel mouse. (c) During 

the short-term social learning session, the “test” mouse was presented with a 

cage containing the same mouse from the previous session (i.e., now-familiar 

mouse) and a cage containing a novel mouse. (d) During the long-term social 

learning session, the “test” mouse was presented with a cage containing the 

“familiar” mouse from 24 hour earlier and a cage containing a novel mouse. The 

amount of time the “test” mice spent sniffing (i.e., nose pointed toward cage and 

within one inch of cage) each respective cage was determined for each session. 

(e) Dimensions of the behavioral testing apparatus. 

 

 

 

 



 

45 

 

experiments, the wire cylinders were placed in the center of each chamber at 

opposite ends of the apparatus. The diameter and height of the wire cylinders 

were sufficient for the “stimulus” mouse to move comfortably, and the openings in 

the wire cylinders were evenly spaced allowing for auditory, visual, and olfactory 

investigation as well as some tactile contact. The flooring of the apparatus 

consisted of a blue diaper mat. This diaper mat was replaced with a clean mat, 

and the entire apparatus was cleaned with 90% ethanol following the series of 

tests on each mouse.   

Four 10 minute sessions were conducted that included (1) acclimation 

(two empty cages), (2) preference for social interaction (novel mouse, empty 

cage), (3) short-term learning of social cues (familiar mouse, novel mouse), and 

(4) long-term learning of social cues (familiar mouse - 24 hr later, novel mouse). 

Other than the test of long-term social learning (performed on the following day), 

each of the test sessions were conducted in sequential order and directly 

followed the previous test session. 

a. Acclimation period: At the start of the “acclimation” period, the “test” 

mouse was placed in the center chamber of the apparatus with a new 

diaper mat and both wire cylinders. The “test” mouse was allowed to freely 

explore the entire apparatus for ten minutes. Following the acclimation 

period, the “test” mouse was removed from the apparatus and placed in its 

home cage.   

b. Preference for social interaction (Sankoorikal et al, 2006; Nadler et 

al, 2004; Crawely et al, 2007): At the beginning of the “preference for 
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social interaction” session, a novel mouse was placed in one wire cylinder, 

while the other wire cylinder was left empty. The “test” mouse was then 

reintroduced into the center chamber of the apparatus and allowed to 

freely explore the entire apparatus for ten minutes.  Following the 

preference for social interaction test, the “test” mouse was removed from 

the apparatus and placed in its home cage.   

c. Short-term social learning / memory (refer to Nadler et al, 2004; 

Crawely et al, 2007): A second novel mouse was then placed in the 

second cylinder located on the opposite side of the apparatus from the 

cylinder containing the now-familiar mouse. The “test” mouse was then 

reintroduced into the center chamber of the apparatus and allowed to 

freely explore the entire apparatus for ten minutes.  Following the short-

term social learning / memory test, the “test” mouse was removed from the 

apparatus and placed in its home cage. The second novel mouse then 

was removed from the apparatus and placed in its home cage.   

d. Acclimation to now-familiar mouse: The “test” mouse was then 

reintroduced into the center chamber of the apparatus containing the first 

“now-familiar” mouse and allowed to freely explore the entire apparatus for 

an additional forty-five minutes. After the forty-five minute session, both 

mice were removed from the apparatus and placed in their home cages.   

e. Long-term social learning / memory (refer to Nadler et al, 2004; 

Crawely et al, 2007): On the second day (24 hours later), the “familiar” 

mouse from the previous day was randomly placed under one of the wire 
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cylinders, and another novel mouse was placed under the second wire 

cylinder. The “test” mouse was then reintroduced into the center chamber 

of the apparatus and allowed to freely explore the entire apparatus for a 

ten minute period. Following the long-term social learning / memory test, 

the “test” mouse was removed from the apparatus and placed in its home 

cage.   

All testing sessions were recorded by a video camera that was fixed 

above the social interaction box and independently scored at a later time by two 

individuals who were unaware of the animals‟ genotype. Because the majority of 

social interaction occurs during the first five minutes of a testing session (Nadler 

et al, 2004), the time the “test” mouse spent sniffing the wire cage was measured 

during this time frame.  For the acclimation period, three dependent variables 

were measured to control for potential effects of the testing environment, and 

included (1) the time the “test” mouse spent sniffing (i.e., nose pointed toward 

cage and within one inch of cage) each respective wire cylinder, (2) the time 

spent in each of the side chambers on opposite ends of the apparatus, and (3) 

the number of entries the “test” mouse made into the chambers on opposite ends 

of the apparatus. For all other sessions, the time the “test” mouse spent sniffing 

each respective wire cylinder was scored. 

 

2. Tests of anxiety-like behavior 

The elevated plus maze (EPM) was employed to measure anxiety-like 

behavior (refer to Hogg, 1996) and one-trial learning as defined by the classic 
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reduction in open arm exploration on day 2 (refer to Roy et al, 2009) in mice. The 

EPM apparatus consists of two open and two closed arms, and each arm of the 

EPM measures 2 inches wide and 14 inches long. These arms emanate from a 

central platform that is square (2 x 2 inches) to form a plus shape. The arms and 

central platform of the apparatus are elevated to a height of 24.5 inches above 

the floor. The closed arms are surrounded by a 6 inch high enclosure constructed 

of black Plexiglas. Following each experiment, the entire apparatus was cleaned 

with 90% ethanol.   

Anxiety-like behavior in mice was measured using a five minute trial. At 

the start of each EPM session, the “test” mouse was placed on the center 

platform of the EPM apparatus with its head facing the open arm. The “test” 

mouse was allowed to freely explore the entire apparatus for a period of five 

minutes. The “test” mouse was then removed from the EPM apparatus and 

placed in its home cage. For the one-trial learning test, the “test” mouse is re-

tested in the EPM apparatus for an additional five minute session separated by 

twenty-four hours. For each testing session, two dependent variables were 

measured including (1) the time spent in the open arms and (2) the number of 

entries into the open arms. An open arm entry was defined as having all four 

paws into the arm of the EPM. All testing sessions were recorded by a video 

camera that was fixed above the EPM apparatus and scored at a later time. 
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3. Measurement of locomotor activity 

The “test” mouse was placed in an open field to measure locomotor 

activity and to screen for anxiety-like behavior (Grentsch et al, 1987). The open 

field was a rectangular opaque Plexiglas enclosure (beige in color) that 

measured 19.75 x 19.75 inches wide, and the height of the walls was 15.25 

inches. The flooring was constructed of the same beige Plexiglass, and the top of 

the open field apparatus was open to the environment. To measure locomotor 

activity and anxiety, the “test” mouse was placed in a corner of the open field 

arena, and its movements were recorded under florescent light during a ten 

minute session. A SMART II Video Tracker system (San Diego Instruments, San 

Diego, CA) was used to track movements of the “test” mice. Each enclosure was 

divided into nine pre-defined areas including the center area, four corner areas, 

and four wall areas. The dependent variables to measure anxiety included (1) the 

total time spent in the center region, (2) the total number of entries into the center 

region, and (3) the total distance traveled in the center region. The dependent 

variables to measure exploratory activity included (1) the total distance traveled 

and (2) the total entries within and between each of the nine regions of the 

enclosures. Following each experiment, the entire apparatus was cleaned with 

90% ethanol.   

 

4. Tests of behavioral despair and learned helplessness 

The forced swim test is utilized to measure aspects of behavioral despair 

and learned helplessness in rodents (Porsolt et al, 1977). The forced swim 
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apparatus consisted of a cylindrical chamber constructed of clear Plexiglas with a 

diameter of 8.5 inches and height of 10 inches. The top of the cylinder was left 

open to the environment throughout the experiment. For each trial, the chamber 

was filled with 25 ± 1˚C water to a depth of 5.75 inches.  The “test” mouse was 

then gently placed into the cylinder for 15 minutes. Twenty-four hours later, the 

mice were re-exposed to the same conditions for an additional six minute trial. 

The dependent variable scored for the forced swim test was „immobility‟ or the 

cessation of limb movements except minor involuntary hind limb movements 

during the 2 - 6 minute interval. Following each trial, the water was discarded and 

replaced with clean water adjusted to the aforementioned height and 

temperature. All testing sessions were recorded by a video camera and scored at 

a later time. 

 

5. Measurement of olfactory sensory habituation 

In rodents, dyadic social interactions are largely mediated by olfactory 

response. The olfactory sensory habituation test provides an important indicator 

for differences in the response to olfactory cues (Crawley et al, 2007). For this 

experiment, the “test” mouse was placed in a clean mouse cage constructed of 

clear Plexiglas and containing fresh litter.  Before testing began, the “test” mouse 

was acclimated to its new cage for at least thirty minutes. The “test” mouse was 

then presented with nine cotton applicators that were dipped in either water or 

almond extract (1:100 dilution), or wiped in a zig-zag pattern across the bottom 

surface of a cage that contained an “unfamiliar" mouse. The “unfamiliar” mouse 



 

51 

 

was a singly housed male mouse (C57BL/6J) that had lived in the cage for at 

least 3 days. For each trial the cotton applicators were suspended from the cage 

lid and were presented in the following sequence: (1) water, (2) water, (3) water, 

(4) almond, (5) almond, (6) almond, (7) unfamiliar cage, (8) unfamiliar cage, (9) 

unfamiliar cage. Each swab was presented for 2 minutes for a total session 

lasting 18 minutes per mouse. The amount of time that the “test” mouse spent 

sniffing each cotton swab was scored. All testing sessions were recorded by a 

video camera and scored at a later time. 

 

C. Isolation and culture of neuronal cells from murine strains 

Mouse neurons were aseptically dissected from the frontal cortex and 

cultured from each respective genotype (WT, Nf1+/-, Nf1+/- / Pak1-/-, Pak1-/-). 

Following microdissection by Dr. Rajesh Khanna, neuronal cells were isolated by 

dissociation both enzymatically and mechanically (via trituration through a flame-

polished Pasteur pipette) in a Papain solution (12 units/ml; Worthington) as 

described previously (Brittain et al, 2009). The Papain solution contained 

Leibovitz's L-15 medium (Invitrogen), 0.42 mg/ml cysteine (Sigma), 250 units/ml 

DNase I (type IV; Sigma), 25 mm NaHCO3, penicillin (50 units/ml)/streptomycin 

(50 μg/ml), 1 mm sodium pyruvate, and 1 mg/ml glucose (Invitrogen). After 

dissociation, the cells were gently washed by centrifugation in Neurobasal 

medium containing 20 mg/ml bovine serum albumin and penicillin/streptomycin, 

glucose, pyruvate, and DNase I (as above) and then plated on poly-d-lysine-

coated acid-washed glass coverslips at high density (∼4000 cells/mm2). Growth 
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media (1 ml/well) consisted of Neurobasal medium containing 2% NuSerum, 2% 

B27, supplemented with penicillin/streptomycin (100 units/ml; 50 μg/ml), 0.1 mm 

l-glutamine, and 0.4 mm l-Glutamax (Invitrogen). Cytosine β-d-arabinofuranoside 

(5 μm; Sigma) was added 24 hours after plating to reduce the number of non-

neuronal cells. After four days in culture and two times each week thereafter, half 

of the growth medium was replaced with medium without cytosine β-d-

arabinofuranoside.  

For this experiment, the neuronal cultures were assigned to one of two 

experimental conditions: (i) at basal levels and (ii) following the application of 

recombinant murine stem cell factor (rmSCF; PreproTech) at 10 ng/ml. rmSCF 

was applied to the neuronal cultures for 2 minutes. The cells were then washed 

with ice-cold PBS and lysed in buffer containing Laemmle dye with 10% β-

mercaptoethanol, boiled for five minutes at 95˚C, and then frozen at -80˚C until 

further analysis. 

 

D.  Immunoblotting ERK / p-ERK in mouse cortical neurons 

Whole cell protein extracts were obtained from cultured prefrontal cortical 

neurons in lysis buffer (50mM Tris pH 7.4, 150mM NaCl, 2mM EDTA pH 8.0, 1% 

Triton X-100, 1mM PMSF, 1mM NaF, 1mM Na3VO4,10% glycerol and complete 

protease inhibitor). The samples were sonicated and cellular debris was removed 

by centrifugation at 13,000g for 30 min at 4˚C. Protein concentrations were 

determined using a BCA assay (Thermo Scientific). Equivalent amounts of 

protein was electrophoresed on 10% SDS-PAGE gels, transferred to PVDF 
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membranes (GE Healthcare, Little Chalfont, United Kingdom), and detected by 

Western blotting using the ECL Plus system (Amersham Biosciences). 

Antibodies used were Phospho-ERK Antibody (Cell Signaling Technology), 

ERK1 Antibody (Cell Signaling Technology), and GAPDH (MIllipore). Protein 

isolation and Western blotting was conducted in collaboration with Dr. Rajesh 

Kanna. 

 

E. Electrophysiological measurement of IPSCs in the BLA 

Using the whole-cell patch-clamp, inhibitory synaptic currents were 

measured by Dr. Andrei Molosh from glutamatergic projection neurons in the 

basolateral amygdala (Figure 7). Adult male mice were decapitated using a 

guillotine. The brains were then rapidly removed and placed in oxygenated 

artificial cerebrospinal fluid (ACSF) [130 mM NaCl; 3.5 mM KCl; 1.1 mM KH2PO4; 

1.3 mM MgCl2; 2.5 mM CaCl2; 30 mM NaHCO3; 10 mM glucose]. Coronal slices 

(350 μM) were then prepared containing the BLA. Prior to recording, these slices 

were incubated at room temperature for 1 hour in oxygenated ACSF [95% O2 / 

5% CO2 mixture]. The coronal slices were then transferred to a submersion-type 

slice chamber that was mounted on the stage of a Nikon E600FN Eclipse (Nikon 

Instruments, Melville, NY) microscope and perfused with ACSF [1-2 ml per 

minute] heated to 32˚C. 

Projection neurons were identified according to their characteristic size 

and shape (Pickel et al, 2008). Prior to recording utilizing the whole-cell patch 
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Figure 7. The basolateral amygdala (BLA) in the mouse brain. The figure 

above illustrates a representative coronal slice from the mouse brain that 

contains the BLA (adapted from Paxinos and Watson). Coronal slices (350 μM) 

were prepared containing the BLA for electrophysiological and protein expression 

studies. BLA - basolateral amygdala; CA1 and CA3 - Cornu ammonis areas in 

hippocampus; CeL - central amygdala, lateral division; CeM - central amygdala; 

CMT - central medial thalamic nucleus; DG - Dentate Gyrus; MeA - medial 

amygdala  
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clamp, borosilicate glass electrodes (WPI, Sarasota, FL) (resistance 3-6 MΩ) 

were prepared that contained a potassium gluconate based solution [130 mM K-

Gluconate, 3 mM KCl, 3 mM MgCl2, 5 mM phosphocreatine, 2 mM K-ATP, 0.2 

mM NaGTP, 10 mM HEPES]. While maintaining a holding potential of -60 mV, 

whole-cell access resistances were monitored throughout each experiment. 

These resistances ranged from 5-20 MΩ, and a change of 15% was deemed 

acceptable.  

At the start of each experiment, a series of standardized current clamp 

protocols were performed to confirm that the BLA neuron that was patched was, 

in fact, a BLA projection neuron. Pharmacological agents were administered to 

BLA projection neurons by adding the specified concentration directly to the 

ACSF prior to perfusion. First, spontaneous inhibitory synaptic currents (sIPSC) 

were recorded in the presence of 6,7-Dinitroquinoxaline-2,3-dione (DNQX; 20 

µM) and 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP; 10 µM) at a 

holding potential of -55 mV. DNQX and CPP function as AMPA and NMDA 

antagonists. Miniature IPSC (mIPSC) were then recorded following the 

administration of 1 µM tetrodotoxin (TTX), a potent neurotoxin that selectively 

blocks sodium channels. Both sIPSC and miniature IPSC (mIPSC) were 

captured continuously for 30 seconds at a sampling frequency of 20 kHz. 

Spontaneous currents were later analyzed using the pClamp 10.2 (Molecular 

Devices, Sunnyvale, CA). To determine whether the increases in IPSCs detected 

in the BLA were GABA- or glycine-mediated, 1 μM CGP 52432 (GABAB 

antagonist) and 5 μM SR 95531 hydrobromide (GABAA antagonist) were added 
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at the specified concentration directly to the ACSF following the administration of 

DNQX / CPP and then TTX.  

 

F. Quantification of protein in the BLA and PFC 

Tissue slices were prepared following decapitation and transferred to 

centrifuge tubes placed in dry ice for rapid freezing and stored at 80˚C. The 

resulting tissues were first homogenized in a solution containing 400 μl of 50 mM 

ammonium bicarbonate for five minutes. Whole cell protein extracts were 

obtained from brain slices in lysis buffer (30mM Tris, pH7.4, 150mM NaCl, 1% 

Triton X-100, 0.1% SDS, 1mM PMSF, 10mM EDTA, 1mM Na2CO3, 160mM 

NaF, complete protease inhibitor) with ProteoSpin total protein detergent clean 

up micro kit (Norgen, Canada). Then protein concentrations of the lysates were 

determined using a BCA Protein Assay Kit (Pierce, Rockford, IL).  

Protein samples were then subjected to tryptic digestion. After thermal 

denaturation at 95˚C for five minutes, protein samples were reduced through the 

addition of dithiothreitol (DTT) to a final concentration of 5mM and incubated at 

60˚C for 45 minutes. Alkylation was achieved by adding iodoacetamide (IAA) to a 

final concentration of 20 mM prior to incubation at room temperature for 45 

minutes in the dark. A second aliquot of DTT was then added, increasing the final 

concentration of DTT to 10 mM. The samples were then incubated at room 

temperature for 30 minutes to quench the alkylation reaction. Next, trypsin was 

added (1:30 w/w) and microwave-assisted enzymatic digestion was carried out at 
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45˚C for 15 minutes at the power of 50 W, and enzymatic digestion was 

quenched through the addition of neat formic acid.  

LC-MS/MS analyses of the tryptic digests were performed by Dr. Zaneer 

Segu using a Dionex 3000 Ultimate nano-LC system (Dionex, Sunnyvale, CA) 

interfaced to LTQ Orbitrap hybrid mass spectrometer (Thermo Scientific, San 

Jose, CA).  Prior to separation, a 2-µl aliquot of trypsin digestion (1.5 µg protein 

equivalent) was loaded on PepMap300 C18 cartridge (5 µm, 300 Å, Dionex) and 

eluted through the analytical column (150 mm x 100 µm i.d, 200 Å pores) packed 

with C18 magic (Michrom Bioresources, Auburn, CA).  Peptides originating from 

protein tryptic digests were separated using a reversed-phase gradient from 3-

55% B, 97% acetonitrile with 0.1% formic at 500 nl/min flow rate and passed 

through an ADVANCE ionization source (Michrom Bioresources, Auburn, CA).  

 The mass spectrometer was operated in an automated data-dependent 

mode that was switching between MS scan and CID-MS. In this mode, eluted LC 

products undergo an initial full-spectrum MS scan from m/z 300 to 2000 in the 

Orbitrap at 15,000 mass resolutions. Subsequently CID-MS (at 35% normalized 

collision energy) was performed in the ion trap. The precursor ion was isolated 

using the data-dependent acquisition mode with a 2 m/z isolation width to select 

automatically and sequentially five most intense ions (starting with the most 

intense) from the survey scan. The total cycle (6 scans) is continuously repeated 

for the entire LC-MS run under data-dependent conditions with dynamic 

exclusion set to 60 seconds.  Performing MS scanning in the Orbitrap offers high 
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mass accuracy and accurate charge state assignment of the selected precursor 

ions.  

 

G. Bioinformatics and analyses of proteomic data 

Mascot version 2.1.3 was used for all search results obtained in this work. 

The data were searched against Swiss-Prot database for house mouse. Trypsin 

was selected as the enzyme and one missed cleavage was allowed. A 

carbomidomethyl was selected as a fixed modification of all cysteine residues.  

The mass tolerance of both MS and MS/MS data were set to 0.8 Da. Peptides 

with mass accuracy better than 2 ppm and Mascot ion score of 30 and above 

were considered as positive identification. The quantitative analysis of proteins 

was carried out using ProteinQuant Suit developed at Indiana University (Mann 

et al, 2008). Briefly, the raw data obtained from LTQ-Orbitrap XL mass 

spectrometer are converted to MASCOT generic file (MGF). MGF files were then 

parsed with ProtParser subject to specific parsing criteria.  Minimum MOWSE 

score was set to 30 and proteins with two peptides match or above were 

considered as a confident match. Then all parsed files were combined into a 

master file that contains the list of all proteins and peptides identified in the span 

of all the processed LC-MS/MS analyses. Then the combined master files were 

incorporated with their corresponding mzXML files, and were submitted to 

ProteinQuant as described previously (Mann et al, 2008).  

Bioinformatics and statistical analysis of protein data were conducted 

using Partek®Genomics Suite (©Partek Incorporated, St. Louis, MI) in 
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collaboration with Dr. Chirayu Goswami. To analyze the data for each protein, 

the log base 2 was first determined for each data point in order to correct for non-

uniform residuals and to generate absolute values [http://www.sportsci.org]. A 

one-way analyses of variance (ANOVA) analysis was then performed comparing 

protein expression for each respective genotype (i.e., WT, Nf1+/-, Nf1+/- / Pak1-/-, 

and Pak1-/-). When significant differences were obtained, Fisher's protected least 

significant difference (PLSD) post hoc test was applied to conduct individual 

comparisons between groups. Significance was determined at P < 0.05 for all 

analyses.  

 

H. Statistical Analyses 

Data were analyzed using one-way or two-way analyses of variance 

(ANOVAs) or repeated measures ANOVAs. To measure of short-term and long-

term social learning in the social behavior tests, preference for social novelty was 

evaluated using within-genotype repeated measures ANOVAs performed on time 

spent sniffing cages (i.e., nose pointed toward cage and within one inch) using 

cage occupancy (e.g., novel mouse or “familiar” mouse) as the factor. To assess 

anxiety- and depression-like behaviors, two factor (mouse genotype x day) mixed 

ANOVAs were performed on time spent in and entries into the open arm of the 

EPM and percent time spent immobile in the FST, respectively. The data from 

the open field test were analyzed using a student‟s t-test (WT vs. Nf1+/-) or one-

way ANOVAs (Nf1+/- vs. Nf1+/- / Pak1-/- vs. Pak1-/-). For the olfactory habituation 

test, two factor (mouse genotype x scent) mixed ANOVAs were performed on the 
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amount of time spent sniffing the cotton applicator suspended from the cage lid 

for each respective scent. To analyze relative ERK activation (basal levels vs. 

SCF), a two factor (genotype x SCF application) mixed ANOVA was performed 

on ERK1/2 / p-ERK1/2 levels quantified using Western blotting. When significant 

effects were obtained using ANOVAs, the data were further analyzed using post 

hoc Fisher‟s protected least significant difference (PLSD) tests. For 

electrophysiology, statistical analyses included paired t-test and one-way 

ANOVAs using a Dunnet‟s post-hoc. For all comparisons the confidence level for 

significance was set at P < 0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

61 

 

RESULTS 

A. Experiment 1: Behavioral effects associated with the 

heterozygous gene deletion of Nf1 (Nf1+/-) in mice 

 

1. Effects on sociability / social learning 

During the acclimation period, the WT and Nf1+/- mice were presented with 

two empty cages that were placed on opposite ends of the three chambered 

apparatus to control for effects of the testing room environment. Statistical 

analyses consisted of a two factor (mouse genotype x cage occupancy) mixed 

ANOVA performed on three dependent variables including time spent sniffing 

each respective cage, time spent in each of the side chambers, and entries into 

each of the side chambers. No differences were observed between genotypes 

[F(1,22)=0.691; P=0.69] or within each genotype [F(1,22)=0.149; P=0.703 for 

empty cage verses empty cage] for the time spent sniffing each respective empty 

cage, and no genotype x cage interaction [F(1,22)=0.125; P=0.13] was detected 

(Figure 8a). Additionally, WT and Nf1+/- strains showed no differences between 

genotypes [F(1,22)=0.073; P=0.79] in time spent in each of the side chambers, 

and exhibited no left-right side preference [F(1,22)=0.327; P=0.573] nor was 

there a genotype x side interaction [F(1,22)=3.831; P=0.063] in the three 

chambered apparatus (Figure 8b).  Additionally, no significant effects of between 

genotypes [F(1,22)=0.077; P=0.79] or within each genotype [F(1,22)=2.390; 

P=0.136] were detected on numbers of entries into the side chambers  
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Figure 8 
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Figure 8. The testing room environment has no effect(s) on time spent 

sniffing cylinders, side preference or entries into the side chambers. During 

the acclimation session, the WT and Nf1+/- mice were presented with two empty 

cages that were placed on opposite ends of the three chambered apparatus. The 

graphs depict (a) the amount of time spent sniffing each cylinder, (b) time spent 

in the chambers on opposite sides of the apparatus, or (c) the total entries into 

each respective chamber. Data were collected for the first five minutes of the ten 

minute session and represent the mean ± SEM for each group. Because the time 

spent in each of the chambers are mutually exclusive rather than independent 

measures, statistical analyses were only performed between the two side 

chambers, and the time spent in the center chamber was presented solely for 

visual comparisons. 
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(Figure 8c). Therefore, these results confirm the absence of an innate side 

preference in the testing room environment. 

 

a. Preference for social interaction 

Following the acclimation period, the WT and Nf1+/- mice were presented 

with a cage containing a novel mouse and an empty cage that were placed on 

opposite ends of the three chambered apparatus in order to assess their 

preference for social interaction. The amount of time the “test” mouse spent 

sniffing a cage containing a novel mouse was measured, as compared to an 

empty cage. Statistical analyses consisted of a two factor (mouse genotype x 

cage occupancy) mixed ANOVA performed on time spent sniffing each 

respective cage. Statistical analysis revealed that both WT and Nf1+/- strains 

spent significantly more time sniffing the cage with a novel mouse over the empty 

cage [F(1,22)=105.8; P=0.0001 for cage with novel mouse verses empty cage]. 

No significant effects were detected between genotypes [F(1,22)=1.544; 

P=0.227] in amount of time spent sniffing the cage, nor was there a genotype x 

cage interaction [F(1,22)=0.881; P=0.358]. Fisher‟s PLSD post hoc analysis 

detected significantly more time sniffing the cage containing the novel mouse 

than the empty wire cage for both WT and Nf1+/- genotypes (P < 0.001; Figure 

9). These findings demonstrate that both genotypes show similar levels of 

sociability. 
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Figure 9. Nf1+/- mice show normal preference for social interaction, as 

compared to WT (n=12/group). During the “preference for social interaction” 

session, the WT and Nf1+/- mice were presented with a cage containing a novel 

mouse and an empty cage that were placed on opposite ends of the three 

chambered apparatus. The graph illustrates the amount of time “test” mouse 

spent sniffing each respective cage. Data were collected for the first five minutes 

of the ten minute session and represent the mean ± SEM for each group. *P < 

0.05 for a within-group comparison between the cage containing the novel 

mouse verses the empty cage. 
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b. Short-term social learning / memory 

Short-term social learning / memory was quantified as a measure of 

“preference for social novelty”, and was defined by the following cage occupancy 

(i.e., novel mouse or “familiar” mouse) as the within-genotype factor. Statistical 

analyses consisted of a two factor (mouse genotype x cage occupancy) mixed 

ANOVA performed on time spent sniffing each respective cage. When presented 

with a cage containing a novel mouse and a cage containing a now-familiar 

mouse (3 min. following exposure to “test” mouse), both WT and Nf1+/- genotypes 

spent significantly more time sniffing the cage containing the novel mouse over 

the cage containing the now-familiar mouse [F(1,22)=15.1; P=0.001 for cage with 

novel mouse verses cage with the familiar mouse]. No differences were observed 

between genotypes [F(1,22)=0.899; P=0.353] in amount of time spent sniffing the 

cages, and genotype x cage interaction [F(1,22)=0.361; P=0.554] was detected. 

Fisher‟s PLSD post hoc analysis detected significantly more time sniffing the 

cage containing the novel mouse over the cage containing the familiar mouse for 

both WT and Nf1+/- genotypes (P < 0.05), and demonstrate that Nf1+/- mice show 

intact short-term social learning (Figure 10a).  

 

c. Long-term social learning / memory 

Similar to the short-term learning / memory test, long-term social learning / 

memory was assessed as a measure of “preference for social novelty”. The WT  

and Nf1+/- mice were presented with a cage containing a novel mouse and cage  
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Figure 10 
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Figure 10. Nf1+/- mice show intact short-term social learning, but display 

deficits in long-term social learning, as compared to WT (n=12/group). The 

graphs depict the effects of the Nf1 gene deletion on short-term and long-term 

social learning, as measured by their “preference for social novelty”. (a) During 

the “short-term social learning” session, the WT and Nf1+/- mice were presented 

with a cage containing the now-familiar mouse from the previous session and 

one containing a novel mouse that were placed on opposite ends of the three 

chambered apparatus. (b) During the “long-term social learning” session, the WT 

and Nf1+/- mice were presented with a cage containing the same familiar mouse 

from the previous day and a cage containing a novel mouse. The graphs 

illustrate the amount of time “test” mouse spent sniffing each respective cage. 

Data were collected for the first five minutes of the ten minute session and 

represent the mean ± SEM for each group. *P < 0.05 for a within-group 

comparison between the cage containing the now-familiar mouse and the cage 

containing the novel mouse. 
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containing the same familiar mouse from 24 hours earlier. Similar to the short-

term social learning test, statistical analyses consisted of a two factor (mouse 

genotype x cage occupancy) mixed ANOVA performed on time spent sniffing 

each respective cage. No differences were observed between genotypes 

[F(1,22)=2.843; P=0.106] in amount of time spent sniffing the cages and no 

significant genotype x cage interaction was seen [F(1,22)=3.4; P=0.08]. 

However, a significant effect was detected in the amount of time the “test” mice 

spent sniffing each respective cage [F(1,22)=11.7; P=0.002 for cage with novel 

mouse verses cage with the familiar mouse]. Fisher‟s PLSD post hoc analysis 

detected significantly more time sniffing the cage containing the novel mouse 

over the cage containing the familiar mouse for WT (P < 0.005), but no significant 

difference for Nf1+/- genotype (P = 0.25; Figure 10b). Therefore, unlike WT mice, 

these results suggest that Nf1+/- mice are unable to retain and discriminate 

between social cues following a 24 hour delay.  

 

2. Effects on anxiety-like behavior 

Two behavioral tests were employed to test for differences in anxiety-like 

behavior between WT and Nf1+/- mice, including the elevated plus maze (Hogg, 

1996) and the open field test (Grentsch et al, 1987). The elevated plus maze was 

also used to measure one-trial learning to assess whether Nf1+/- show the classic 

reduction in open arm duration and open arm entries seen on day 2 that are 

associated with learning / memory (Roy et al, 2009).  
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a. Elevated plus maze 

For the EPM, statistical analyses consisted of a two factor (mouse 

genotype x time) mixed ANOVA performed on time spent in the open arms and 

entries into the open arms of the EPM. No significant effects were detected 

between genotypes in amount of time spent in the open arm [F(1,22)=0.369; 

P=0.550]  or entries into the open arm [F(1,22)=0.527; P=0.476]  of the EPM, nor 

were there a genotype x time interactions for either open arm time 

[F(1,22)=0.004; P=0.950]  or open arm entries [F(1,22)=0.215; P=0.648]. 

However, statistical analyses revealed a significant effect of time (i.e., 24 hours) 

on both open arm duration [F(1,22)=10.9; P=0.003 for day 2 verses day 1] and 

open arm entries [F(1,22)=11.5; P=0.003 for day 2 verses day 1]. Fisher‟s PLSD 

post hoc analysis detected significant decreases in open arm duration and open 

arm entries on day 2 relative to day 1 for both WT and Nf1+/- genotypes (P < 

0.05; Figure 11a-b). Therefore, these results indicate that WT and Nf1+/- mice 

exhibit no significant differences in anxiety or deficits in one-trial learning, as 

measured by the EPM. 

 

b. Open field test 

The time spent in the center region and entries into the center region of a 

novel open field are inversely correlated with anxiety-like behavior in rodents 

(Grentsch et al, 1987). A student‟s t-test was performed to analyze time spent in 

the center region, entries into the center region, distance traveled in the center 
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Figure 11. Nf1+/- mice exhibit no differences in anxiety-like behavior or one-

trial learning, as compared to WT (n=12/group). Open arm duration and open 

arm entries were measured in WT and Nf1+/- mice during a five minute test using 

the elevated plus maze. Additionally, mice re-tested in the elevated plus maze 24 

hours later to assess one-trial learning. The graphs illustrate (a) the time spent in 

the open arm and (b) entries into the open arm. Data were collected during two 

five minute trials separated by 24 hours and represent the mean ± SEM for each 

group. *P < 0.05 for a within-group comparison between day 1 verses day 2 for 

each respective genotype. 
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region, total entries, and total distance traveled during a ten minute session in 

Nf1+/- mice, as compared to WT. No differences were detected between in time 

spent in the center region (t=0.193, P=0.849), entries into the center region (t=-

0.760, P=0.455), or distance traveled in the center region (t=-0.909, P=0.373; 

see Figure 12a-c). Additionally, no differences were detected between Nf1+/- and 

WT strains in total entries (t=0.-956, P=0.349) or total distance traveled (t=0.-

1.354, P=0.189) during the ten minute session (see Figure 12d-e). These 

findings suggest that Nf1+/- genotype does not impact anxiety-like behaviors, nor 

does Nf1+/- genotype influence locomotor or exploratory activity in mice. 

 

3. Effects on behavioral despair / learned helplessness 

Previous studies have found an increased risk for development of mood 

disorders in patients diagnosed with NF1 (Samuelsson and Riccardi, 1989; Zoller 

and Rembeck, 1999; Johnson et al, 1999). Swimming “immobility” is thought to 

be positively correlated with depression-like response in rodents (Porsolt et al, 

1977). Percent of time immobile was measured in WT and Nf1+/- during two trials 

that were separated by 24 hours. Statistical analyses for the forced swim test 

consisted of a two factor (mouse genotype x time) mixed ANOVA performed 

percent time spent immobile in the Plexiglas cylinder containing water. No 

significant differences were detected between WT and Nf1+/- genotypes in their 

percent of time immobile [F(1,22)=0.511; P=0.482], nor a genotype x time 

interaction [F(1,22)=0.684; P=0.417]. While a significant effect of day (i.e., 24  
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Figure 12 
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Figure 12. No differences were detected between Nf1+/- and WT strains 

(n=12/group) in novel open field exploration. A SMART II Video Tracker (VT) 

system was used to track movement of the Nf1+/- and WT mice in a square 

enclosure that was divided into nine pre-defined areas (i.e., center area, four 

corner areas, and four wall areas). The graphs depict (a) time spent in the center 

region, (b) entries into the center region, (c) distance traveled in the center 

region, (d) total entries, and (e) total distance traveled during the ten minute 

session. Data shown represent the mean ± SEM for each group. 
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hours) on their percent of time immobile [F(1,22)=5.087; P=0.034 for day 2 

verses day 1] was detected, post hoc analyses revealed no significant 

differences (Figure 13). Therefore, these results indicate that the Nf1+/- genotype 

does not affect behavioral despair and learned helplessness in mice. 

 

4. Effects on olfactory sensory habituation 

Olfaction is the primary sensory input for social behavior in mice. To 

assess their ability to smell and their habituation to social and non-social odors, 

Nf1+/- and WT mice were presented with cotton applicators dipped in water, 

almond extract and the scent of a novel mouse (Crawley et al, 2007). To obtain 

the scent of a novel mouse, a cotton applicator wiped in a zig-zag pattern across 

the bottom surface of a cage that contained an unfamiliar mouse that lived in the 

cage for at least three days. Two factor (mouse genotype x scent) mixed 

ANOVAs were performed on the amount of time spent sniffing the cotton 

applicator suspended from the cage lid. The scents that were presented included 

(1) water, (2) diluted almond extract, (3) novel mouse. No significant differences 

were detected between Nf1+/- and WT genotypes for the time spent sniffing 

cotton applicators dipped in water [F(1,12)=1.692; P=0.218], almond extract 

[F(1,12)=0.682; P=0.425], or scent of a novel mouse [F(1,12)=0.005; P=0.945], 

nor was a genotype x scent interaction detected for water [F(1,12)=1.294; 

P=0.278], almond extract [F(1,12)=0.1.395; P=0.261], or scent of a novel mouse 

[F(1,12)=0.032; P=0.860]. Figure 14 illustrates that both strains exhibited a  
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Figure 13. Nf1+/- and WT mice (n=12/group) show no differences in their 

percent of time immobile in the forced swim test (FST), a measure of 

behavioral despair and learned helplessness. Swimming “immobility” was 

assessed during the 2-6 minute interval on day 1 and day 2. Data shown 

represent the mean ± SEM of the percent of time immobile for each group. 

 

 

 

 

 

 

WT           Nf1+/-

Nf1+/-

Nf1+/-



 

78 

 

 

 

 

 

 

Figure 14. Nf1+/- and WT strains show normal olfaction in response to social 

and non-social odors (n=12/group). To assess non-social and social olfactory 

response, Nf1+/- and WT strains were presented with cotton applicators dipped in 

water, almond extract and the scent of a novel mouse (in triplicate). Data shown 

represent the mean ± SEM for each group. 
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significant habituation to the cotton applicator soaked with either water or almond 

extract, demonstrating moderate sniffing that was followed by a reduction in 

sniffing across the second and third exposures (P < 0.05). The most significant 

response was elicited from the social smell or the cotton applicator wiped across 

a cage containing a novel mouse that had no previous contact with the “test” 

mouse (P < 0.01). Therefore, both Nf1+/- and WT genotypes showed no 

differences in their ability to smell.  

 

B. Experiment 2: Behavioral effects associated with the co-deletion 

of Pak1 in Nf1+/- (Nf1+/-/ Pak1-/-) mice 

 

1. Effects on sociability / social learning 

Experiment 1 demonstrates normal preference for social interaction and 

intact short-term social learning / memory, but deficits in long-term social learning 

/ memory seen in mice with the heterozygous gene deletion of Nf1 (Nf1+/-), as 

compared to WT. In addition, no differences were observed between Nf1+/- mice 

and WT in measures of anxiety-like behavior (EPM, open field test) or 

depression-associated response (forced swim test). The purpose of this 

experiment is to determine whether the genetic inactivation of Pak1 in Nf1+/- 

(Nf1+/-/ Pak1-/-) mice would restore the deficits in long-term social learning / 

memory, as it does for in vitro and in vivo gain-in-function phenotypes (i.e., 

cellular proliferation, cellular migration) observed in Nf1 haploinsufficient mast 

cells (McDaniel et al, 2008).  
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a. Preference for social interaction 

For the preference for social interaction test, statistical analyses consisted 

of a two factor (mouse genotype x cage occupancy) mixed ANOVA performed on 

time spent sniffing each respective cage. When presented with a cage containing 

a novel mouse and an empty cage, statistical analysis revealed that Nf1+/-, Nf1+/-/ 

Pak1-/-, and Pak1-/- mice all spent significantly more time sniffing the cage 

containing the novel mouse over the empty cage [F(1,26)=100.45; P=0.001 for 

cage with novel mouse verses cage with the familiar mouse]. No significant 

effects were detected between genotypes [F(2,26)=0.713; P=0.500] in amount of 

time spent sniffing the cage, nor was there a genotype x cage interaction 

[F(2,26)=1.114; P=0.343]. Fisher‟s PLSD post hoc analysis detected significantly 

more time sniffing the cage containing the novel mouse than the empty wire cage 

for Nf1+/-, Nf1+/-/ Pak1-/-, and Pak1-/- genotypes (P < 0.001; Figure 15). These 

findings demonstrate that Pak1 deletion in mice does not significantly affect 

levels of sociability, as compared to Nf1+/- mice. 

 

b. Short-term social learning / memory 

To analyze short-term social learning / memory, statistical analyses 

consisted of a two factor (mouse genotype x cage occupancy) mixed ANOVA 

performed on time spent sniffing each respective cage. When presented with a 

cage containing a novel mouse and a cage containing a now-familiar mouse, 

Nf1+/-, Nf1+/-/ Pak1-/-, and Pak1-/- genotypes spent significantly more time sniffing  
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Figure 15. The deletion of Pak1 (Pak1-/-) in mice does not affect preference 

for social interaction, as compared to Nf1+/- mice. During the “preference for 

social interaction” session, Nf1+/- (n=12), Nf1+/- / Pak1-/- (n=11), Pak1-/- (n=6) mice 

were presented with a cage containing a novel mouse and an empty cage that 

were placed on opposite ends of the three chambered apparatus. The graph 

illustrates the amount of time “test” mouse spent sniffing each respective cage. 

Data were collected for the first five minutes of the ten minute session and 

represent the mean ± SEM for each group. *P < 0.05 for a within-group 

comparison between the cage containing the novel mouse verses the empty 

cage. 
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the cage containing the novel mouse over the cage containing the now-familiar 

mouse [F(1,26)=32.66; P=0.001 for cage with novel mouse verses cage with the 

familiar mouse]. No differences were observed between genotypes 

[F(2,26)=1.659; P=0.210] in amount of time spent sniffing the cages, and 

genotype x cage interaction [F(2,26)=1.537; P=0.234]  was detected. Fisher‟s 

PLSD post hoc analysis detected significantly more time sniffing the cage 

containing the novel mouse over the cage containing the familiar mouse for Nf1+/-

, Nf1+/-/ Pak1-/-, and Pak1-/- mice (P < 0.05), and demonstrate that all three strains 

demonstrate intact short-term social learning (Figure 16a).  

 

c. Long-term social learning / memory 

Similar to the short-term social learning / memory test, statistically 

analyses for the long-term social learning / memory consisted of a two factor 

(mouse genotype x cage occupancy) mixed ANOVA performed on time spent 

sniffing each respective cage. When Nf1+/-, Nf1+/-/ Pak1-/-, and Pak1-/- mice were 

presented with a cage containing a novel mouse and a cage containing the same 

familiar mouse from 24 hours earlier, no differences were observed between 

genotypes [F(2,26)=0.117; P=0.890] in amount of time spent sniffing the cages 

and no significant genotype x cage interaction was seen [F(2,26)=3.04; P=0.065]. 

However, a significant effect was detected in the amount of time the “test” mice 

spent sniffing each respective cage [F(1,26)=7.325; P=0.012 for cage with novel 

mouse verses cage with the familiar mouse]. Similar to the findings from 
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Figure 16 
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Figure 16. The co-deletion of Pak1 (Pak1-/-) in Nf1+/- mice does not affect 

short-term social learning, but restores the deficits in long-term social 

learning seen in Nf1+/- mice. The graphs depict the effects of the Pak1 gene 

deletion on short-term and long-term social learning, as measured by their 

“preference for social novelty”. (a) During the “short-term social learning” session, 

the Nf1+/- (n=12), Nf1+/- / Pak1-/- (n=11), Pak1-/- (n=6) mice were presented with a 

cage containing the now-familiar mouse from the previous session and one 

containing a novel mouse that were placed on opposite ends of the three 

chambered apparatus. (b) During the “long-term social learning” session, the 

Nf1+/-, Nf1+/- / Pak1-/-, Pak1-/- mice were presented with a cage containing the 

same familiar mouse from the previous day and a cage containing a novel 

mouse. The graphs illustrate the amount of time “test” mouse spent sniffing each 

respective cage. Data were collected for the first five minutes of the ten minute 

session and represent the mean ± SEM for each group. *P < 0.05 for a within-

group comparison between the cage containing the now-familiar mouse and the 

cage containing the novel mouse. 
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experiment 1, Fisher‟s PLSD post hoc analysis detected no significant difference 

in the amount of time Nf1+/- genotype spent sniffing the cage containing the novel 

mouse over the cage containing the familiar mouse, but both Nf1+/-/ Pak1-/- and 

Pak1-/- genotypes spent significantly more time sniffing the cage containing the 

novel mouse over the cage containing the familiar mouse (P < 0.05; Figure 16b). 

Therefore, unlike Nf1+/- mice, Nf1+/- / Pak1-/- mice are able to retain and 

discriminate between social cues following a 24 hour delay indicating that the 

genetic inactivation of Pak1 restores the deficits in long-term social learning seen 

in Nf1+/- mice.  

 
2. Effects on anxiety-like behavior 

In experiment 1, no significant differences were detected in anxiety-like 

behavior or one-trial learning comparing WT and Nf1+/- genotypes, as measured 

by the elevated plus maze. In experiment 2 the EPM was used to assess anxiety-

like behavior and one-trial learning associated with the homozygous Pak1 gene 

deletion in Nf1+/- mice. For the EPM, statistical analyses consisted of a two factor 

(mouse genotype x day) mixed ANOVA performed on time spent in the open 

arms and entries into the open arms of the EPM. No differences were detected 

between genotypes in amount of time spent in the open arm [F(2,22)=1.797; 

P=0.186], and no genotype x cage interaction was seen [F(2,26)=1.293; 

P=0.292]. Similar to experiment 1, statistical analyses revealed a significantly 

effect of time on open arm duration [F(2,26)=36.61; P=0.001 for day 2 verses day 

1]. Fisher‟s PLSD post hoc analysis detected significant decreases in open arm 

duration on day 2 relative to day 1 for Nf1+/-, Nf1+/-/ Pak1-/-, and Pak1-/- genotypes 
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(P < 0.05; Figure 17a). Additionally, no differences were observed between 

genotypes in entries into the open arm [F(2,26)=1.923; P=0.166]  of the elevated 

plus maze, nor was there a genotype x time interaction for open arm entries 

[F(2,26)=0.633; P=0.539]. Statistical analyses did reveal a significant effect of 

time on open arm entries [F(1,26)=47.39; P=0.001 for day 2 verses day 1]. 

Fisher‟s PLSD post hoc analysis detected significant decreases in open arm 

duration and open arm entries on day 2 relative to day 1 for Nf1+/-, Nf1+/-/ Pak1-/-, 

and Pak1-/- genotypes (P < 0.05; Figure 17b). Therefore, the findings indicate 

Nf1+/-, Nf1+/-/ Pak1-/-, and Pak1-/- genotypes show no significant differences in 

anxiety-like behaviors, as measured by the EPM on day 1. In addition, all three 

genotypes showed the classic reduction in open arm time and open arm entries 

observed on day 2 consistent with normal one-trial learning in the EPM. 

 

3. Effects on behavioral despair / learned helplessness 

In experiment 1, no significant differences were detected in depression-

associated immobility comparing WT and Nf1+/- genotypes, as measured by the 

forced swim test. In experiment 2, the forced swim test was again employed to 

assess swimming immobility in Nf1+/-, Nf1+/-/ Pak1-/-, and Pak1-/- genotypes. 

Statistical analyses for the forced swim test consisted of a two factor (mouse 

genotype x time) mixed ANOVA performed percent time spent immobile in the 

Plexiglas cylinder containing water. Significant differences were detected 

between Nf1+/-, Nf1+/-/ Pak1-/-, and Pak1-/- genotypes in their percent of time 
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Figure 17 
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Figure 17. Nf1+/- / Pak1-/- and Pak1-/- mice exhibit no differences in anxiety-

like behavior or one-trial learning, as compared to Nf1+/- mice. Open arm 

duration and open arm entries were measured in Nf1+/- (n=12), Nf1+/- / Pak1-/- 

(n=11), Pak1-/- (n=6) mice during a five minute test using the elevated plus maze. 

Additionally, mice were re-tested in the elevated plus maze 24 hours later to 

assess one-trial learning. The graphs illustrate (a) the time spent in the open arm 

and (b) entries into the open arm entries. Data were collected during two five 

minute trials separated by 24 hours and represent the mean ± SEM for each 

group. *P < 0.05 for a within-group comparison between day 1 verses day 2 for 

each respective genotype. 
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immobile [F(2,26)=6.905; P=0.004], but no significant  genotype x time 

interaction was observed [F(2,26)=0.496; P=0.615]. Additionally, a significant 

effect of day on their percent of time immobile was detected [F(1,26)=9.237; 

P=0.005 for day 2 verses day 1]. Post hoc analyses revealed significant 

decreases in the percent of time immobile Nf1+/-/ Pak1-/-, and Pak1-/- genotypes, 

as compared to Nf1+/- mice (P < 0.05; Figure 18). Therefore, these results 

indicate that the Pak1 deletion is associated with decreases in depression-

associated immobility in mice. 

 

4. Effects on olfactory sensory habituation 

In experiment 1, no differences were detected in olfaction or olfactory 

habituation between Nf1+/- and WT genotypes, as measured by the olfactory 

sensory habituation test. To measure the ability of the Nf1+/-, Nf1+/- / Pak1-/-, and 

Pak1-/- mice to smell and their habituation to social and non-social odors, Nf1+/- 

and WT mice were presented with cotton applicators dipped in water, almond 

extract and the scent of a novel mouse (Crawley et al, 2007). Two factor (mouse 

genotype x scent) mixed ANOVAs were performed on the amount of time spent 

sniffing the cotton applicator suspended from the cage lid. The scents that were 

presented included (1) water, (2) diluted almond extract, (3) novel mouse. No 

significant differences were detected between Nf1+/-, Nf1+/-/ Pak1-/-, and Pak1-/- 

genotypes for the time spent sniffing cotton applicators dipped in water 

[F(2,15)=1.219; P=0.323], almond extract [F(2,15)=0.145; P=0.867], or scent of a  
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Figure 18. Nf1+/- / Pak1-/- and Pak1-/- mice show significant decreases in their 

percent of time immobile in the forced swim test (FST), as compared to 

Nf1+/- mice. Swimming “immobility” was assessed during the 2-6 minute interval 

on day 1 and day 2. Data shown represent the mean ± SEM of the percent of 

time immobile for each group. †P < 0.05 for a between-group comparison verses 

Nf1+/- genotype. 
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novel mouse [F(2,15)=0.774; P=0.479], nor was a genotype x scent interaction 

detected for water [F(2,15)=0.589; P=0.567], almond extract [F(2,15)=1.481; 

P=0.259], or scent of a novel mouse [F(2,15)=2.354; P=0.129]. Similar to the 

findings from experiment 1, all three strains exhibited a significant habituation to 

the cotton applicator soaked with either water or almond extract, demonstrating 

moderate sniffing that was followed by a reduction in sniffing across the second 

and third exposures (P < 0.05), and the most significant response was elicited 

from the scent of the novel mouse (P < 0.01; Figure 19).  

 

C. Experiment 3: Role of Nf1 and Pak1 genes on ERK activation in 

murine cortical neurons 

McDaniel et al (2008) demonstrates that the co-deletion of Pak1 gene in 

Nf1+/- mast cells normalizes MAPK hyperactivation associated with the Nf1+/- 

gene deletion (McDaniel et al, 2008).  To determine whether the co-deletion of 

Pak1 gene would restore the Nf1+/--related MAPK hyperactivation in CNS 

neurons, mouse cortical neurons were cultured in vitro for 5 days and harvested 

from WT, Nf1+/-, Nf1+/- / Pak1-/- and Pak1-/- mice. The resulting neurons were 

challenged with 10 ng/ml of stem cell factor (SCF) for approximately 2 minutes, 

and ERK1/2 / p-ERK1/2 levels were quantified using Western blotting. To assess 

ERK activation in mouse cortical neurons (basal levels vs. SCF), a two factor 

(genotype x SCF application) ANOVA was performed on ERK1/2 / p-ERK1/2 
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Figure 19. Nf1+/- and WT strains show normal olfaction in response to social 

and non-social odors (n=12/group). To assess non-social and social olfactory 

response, Nf1+/- (n=12), Nf1+/- / Pak1-/- (n=11), Pak1-/- (n=6) mice were presented 

with cotton applicators dipped in water, almond extract and the scent of a novel 

mouse (in triplicate). Data shown represent the mean ± SEM for each group. 
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content characterized using Western blotting, a semi-quantitative measure. 

Significant differences were detected between genotypes WT, Nf1+/-, Nf1+/- / 

Pak1-/- and Pak1-/- in ERK1/2 / p-ERK1/2 levels [F(3,8)=11.01; P=0.003], and 

genotype x SCF interaction was detected [F(3,8)=41.64; P=0.0001]. In addition, 

statistical analyses revealed a highly significant effect of SCF on ERK activation 

[F(1,8)=247.37; P=0.0001 for SCF verses basal]. Fisher's PLSD post hoc tests 

were applied to conduct individual comparisons within and between groups. 

Consistent with the findings from McDaniel et al (2008), no differences were 

detected in ERK1/2 activation between cultures at basal levels (Figure 20). 

Stimulation with SCF for 2 minutes resulted in a significant increase in p-ERK1/2 

relative to ERK1/2 in WT, Nf1+/-, Nf1+/- / Pak1-/- genotypes. As compared to WT, 

Nf1+/- genotype showed significantly greater ERK1/2 activation, and the co-

deletion of Pak1 in Nf1+/- neuronal cultures (i.e., Nf1+/- / Pak1-/-) decreased the 

hyperactivation of p-ERK1/2 to levels consistent with WT (P < 0.05). The 

administration of SCF to Pak1-/- cultured neurons yielded no effect on ERK1/2 

activation. Therefore, these findings indicate that the Nf1+/- genotype leads to 

MAPK hyperactivation following SCF stimulation, and this hyperactivation is 

restored by the co-deletion of Pak1 in cultured cortical neurons in mice. 

Significance was determined at P < 0.05 for all analyses. 
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Figure 20. The co-deletion of Pak1 (Nf1+/- / Pak1-/-) restores MAPK 

hyperactivation associated with Nf1+/- in neuronal cultures. Western blotting 

was used to quantify p-ERK1/2 in cultured cortical neurons at basal levels and 2 

minutes following stimulation with SCF (10 ng/ml). Phospho-ERK1/2 was 

quantified by immunoblotting using phospho-specific antibodies, and total 

ERK1/2 was used as loading controls. Each value represents the mean and the 

error bars represent the standard error of the mean of three independent 

experiments (*P < 0.05 vs basal levels; 
†
P < 0.05 vs. WT). 
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D. Experiment 4: Role of Nf1 and Pak1 in the regulation of inhibitory 

synaptic currents in the BLA in mice 

 

1. Effects of Nf1+/- genotype on IPSCs in the BLA 

Utilizing the whole-cell patch clamp, isolated spontaneous inhibitory 

synaptic currents (sIPSC) and miniature IPSC (mIPSC) were recorded at a 

standardized holding potential of -55 mV in WT (n=11) and Nf1+/- (n=11) mice. To 

assess inhibitory IPSCs in the BLA, statistical analyses using a paired t-test were 

performed to compare WT and Nf1+/- genotypes. In the presence of AMPA and 

NMDA antagonists (DNQX, CPP), Nf1+/- mice showed no differences in sIPSC 

amplitude [t10=0.23, P=0.823] or mIPSC [t10=0.057, P=0.956] in the presence of 

tetrodotoxin (TTX), as compared to WT (Figure 21a). However, Nf1+/- mice 

exhibited significant increases in sIPSC [t10=2.518, P=0.02] and mIPSC 

[t10=2.368, P=0.028] frequency in BLA projection neurons, as compared to WT 

(Figure 21b). In the presence of GABAA antagonist (SR 95531 hydrobromide) 

and GABAB antagonist (CGP 52432), the mIPSCs observed in glutamatergic 

projection neurons in the BLA were entirely blocked, an effect consistent with 

GABA inhibition. 

 

2. Effects of Pak1 co-deletion in Nf1+/- mice on IPSCs in BLA 

As before, the whole-cell patch clamp was used to measure sIPSC and 

mIPSC recorded at -55 mV in Nf1+/- (n=11), Nf1+/- / Pak1-/- (n=11), and Pak1-/-  
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Figure 21 
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Figure 21. Nf1+/- mice exhibit no differences in sIPSC and mIPSC amplitude, 

but increases in sIPSC and mIPSC frequency in BLA, as compared to WT 

(n=11/group). Isolated spontaneous inhibitory synaptic currents (sIPSC) and 

miniature IPSC (mIPSC) were recorded from BLA glutamatergic projection 

neurons at a standardized holding potential of -55 mV in WT and Nf1+/- mice. The 

graphs illustrate the (a) sIPSC and mIPSC amplitude and (b) sIPSC and mIPSC 

frequency. Data represent the mean ± SEM for each group. *P < 0.05 for 

comparison between genotypes [Calibration: 1s, 40 pA.]. 
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(n=11) mice. Statistical analyses included one-way ANOVAs comparing each 

respective genotype. When significance was obtained, Dunnets‟ post-hoc tests 

were applied to conduct individual comparisons between genotypes on IPSC 

amplitude and frequency. In the presence of AMPA and NMDA antagonists, 

Nf1+/-, Nf1+/- / Pak1-/-, and Pak1-/- mice showed no differences in sIPSC amplitude 

[F(2,36)=0.5, P=0.61 for Nf1+/- / Pak1-/-, and Pak1-/- versus Nf1+/-] or mIPSC 

[F(2,36)=0.527, P=0.595 for Nf1+/- / Pak1-/-, and Pak1-/- versus Nf1+/-] in the 

presence of TTX, as compared to WT (Figure 22a). However, Nf1+/- / Pak1-/-, and 

Pak1-/- mice showed significant decreases in sIPSC [F(2,26)=4.606, P=0.016 for  

Nf1+/- / Pak1-/- and Pak1-/- versus Nf1+/-] and mIPSC [F(2,26)=14.54, P<0.0001 for 

Nf1+/- / Pak1-/-, and Pak1-/- versus Nf1+/-] frequency in BLA projection neurons, as 

compared to Nf1+/- mice (Figure 22b). Therefore, the co-deletion of Pak1 in Nf1+/- 

mice normalizes the increases in spontaneous and minuture IPSCs observed in 

glutamatergic projection neurons in BLA of Nf1+/- mice. 

 

E. Experiment 5: Role of Nf1 and Pak1 genes in the regulation of 

protein expression in the PFC and BLA in mice 

Mass spectrometry was utilized to screen for differences in protein 

expression in the PFC and BLA associated with Nf1+/-, Nf1+/- / Pak1-/- and Pak1-/- 

genotypes, as compared to WT (n=6 per group). Partek Genomics Suite 

(©Partek Incorporated, St. Louis, MO) was used to analyze these data. The log  
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Figure 22 
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Figure 22. Nf1+/- / Pak1-/- and Pak1-/- mice show no differences in sIPSC and 

mIPSC amplitude, but decreases in sIPSC and mIPSC frequency in BLA, as 

compared to Nf1+/- mice (n=11/group). Isolated spontaneous inhibitory synaptic 

currents (sIPSC) and miniature IPSC (mIPSC) were recorded from BLA 

glutamatergic projection neurons at a standardized holding potential of -55 mV in 

Nf1+/-, Nf1+/- / Pak1-/- and Pak1-/- mice. The graphs depict the (a) sIPSC and 

mIPSC amplitude and (b) sIPSC and mIPSC frequency. Data represent the 

mean ± SEM for each group. *P < 0.05 for comparison to Nf1+/- genotype 

[Calibration: 1s, 40 pA]. 
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base2 was first determined for each data point associated with each protein 

identified using mass spectometry. A one-way ANOVA analysis was then 

performed comparing protein expression for each respective genotype (i.e., WT, 

Nf1+/-, Nf1+/- / Pak1-/-, and Pak1-/-). Significance was determined at P < 0.05 for all 

analyses. When significant differences were obtained using the one-way 

ANOVA, Fisher's PLSD post hoc test was applied to conduct individual 

comparisons between groups. Proteins of interest were selected based on the 

following criteria: (1) significant differences between WT vs. Nf1+/- group, (2) 

significant differences between Nf1+/- vs. Nf1+/- / Pak1-/- group, and (3) were 

directionally consistent with a rescue.  

In the PFC, the following twenty proteins were identified that showed 

significant differences in expression between WT vs. Nf1+/- group and (2) 

significant differences between Nf1+/- vs. Nf1+/- / Pak1-/- group, and were 

consistent with a rescue (see Table 1 and Table 2). These proteins include the 

following: (1) LSAMP [F(3,20)=5.61; P=0.0058], (2) CALB1 [F(3,20)=7.17; 

P=0.0019], (3) ACTS [F(3,20)=5.71; P=0.0054], (4) HNRH1 [F(3,20=3.21; 

P=0.045], (5) CAPRI [F(3,20)=13.00; P=0.0001], (6) H2A2B [F(3,20)=4.11; 

P=0.0199], (7) NUCL [F(3,20)=6.02; P=0.0043], (8) AP1B1 [F(3,20)=4.15; 

P=0.0194], (9) MBP [F(3,20)=4.53; P=0.0140], (10) DREB [F(3,20)=5.69; 

P=0.0055], (11) CLCB [F(3,20)=3.95; P=0.0232], (12) THY1 [F(3,20)=4.21; 

P=0.0185], (13) MAP1A [F(3,20)=11.86; P=0.0001], (14) ENOA [F(3,20)=13.77; 

P=0.0001], (15) STXB1 [F(3,20)=9.40; P=0.0001], (16) DHE [F(3,20)=8.09; 

P=0.0010], (17) LDHA [F(3,20)=8.65; P=0.0007], (18) DYL2 [F(3,20)=3.44; 
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P=0.0365], (19) DYN1 [F(3,20)=4.28; P=0.0173], (20) NACAM [F(3,20)=5.48; 

P=0.0065], and (21) CAZA2 [F(3,20)=4.57; P=0.0135].  

In the BLA, ADAM22 [F(3,20)=12.13; P=0.0001] was identified displaying 

significant differences in expression between WT vs. Nf1+/- group and significant 

differences between Nf1+/- vs. Nf1+/- / Pak1-/- group consistent with a rescue (see 

Table 1 and Table 2). Following protein identification, Pubmed and Protein 

search engines (www.ncbi.nlm.nih.gov) were used to further characterize 

proteins identified in the PFC and BLA based on their known biology and their 

relevance to NF1-related phenotypes. For a review of protein functions, see Role 

of Nf1 and Pak1 in the regulation of protein expression in the BLA and PFC 

section in Discussion. 
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Table 1: Protein expression differences seen in Nf1-deficient mice are  
               restored by the co-deletion of Pak1 gene in the PFC and BLA 
 

 

   Rescued by 
Protein Locus ID Fold-change Pak1 deletion Description 

 

        

Prefrontal cortex: 
 

LSAMP Q8BLK3 8.25 Full rescue Limbic system-associated membrane protein 
CALB1 P12658 6.21 Full rescue Calbindin 
ACTS P68134 5.15 Full rescue Alpha-actin-1 
HNRH1 O35737 4.07 Full rescue Heterogeneous nuclear ribonucleoprotein H 
CAPRI Q60865 3.53 Full rescue Caprin-1 
H2A2B Q64522 3.44 Full rescue Histone H2A type 2-B 
NUCL P09405 3.21 Full rescue Nucleolin 
AP1B1 O35643 2.87 Full rescue AP-1 complex subunit beta-1 
MBP P04370 2.47 Full rescue Myelin basic protein 
DREB Q9QXS6 2.03 Full rescue Drebrin 
CLCB Q6IRU5 1.86 Full rescue Clathrin light chain B 
THY1 P01831 1.57 Full rescue Thy-1 membrane glycoprotein 
MAP1A Q9QYR6 1.49 Full rescue Microtubule-associated protein 1A 
ENOA P17182 -1.37 Full rescue Alpha-enolase 
STXB1 O08599 -1.63 Full rescue Syntaxin-binding protein 1 
DHE P26443 -1.88 Full rescue Glutamate dehydrogenase 1 
LDHA P06151 -2.02 Full rescue L-lactate dehydrogenase A chain 
DYL2 Q9D0M5 -2.27 Full rescue Dynein light chain 2 
DYN1 P39053 -2.56 Full rescue Dynamin-1 
NACAM P70670 -3.12 Full rescue Nascent-associated complex subunit alpha 
CAZA2  P47754  -3.57 Full rescue F-actin-capping protein subunit alpha-2 

 

Basolateral amygdala: 
 

 ADAM22 Q9R1V6 -6.17 Partial rescue ADAM metallopeptidase domain 22 
 

 

*P < 0.05 vs. WT
-
; One-way ANOVA [performed on log transformed protein expression data] 

 

 
 



 

105 

 

 

 

 

 

 

   T
a

b
le

 2
: 

S
u

m
m

a
ry

 o
f 

p
ro

te
in

 e
x

p
re

s
s

io
n

 d
if

fe
re

n
c

e
s

 s
e
e

n
 i

n
 N

f1
-d

e
fi

c
ie

n
t 

m
ic

e
 t

h
a

t 
a
re

 r
e
s

to
re

d
 b

y
 t

h
e

  
  

  
  
  

  
  
  

 c
o

-d
e

le
ti

o
n

 o
f 

P
a

k
1

 g
e

n
e

 i
n

 t
h

e
 P

F
C

 a
n

d
 B

L
A

 i
n

 m
ic

e
 

 

 

P
ro

te
in

 
L

o
c

u
s

 I
D

 
  

  
  

  
N

f1
+

/-
 v

s
. 

W
T

  
N

f1
+

/-
 /

 P
a

k
1

-/
-  v

s
. 

W
T

  
  

P
a

k
1

-/
-  v

s
. 

W
T

 
N

f1
+

/-
 /

 P
a

k
1

-/
-  v

s
. 

N
f1

+
/-
 

 

 
 

 
 

 
 

 
 

P
re

fr
o

n
ta

l 
c

o
rt

e
x
: 

F
o

ld
-c

h
a
n

g
e
  
  
P

-v
a
lu

e
 

  
F

o
ld

-c
h

a
n

g
e
  
  
P

-v
a
lu

e
 

  
  
  
  
  
 F

o
ld

-c
h

a
n

g
e
  
  
P

-v
a
lu

e
  
  
  
  

  
  
  
F

o
ld

-c
h

a
n

g
e
  
  

P
-v

a
lu

e
 

 

L
S

A
M

P
 

Q
8
B

L
K

3
 

8
.2

5
 

0
.0

0
1
 

1
.1

8
 

0
.7

8
0
 

  
2
.6

4
 

0
.1

0
7
 

-7
.0

1
 

 0
.0

0
3
 

C
A

L
B

1
 

P
1
2
6
5
8
 

6
.2

1
 

0
.0

0
1
 

2
.3

2
 

0
.0

5
1
 

1
.7

2
 

0
.1

9
3
 

-2
.6

8
 

 0
.0

2
4
 

A
C

T
S

 
P

0
1
8
3
1
 

5
.1

5
 

0
.0

0
6
 

1
.6

1
 

0
.3

8
6
 

6
.5

5
 

0
.0

0
2
 

-3
.2

0
 

 0
.0

4
1
 

H
N

R
H

1
 

O
3
5
7
3
7
 

4
.0

7
 

0
.0

4
1
 

-1
.3

8
 

0
.6

1
9
 

-1
.3

1
 

0
.6

7
7
 

-5
.6

4
 

 0
.0

1
4
 

C
A

P
R

I 
Q

6
0
8
6
5
 

3
.5

3
 

0
.0

0
1
 

-1
.1

9
 

0
.5

6
3
 

-1
.4

6
 

0
.2

0
5
 

-4
.1

9
 

 0
.0

0
1
 

H
2
A

2
B

 
Q

6
4
5
2
2
 

3
.4

4
 

0
.0

0
8
 

1
.2

3
 

0
.6

2
7
 

-1
.0

5
 

0
.9

0
2
 

-2
.8

0
 

 0
.0

2
4
 

N
U

C
L

 
P

0
9
4
0
5
 

3
.2

1
 

0
.0

3
0
 

-2
.1

4
 

0
.1

4
4
 

-1
.7

7
 

0
.2

6
6
 

-6
.8

5
 

 0
.0

0
1
 

A
P

1
B

1
 

O
3
5
6
4
3
 

2
.8

7
 

0
.0

1
6
 

-1
.3

1
 

0
.5

1
0
 

1
.0

8
 

0
.8

4
7
 

-3
.7

6
 

 0
.0

0
4
 

M
B

P
 

P
0
4
3
7
0
 

2
.4

7
 

0
.0

2
0
 

-1
.3

8
 

0
.3

7
8
 

-1
.0

9
 

0
.8

0
4
 

-3
.4

2
 

 0
.0

0
3
 

D
R

E
B

 
Q

9
Q

X
S

6
 

2
.0

3
 

0
.0

2
0
 

-1
.2

0
 

0
.5

2
6
 

-1
.4

6
 

0
.1

9
2
 

-2
.4

4
 

 0
.0

0
5
 

C
L
C

B
 

Q
6
IR

U
5
 

1
.8

6
 

0
.0

4
5
 

-1
.3

8
 

0
.2

7
9
 

-1
.1

4
 

0
.6

5
7
 

-2
.5

7
 

 0
.0

0
4
 

T
H

Y
1
 

P
0
1
8
3
1
 

1
.5

7
 

0
.0

4
9
 

-1
.1

5
 

0
.5

2
8
 

1
.6

1
 

0
.0

4
0
 

-1
.8

1
 

 0
.0

1
3
 

M
A

P
1
A

 
Q

9
Q

Y
R

6
 

1
.4

9
 

0
.0

4
9
 

-2
.0

4
 

0
.0

0
1
 

-1
.2

6
 

0
.2

3
4
 

-3
.0

4
 

 0
.0

0
1
 

E
N

O
A

 
P

1
7
1
8
2
 

-1
.3

7
 

0
.0

3
2
 

1
.6

3
 

0
.0

0
2
 

1
.3

9
 

0
.0

2
5
 

2
.2

3
 

 0
.0

0
1
 

S
T

X
B

1
 

O
0
8
5
9
9
 

-1
.6

3
 

0
.0

4
9
 

2
.0

4
 

0
.0

0
6
 

1
.3

5
 

0
.2

1
3
 

3
.3

2
 

 0
.0

0
1
 

D
H

E
 

P
2
6
4
4
3
 

-1
.8

8
 

0
.0

0
7
 

1
.1

4
 

0
.5

2
6
 

1
.4

2
 

0
.1

1
0
 

2
.1

6
 

 0
.0

0
2
 

L
D

H
A

 
P

0
6
1
5
1
 

-2
.0

2
 

0
.0

0
4
 

1
.4

3
 

0
.1

0
7
 

-1
.1

8
 

0
.4

3
3
 

2
.8

9
 

 0
.0

0
1
 

D
Y

L
2
 

Q
9
D

0
M

5
 

-2
.2

7
 

0
.0

1
5
 

-1
.0

6
 

0
.8

5
8
 

1
.0

0
 

0
.9

9
4
 

2
.1

5
 

 0
.0

2
1
 

D
Y

N
1
 

P
3
9
0
5
3
 

-2
.5

6
 

0
.0

4
6
 

1
.1

2
 

0
.8

0
1
 

1
.8

4
 

0
.1

8
2
 

2
.8

7
 

 0
.0

2
7
 

 
N

A
C

A
M

 
P

7
0
6
7
0
 

-3
.1

2
 

0
.0

4
4
 

1
.6

6
 

0
.3

4
9
 

2
.3

8
 

0
.1

1
6
 

5
.1

8
 

 0
.0

0
5
 

C
A

Z
A

2
  

P
4
7
7
5
4
  

-3
.5

7
 

0
.0

3
4
 

2
.1

8
 

0
.1

7
9
 

-1
.2

6
 

0
.6

8
7
 

7
.7

9
 

 0
.0

0
2
 

 

B
a
s
o

la
te

ra
l 

a
m

y
g

d
a
la

: 
 

 

A
D

A
M

2
2

 
Q

9
R

1
V

6
 

-6
.1

7
 

0
.0

0
1
 

-2
.2

4
 

0
.0

3
4
 

1
.0

5
 

0
.9

0
0
 

2
.7

5
 

 0
.0

1
0
 

 
  R

e
s
u

lt
s
 f

ro
m

 o
n

e
-w

a
y
 A

N
O

V
A

 [
p

e
rf

o
rm

e
d
 o

n
 l
o

g
 t
ra

n
s
fo

rm
e
d

 p
ro

te
in

 e
x
p

re
s
s
io

n
 d

a
ta

];
 F

is
h

e
r'
s
 P

L
S

D
 p

o
s
t 
h

o
c
 t

e
s
t 

  
 



 

106 

 

DISCUSSION 

Neurofibromatosis type 1 is one of the most common single gene 

disorders in humans. While NF1 is diagnosed by the presentation of physical 

features, a higher incidence of developmental behavioral disorders is seen 

including learning disabilities, attention problems, social deficits and psychiatric 

disorders. Silva et al (1997) was the first to find that Nf1+/- mice display spatial 

learning deficits comparable to those observed in NF1 patients. Subsequent 

studies in the hippocampus have implicated the hyperactivation of RAS-

dependent signaling, increased GABA-mediated inhibition, and deficits in LTP as 

potential mechanisms underlying these spatial learning deficits (Costa et al, 

2002; Li et al, 2005; Cui et al, 2008). However, neurofibromin is not isolated to 

the hippocampus, but is expressed throughout the CNS, including the prefrontal 

cortex and the amygdala. Therefore, a primary objective for the present 

dissertation was to characterize the Nf1+/- mouse model for abnormalities in 

processes associated with social and emotional learning.  

For this purpose, Nf1+/- mice were first screened for deficits in behaviors 

including social interaction and social learning, anxiety-like behavior, one-trial 

learning (EPM), and depression-associated response. This series of experiments 

revealed that Nf1+/- mice show selective deficits in long-term social learning / 

memory. Next, utilizing a genetic intercross, it was further demonstrated that the 

co-deletion of Pak1 restores these deficits in long-term social learning / memory. 

The heterozygous Nf1 gene deletion (Nf1+/-) is associated with hyperactivation of 

the MAPK signaling pathway (see Le and Parada, 2007 for review). Similar to 
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previous findings in mast cells (McDaniel et al, 2008), the immediate effects of 

the co-deletion of Pak1 on stem cell factor (SCF)-mediated MAPK 

hyperactivation were also demonstrated in Nf1+/- neurons cultured from the PFC. 

Consistent with previous findings in CA1 pyramidal cells of hippocampal slices 

(Costa et al, 2002; Cui et al, 2008), electrophysiological methods found 

increased inhibitory synaptic currents (IPSCs) in glutamatergic projection 

neurons in the BLA, a brain region that is critical for learning social cues. These 

increases in IPSC frequency seen in Nf1+/- mice were restored by the co-deletion 

of Pak1 gene. Utilizing the same genetic intercross method, mass spectrometry 

was employed to identify novel protein candidates that may contribute to these 

abnormalities associated with the Nf1+/- genotype. 

 

A. Nf1+/- mutation leads to sustained deficits in social learning 

The Nf1+/- strain provides a unique model to study genetic, molecular, 

and cellular mechanisms that are responsible for the learning disabilities, 

attention deficits, social and emotional problems associated with NF1 (see 

Shilyansky et al, 2010 for review). Previous studies indicate that NF1 children 

display social problems including with social withdrawal, poor interpersonal 

skills, and problems with social perception (Barton and North, 2004; Kayl and 

Moore, 2000; Eliason, 1986). Such deficits could also be the result from the 

inability to learn and retain appropriate social cues. Nf1+/- mice show normal 

preference for social interaction (see Figure 9), and display intact short-term 

social learning (see Figure 10a). However, when presented with a novel mouse 
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and the same “familiar” mouse 24 hours later, Nf1+/- mice are unable to 

differentiate between the novel mouse and the “familiar” mouse, while WT mice 

continue to show robust long-term social learning (see Figure 10b). Therefore, 

these findings suggest that the social profile of the Nf1+/- mouse model is largely 

consistent with the social abnormalities seen in NF1 patients. Therefore, the 

identification of the mechanism(s) responsible for these social learning deficits 

seen in Nf1+/- mice may provide important information to improve the treatment 

options for these NF1-related social learning problems.  

While human studies have found a moderately increased risk for the 

development of anxiety and depression in patients diagnosed with NF1 

(Samuelsson and Riccardi, 1989; Zoller and Rembeck, 1999; Johnson et al, 

1999), Nf1+/- mice displayed no differences in anxiety-like behavior, as measured 

using the elevated plus maze and in the open field test (see Figures 11-12). 

Furthermore, WT and Nf1+/- mice displayed no differences in their percent time 

immobile during two trials that were separated by 24 hours in the forced swim 

test (see Figure 13). Therefore, these experiments were unable to capture 

effects of the Nf1+/- genotype on rodent behavioral measures that are associated 

with anxiety and depression in humans. However, anxiety and depression are 

complex psychiatric disorders influenced by multiple factors including the 

genetics, the environment, and gene x environment interactions (Nandi et al, 

2009). 

In addition to anxiety-like behavior, the EPM was utilized to test one-trial 

learning as defined by the classic reduction in open arm time and open arm 



 

109 

 

entries commonly observed when rodents are re-tested in the EPM on day 2 

(Roy et al, 2009). Nf1+/- mice displayed no differences in one-trial learning (see 

Figure 11). These findings suggest that the Nf1+/- genotype does not globally 

affect learning / memory, but leaves some forms of learning / memory intact. 

However, the motivations that underlie one-trial learning in the EPM are not 

clearly defined in the literature, and may result from avoidance or fear-based 

learning or a reduction in open arm novelty. These motivations ultimately result in 

a shift in behavior from the open arms toward the closed arms of the EPM on day 

2 (Roy et al, 2009).   

 

 
B. Loss of Pak1 rescues abnormalities in social learning and MAPK 

signal transduction seen in Nf1+/- mice 

PAK1 has been identified as a critical RAS-mediated effector that has 

been shown to regulate the intracellular signal transduction of PI3K and MAPK, 

and has been implicated in numerous processes involved in CNS function, 

including synaptic plasticity (see Kreis and Barnier, 2009 for review). Previous 

studies demonstrate that the loss of Pak1 normalizes the MAPK hyperactivation 

seen in haploinsufficient mast cells, and the co-deletion of Pak1 in Nf1+/- mice 

restores gain-in-function phenotypes in mast cells (McDaniel et al, 2008). The 

same genetic intercross strategy was employed to determine whether the co-

deletion of Pak1 in Nf1+/- mice would restore the long-term social learning / 

memory deficits previously seen in Nf1+/- mice. 
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Similar to findings in experiment 1, no differences were observed between 

genotypes in preference for social interaction (see Figure 15) or short-term 

social learning (see Figure 16a). However, unlike the Nf1+/- genotype, both Nf1+/- 

/ Pak1-/- and Pak1-/- mice showed significant preference for social novelty even 

after 24 hours, indicating that Nf1+/- / Pak1-/- mice are now able to retain and 

discriminate between familiar and unfamiliar social cues following a 24 hour 

delay (see Figure 16b). Therefore, the findings from experiment 2 demonstrate 

that the abnormalities in social learning seen in Nf1+/- mice can be rescued by the 

co-deletion of Pak1 gene. Similar to the findings associated with the Nf1+/- 

genotype, the loss of Pak1 had no effect on anxiety-like behavior (see Figure 

17). Interestingly, the loss of Pak1 was associated with decreased depression-

associated immobility in mice (see Figure 18). 

While the co-deletion of Pak1 has been shown to restore the Nf1+/--related 

hyperactivation of MAPK in mast cells (McDaniel et al, 2008), the effects of Nf1 

and Pak1 expression on MAPK activation were not yet characterized in neuronal 

cultures from the frontal cortex. We demonstrate that, in the presence of SCF, 

Nf1+/- neurons cultured from the frontal cortex show a significantly greater 

increase in active ERK1/2, as compared to WT, and the co-deletion of Pak1 

normalizes this hyperactivation of ERK1/2 to levels that are consistent with WT 

(see Figure 20). Therefore, the hyperactivation in MAPK signaling associated 

with Nf1+/- genotype is regulated in a PAK1-dependent manner in the CNS, and 

thereby, may contribute to the deficits in long-term social learning / memory seen 

in Nf1+/- mice (Figure 23).  
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Figure 23. Illustration that depicts a hypothetical mechanism(s) explaining 

how PAK1 may interact with MAPK to restore abnormalities in learning and 

memory seen in Nf1+/- mice. Neurofibromin negatively regulates RAS GTPase 

activation, and is, in part, responsible for the propagation of the classical MAPK 

and PI3K signaling cascades. In addition to the Nf1+/--related hyperactivation of 

RAS-dependent pathways, Nf1+/- genotype affects cytoskeletal remodeling, 

cellular proliferation, synaptic plasticity and learning and memory. Our findings 

suggest that co-deletion of Pak1 gene in Nf1+/- cells may restore these functions 

by normalizing the hyperactivation of MAPK. 
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The RAS/MAPK signaling cascade is mediated through the activation of 

receptor tyrosine kinase (RTK) by multiple growth factors including nerve growth 

factor (NGF), brain derived neurotophic factor (BDNF), stem cell factor (SCF), 

and many others (Campbell et al, 1998). In addition, SCF/c-kit are abundantly 

expressed in neurons and glia in the CNS of mice (Zhang and Fedoroff, 1997). In 

vitro studies show that the administration of recombinant SCF to astroglia leads 

to the up-regulation of other growth factors including NGF and BDNF (Zhang and 

Fedoroff, 1997). Because the Pak1-/- genotype did not display significant MAPK 

activation in response to SCF application, these results may indicate that MAPK 

activation associated with SCF/c-kit signaling is primarily mediated in a PAK1-

dependent manner (see Figure 20). Due to its role in MAPK signaling in the 

PFC, SCF/c-kit and other growth factors likely play an integral role in the 

regulation of long-term social learning in mice and other processes in the CNS 

that are mediated in a PAK1-dependent manner. 

 

C. Nf1 and Pak1 affect inhibitory synaptic currents (IPSCs) in BLA 

glutamatergic projection neurons in mice 

Previous studies in Nf1+/--hippocampal neurons found increases in the 

frequency of inhibitory synaptic currents under periods of high-frequency 

stimulation (Cui et al, 2008). While no differences were observed in Nf1+/- mice in 

either sIPSC or mIPSC amplitude, Nf1+/- mice showed significant increases in 

both sIPSC and mIPSC frequency in glutamatergic projection neurons isolated 

from the BLA, as compared to WT (see Figure 21). The administration of a 
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GABAA antagonist (SR 95531 hydrobromide) and a GABAB antagonist (CGP 

52432) block the mIPSCs, consistent with GABA-mediated inhibition. In the BLA, 

glutamatergic projection neurons are regulated by excitatory input that is largely 

sensory information and inhibitory input from local GABAergic interneurons (see 

Figure 4). Therefore, the increases in IPSCs frequency observed in 

glutamatergic projection neurons in the BLA seen Nf1+/- mice could potentially 

result from increased presynaptic GABA release from inhibitory interneurons 

localized to the BLA.  

Next, we determined whether the genetic inactivation of Pak1 in Nf1+/- 

(Nf1+/-/ Pak1-/-) mice would restore the increases in inhibitory synaptic currents 

seen in Nf1+/- mice. While no differences were detected in sIPSC or mIPSC 

amplitude, we found that the co-deletion of Pak1 normalized the increases in 

sIPSC and mIPSC frequency, as compared to Nf1+/- mice (see Figure 22). These 

results demonstrate that increases in IPSCs in BLA glutamatergic projection 

neurons seen in Nf1+/- mice are corrected in the Nf1+/- / Pak1-/- mice. Abnormal 

tonic inhibition in the BLA can cause communication problems with PFC that can 

lead to inappropriate emotional assessment and assignment of saliency to social 

cues (see Bachevalier and Malkova 2006 for review). Ultimately, the balance of 

excitation and inhibition can have important effects on functions of the BLA, 

including social and emotion learning.  
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D. Role of Nf1 and Pak1 genes in the regulation of protein 

expression in the PFC and BLA 

The prefrontal-amygdala circuit defines a primary processing center for 

emotional aspects of social response, and its dysregulation can have profound 

effects on social function in humans and rodents. Mass spectrometry was used 

to screen for differences in proteins expressed in the PFC and BLA associated 

with the Nf1+/- genotype and were restored by the co-deletion of Pak1 gene in 

Nf1+/- mice. Proteins were selected based on the following criteria: (1) significant 

differences between WT vs. Nf1+/- group, (2) significant differences between 

Nf1+/- vs. Nf1+/- / Pak1-/- group, and (3) were consistent with a rescue (see Tables 

1-2). The resulting proteins were then characterized based on their known 

biology and their relevance to NF1-related phenotypes utilizing resources from 

National Center for Biotechnology Information [www.ncbi.nlm.nih.gov]. 

 

1. Proteins identified in the PFC 

In the PFC, the co-deletion of Pak1 gene rescues differences in protein 

expression seen in Nf1+/- mice that perform multiple cellular functions including 

the regulation of RNA transcription, protein modification and packaging, 

cytoskeletal dynamics, vesicular fusion, and neurotransmission. Therefore, the 

proteomics findings in this dissertation indicate that the mechanism(s) involved in 

the PAK1-dependent rescue of the deficits in long-term social learning likely are 

complex, but affect a finite number of proteins that mediate specific cellular 

processes. Additionally, these proteomics findings reveal a more robust effect of 



 

115 

 

the Pak1 gene co-deletion in the PFC identifying twenty one proteins, while only 

one protein exhibited an expression profile consistent with a rescue in the BLA. 

 

a. Proteins involved in the regulation of DNA 

Due to its role as a negative regulator of RAS activation, neurofibromin 

acts as a key regulator in signal transduction from the cell membrane to the 

nucleus (see Le and Parada, 2007 for review). DNA represents the cornerstone 

of the cellular function by providing the genomic code for RNAs and their 

respective proteins, and dysregulation in DNA structure and function can lead to 

important effects on the CNS. Histones play a central role in transcription 

regulation, DNA repair, DNA replication and chromosomal stability. In the PFC, 

both H2A2B and NUCL are expressed at higher levels in Nf1+/- mice. Histone 

H2A type 2-B or H2A2B is a core component of nucleosomes, proteins that wrap 

and compact DNA into chromatin, limiting DNA accessibility to the cellular 

machineries which require DNA as a template (Bergink et al, 2006). Nucleolin or 

NUCL is histone chaperone protein associated with intranucleolar chromatin and 

pre-ribosomal particles. NUCL induces chromatin decondensation by binding to 

histone H1, thereby, NUCL increases DNA accessibility needed for RNA 

transcriptional elongation (see Storck et al, 2007 for review). The upregulation of 

H2A2B and NUCL in Nf1+/- mice may alter the accessibility of DNA broadly 

affecting gene expression.  
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b. Proteins involved in the regulation of RNA 

RNA transcription and its subsequent modification into mRNA represent 

core cellular processes. Both HNRH1 and CAPRI are expressed at higher levels 

in the PFC of Nf1+/- mice. Heterogeneous nuclear ribonucleoprotein H or HNRH1 

is localized to the nucleoplasm in the nucleus, and is a component of the 

heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the 

substrate for the processing events that pre-mRNAs undergo before becoming 

functional, translatable mRNAs in the cytoplasm (Paul et al, 2006). Additionally, 

Caprin-1 or CAPRI regulates the transport and translation of mRNAs of proteins, 

and has been shown to mediate cellular proliferation (Wang et al, 2005). In 

neuronal cells, CAPRI directly binds to mRNAs associated with RNA granules, 

including BDNF, CAMK2A, CREB1, MAP2, NTRK2, GRIN1, KPNB1 mRNAs. 

Through processing and transport of mRNA, HNRH1 and CAPRI affect the 

expression of multiple proteins involved in the regulation of DNA transcription, 

cellular proliferation and cytoskeletal dynamics in the CNS.  

 

c. Proteins involved in the regulation of protein translation 

The endoplasmic reticulum (ER) is the site of protein synthesis, and the 

rough ER is responsible for transporting the newly synthesized proteins to the 

Golgi apparatus, the cellular site for protein modifications. Nascent polypeptide-

associated complex subunit alpha or NACAM prevents inappropriate targeting of 

non-secretory polypeptides to the ER by binding to nascent polypeptide chains 

as they emerge from the ribosome and blocks their interaction with the signal 
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recognition particle (George et al, 2002). NACAM also reduces the inherent 

affinity of ribosomes for protein translocation sites in the ER membrane. Adapter-

related protein complex 1 subunit beta-1 or AP1B1 plays a role in protein sorting 

in the Golgi apparatus by mediating both the recruitment of clathrin to 

membranes and the recognition of sorting signals within the cytosolic tails of 

transmembrane cargo molecules (Santambrogio et al, 2005). In the PFC, 

NACAM is expressed at lower levels in Nf1+/- mice, while AP1B1 is expressed at 

higher levels. Additionally, Clathrin light chain B or CLCB is expressed at higher 

levels in the PFC of Nf1+/- mice. CLCB is the major protein localized to the 

polyhedral coat of vesicles (Brodsky et al, 1987), and has been associated with 

schizophrenia in humans (Vercauteren et al, 2007). Thus, NACAM, AP1B1 and 

CLCB proteins are involved in the regulation of protein modification and secretion 

in the ER and Golgi apparatus.  

 

d. Proteins involved in F-actin and microtubule dynamics 

In the developing forebrain, cytoskeletal dynamics regulates cellular 

processes involved in neuronal polarization (i.e., neuronal migration, axon 

specification), dendritic spine morphology, and vesicular release (see Arimura 

and Kaibuchi for review). While the mechanisms that contribute to these 

cytoskeletal changes are still largely uncharacterized, the regulation of 

filamentous actin (F-actin) and microtubule dynamics are critical for these cellular 

processes associated with cytoskeletal dynamics. Consistent with disruption in 

cytoskeletal dynamics, Brown et al (2010) found that hippocampal neurons 



 

118 

 

cultured from Nf1+/- mouse embryos show reduced neurite lengths and growth 

cone areas. In addition, F-actin is abundantly expressed in the dendritic spine, 

the postsynaptic structure in neurons. F-actin dynamics is also involved in the 

enlargement of vesicular pool size and increases in vesicle-fusion probability 

(see Zucker, 1989 for review). Pharmacological experiments further demonstrate 

that interfering with F-actin inhibits long-term potentiation (LTP) in hippocampal 

neurons, a mechanism that is critical for synaptic plasticity and memory formation 

(Kim and Lisman, 1999). 

In the PFC, three proteins were identified that are involved in the 

regulation of F-actin dynamics. Alpha-actin-1 or ACTS is expressed at higher 

levels in the PFC of Nf1+/- mice. ACTS is ubiquitously expressed in eukaryotic 

cells. The polymerization of globular actin (G-actin) leads to the formation of 

filamentous actin (F-actin) in the form of a two-stranded helix. F-actin-capping 

protein subunit alpha-2 or CAZA2 is expressed at lower levels in the PFC of 

Nf1+/- mice. F-actin-capping proteins bind in a Ca2+-independent manner to the 

fast growing ends of actin filaments (barbed end), thereby blocking the exchange 

of subunits at these ends. Drebrin or DREB is expressed at higher levels in the 

PFC of Nf1+/- mice. DREB directly binds to F-actin. DREB is involved in 

organizing the dendritic pool of actin, and coordinates F-actin-microtubule 

interactions that mediate neuronal polarity and motility including neurite formation 

and the regulation of growth cones (Geraldo et al, 2008). Thereby, DREB 

regulates both cell shape and plasticity, and has been associated with 
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Alzheimer's disease and Down syndrome (Harigaya et al, 1996; Dun and Chilton, 

2010). 

In the CNS, PAK1 is essential for cytoskeletal dynamics by acting in a 

kinase-dependent manner to regulate F-actin formation and microtubule 

stabilization (see Jacobs et al, 2007 for review; Figure 24). PAK1 has been 

shown to regulate LIM kinase activity, leading to the destabilization cofilin and the 

inactivation and aggregation of F-actin fibers (Ishibashi, 2008). The 

overexpression of PAK1 leads to increases in cellular motility and actin 

polymerization, while the expression of dominant negative PAK1 results in 

decreases in migration and organized actin structures (Sells et al, 1999). 

Through its interaction of LIMK and cofilin, PAK1, thereby, mediates cytoskeletal 

dynamics including F-actin assembly and vesicular transport (Vadlamudi et al, 

2002). It has been shown that disruption of cortical F-actin can evoke vesicle 

translocation, thereby liberating large dense core vessicles bound to F-actin 

(Rose et al, 2001; Neco et al, 2003). In addition, MAPK signaling regulates F-

actin disassembly, thereby modulating vesicular release. For example, the 

inhibition of MAPK signaling blocks the effect of activity dependent potentials 

suppressing the vesicular release (Park et al, 2006). In neurons, MAPK activation 

in a calcium dependent manner leads to phosphorylation of synapsin I, which 

causes F-actin disassembly and subsequent translocation of vesicles (Yamagata 

et al, 2002).  
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Figure 24. Model illustrating the role of Pak1 in the regulation of F-actin and 

microtubules. The specification of an axon and subsequent outgrowth of axons 

and dendrites require the dynamic turnover of F-actin and microtubules. PAK1 

and its downstream targets, in part, regulate F-actin growth / severing and 

microtubule stabilization / destabilization. Pak1 activates LIMK-1, therby, 

inhibiting cofilin activation. Pak1 also mediates microtubule dynamics through the 

phosphorylation and inactivation of the microtubule-destabilizing protein 

stathmin. 
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In addition to the regulation of F-actin, PAK1 also mediates microtubule 

dynamics through the phosphorylation and inactivation of the microtubule-

destabilizing protein stathmin (Daub et al, 2001; see Figure 24). Three proteins 

were identified that are associated with dysregulation in microtubule dynamics. 

For instance, microtubule-associated protein 1A or MAP1A is expressed at 

higher levels in the PFC of Nf1+/- mice. MAP1A is a structural protein involved in 

the filamentous cross-bridging between microtubules and other skeletal elements 

(Pedrotti et al, 1994). Dynein light chain 2 (DYL2) is expressed at lower levels in 

the PFC of Nf1+/- mice. DYL2 is involved in some aspects of dynein-related 

intracellular transport and motility, and may play a role in changing or maintaining 

the spatial distribution of cytoskeletal structures localized to cytoplasm. Dynamin-

1 or DYN1 is expressed at lower levels in the PFC of Nf1+/- mice. DYN1 is a 

microtubule-associated force-producing protein that is involved in producing 

microtubule bundles. DYN1 is able to bind and hydrolyze GTP, and interacts with 

soluble N-ethylmaleimide-sensitive factor attachment protein receptors (Gorini et 

al, 2010). DYN1 regulates receptor-mediated endocytosis associated with 

vesicular trafficking, has been associated with schizophrenia and bipolar disorder 

(Martins-de-Souza et al, 2009; Gray et al, 2010).  

 

e. Proteins associated with vesicular fusion 

Following protein modification, finished protein products, or glycoproteins, 

are transported in vesicles (i.e., vesicular trafficking) to the cellular membrane. 

Synaptic vesicles then bind to receptors on the surface of the membrane, and the 
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glycoproteins are excreted from the neuron through vesicular translocation 

(Südhof et al, 1993). Membrane fusion in neurons is Ca2+ dependent process 

and involves the interaction of synaptic vesicle proteins, plasma membrane 

proteins, and cytoplasmic proteins (Söllner et al, 1993). Neurons contain large 

dense-core vesicles and small synaptic vesicles that are responsible for 

secretion of neuropeptides or hormones and classical neurotransmitters, 

respectively. Both large dense-core vesicles and small synaptic vesicles show 

activity dependent release (Shakiryanova et al, 2005). 

Thy-1 membrane glycoprotein or THY1 is expressed at higher levels in the 

PFC of Nf1+/- mice. THY1 is a component of both large dense-core and small 

clear vesicles in the CNS, and plays an important role in the regulation of 

vesicular release of neurotransmitter and neuromodulators at the synapse. THY1 

is expressed by neuronal cells in culture (Wilkerson and Touster, 1993). THY1 

mediates signal transduction by increasing intracellular Ca2+ levels (Barboni et al, 

1991) and stimulating tyrosine phosphorylation (Hsi et al, 1989). Thy-1 null mice 

show selective social learning deficits in the social transmission of food 

preference test (Mayeux-Portas et al, 2000). Additionally, Thy-1-/- mice exhibit 

excessive GABAergic inhibition and deficits in LTP in the dentate gyrus (Hollrigel 

et al, 1998; Nosten-Bertrand et al, 1996). These deficits in social learning can be 

restored by the administration of a GABAA receptor antagonist (Mayeux-Portas et 

al, 2000). 

Syntaxin binding protein 1 or STXBP1 is detected at lower levels in the 

PFC of Nf1+/- mice. STXBP1 is involved in the regulation of SNARE-dependent 
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membrane fusion necessary for membrane expansion during neurite formation 

(Steiner et al, 2002). STXBP1 is a presynaptic protein that binds to the closed 

conformation of syntaxin, and thus inhibits its assembly into the SNARE complex 

(Yang et al, 2000) Release from STXBP1 and activation of the open 

conformation of syntaxin is key to synaptic membrane fusion and the release of 

neurotransmitters into the synaptic gap (Mitchell et al, 2005). Additionally, 

syntaxin has been shown to promote neurite outgrowth in cell culture (Steiner et 

al, 2002). Through its interaction with syntaxin, STXB1 participates in the 

regulation of synaptic vesicle docking and fusion, possibly through interaction 

with GTP-binding proteins (Mitchell et al, 2005), and has been associated with 

increased risk for schizophrenia and bipolar disorder (Vercauteren et al, 2007; 

Behan et al, 2009).  

Detected at higher levels in the PFC, limbic system-associated membrane 

protein or LSAMP is a glycoprotein that mediates selective neuronal growth and 

axon targeting by through the guidance of developing axons and the remodeling 

of mature circuits in the limbic system. LSAMP is expressed on the surface of 

somata and dendrites of neurons in cortical and subcortical regions (Horton and 

Levitt, 1988; Zacco et al, 1990). LSAMP can enhance or inhibit neurite outgrowth 

depending on the neuronal population (Pimenta and Levitt, 2004). While basic 

neuroanatomical organization and sensory and motor development appear to be 

normal, Lsamp-/- mice display a heightened reactivity to novelty and hyperactivity 

in a novel arena indicating a possibly maladaptive response to novel 

environmental stressors (Catania et al, 2008). Additionally, LSAMP has been 
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implicated in schizophrenia, mood disorders, and an increased risk for suicide 

(Behan et al, 2009; Must et al, 2008).  

 

f. Proteins associated with myelination 

In the central nervous system, PAK1 is enriched in oligodendrocytes or 

glial cells that provide a supporting role for neurons and produce the myelin 

sheath insulating axons (Dharmawardhane et al, 1997). Myelin allows for the 

efficient conduction of action potentials down the axon by reducing ion leakage 

and decreasing the capacitance of the cell membrane. Nf1+/- mice show 

increases in the expression of MBPs in the PFC. Myelin basic proteins or MBP 

isoforms (isoform 4-isoform 13) are the most abundant protein components of the 

myelin membrane in the CNS. MBPs play an essential role in both the formation 

and stabilization of the myelin sheath. Human studies have found decreased 

expression of MBPs in temporal lobe of schizophrenics (Martins-de-Souza et al, 

2009) 

 

g. Proteins involved in neurotransmission 

Two proteins were identified in the PFC that may modulate 

neurotransmission. Glutamate dehydrogenase 1 or DHE is expressed at lower 

levels in the PFC of Nf1+/- mice. DHE is localized to the mitochondrial matrix and 

may be involved in learning and memory by increasing the turnover of the 

excitatory neurotransmitter glutamate. DHE3 is subject to allosteric regulation in 

that it is activated by ADP by occupying the NADH binding site, and inhibited by 
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GTP. Bao et al (2009) generated a transgenic mouse model with increased 

expression of DHE that exhibits a life-long excess of synaptic glutamate release 

in the CNS. These transgenic mice display neuronal losses in select brain 

regions (e.g., the CA1 of the hippocampus) and decreases in LTP and in spine 

density in dendrites of CA1 neurons. These findings demonstrate that DHE 

dysregulation can lead to synaptic changes in cellular processes associated with 

learning and memory. Calbindin 1 or CALB1 is expressed at higher levels in the 

PFC of Nf1+/- mice. CALB1 buffers cytosolic Ca2+ levels, and may stimulate 

membrane Ca2+-ATPase. It has been proposed that dysregulation of calcium 

homeostasis may be an important factor in the pathogenesis of Parkinson‟s 

disease and that calcium buffers such as CALB1 may be neuroprotective (Chan 

et al, 2009; Mattson, 2007). Therefore, dysregulation in DHE and CALB1 seen in 

Nf1+/- mice may lead to changes in glutamatergic neurotransmission and cytosolic 

Ca2+ levels in the CNS, respectively.  

 

h. Other proteins involved in cellular function  

Alpha-enolase or ENOA is expressed at lower levels in the PFC of Nf1+/- 

mice. ENOA is a multifunctional enzyme that regulates multiple cellular 

processes including glycolysis, cell growth, hypoxia tolerance and allergic 

responses. L-lactate dehydrogenase A chain or LDHA is expressed at lower 

levels in the PFC of Nf1+/- mice. LDHA is involved in the fermentation of pyruvate 

to lactate. These proteins mediate pathways involved in energy production that 

are associated with the metabolism of glucose. 
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2. Protein identified in the BLA 

In the basolateral amygdala, disintegrin and metalloproteinase domain-

containing protein 22 or ADAM22 is expressed at lower levels in Nf1+/- mice. 

ADAM22 is a ligand for integrin that regulates cell adhesion and spreading and 

inhibits cellular proliferation. ADAM22 (a receptor) and its ligand LGI1 are widely 

involved in the regulation of neuronal development and synaptic functions (see 

Han and Kim, 2008 for review). The LGI1/ADAM22 complex is thought to interact 

with and stabilize the AMPAR/stargazing complex on the PSD-95 scaffolding 

platform anchoring the AMPAR/stargazin complex at postsynaptic sites (Fukata 

et al, 2010). PSD-95 expression mediates synaptogenesis, and the development 

of excitatory verses inhibitory synapses (see Cline, 2005 for review). 

Furthermore, LGI1 has been shown to bind to Kv1.1, a presynaptic voltage-gated 

potassium channel subunit (Schulte et al, 2006). Mice lacking ADAM22 display 

reduced body weight, hypomyelination of peripheral nerves, and ataxia, and die 

before postnatal day 20 as a result of multiple seizures (Sagane et al, 2005). 

Thereby, ADAM22 plays an integral role in the regulation of neurotransmission 

and protein trafficking, and has been implicated in the development of epilepsy in 

humans (Diani et al, 2008). 

 

D. The NF1 mouse model: the genetics, biochemistry, cell biology 

and behavior 

The impact of scientific research using animal models is largely dependent 

on the relevance of the animal model to the human condition. By utilizing 
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homologous recombination strategies to selectively knock-out the Nf1 gene in 

mice (Jacks et al, 1994), the Nf1+/- mouse model closely mimics the genetic 

determinant that underlies the development of NF1 in humans. Likewise, the 

biochemical and cellular processes mediated by neurofibromin (i.e., RAS, MAPK, 

PAK1, etc.) are conserved in the Nf1+/- mouse model. Because the NF1 condition 

is a simple autosomal dominant disorder, the Nf1+/- mouse closely resembles the 

biological dysfunctions that are seen in the NF1 condition in humans. Therefore, 

the construct validity associated with the Nf1+/- mouse model and its relationship 

to NF1 in humans is well-defined. To date, many of the features associated with 

the NF1 condition in humans have been detected in the Nf1+/- mouse model 

including learning and memory deficits (Silva et al, 1997). Consistent with the 

social problems seen in NF1 patients, this dissertation is the first to provide 

evidence that the Nf1+/- mouse model displays significant disruption in social 

learning. Therefore, these novel findings strengthen the face validity of the Nf1+/- 

mouse model. 

The NF1 gene functions as a classic tumor suppressor gene in humans 

(Colman et al, 1995). Similar to humans, the complete loss of the Nf1 gene leads 

to tumorigenesis in chimeric mice partially composed of Nf1-/- cells providing 

further face validity for the Nf1+/- mouse model (Chichowski et al, 1999).  

However, the disruptions in cognition, learning and memory, and social function 

associated with the NF1 gene deletion are independent of tumor disposition in 

humans (Moore et al, 1994) and mice (Silva et al, 1997). Therefore, the genetic 

mechanism that underlies disruption in CNS function is Nf1 haploinsufficiency or 



 

128 

 

a gene dosing effect leading to incomplete or partial dominance. In the periphery, 

Nf1 haploinsufficiency has been associated with enhanced MAPK activity and 

increases in SCF-mediated mast cell proliferation, survival, and colony formation 

(Ingram et al, 2000).  

In the CNS, Nf1 haploinsufficiency would be consistent with the high level 

of variability that is associated with NF1-related learning disabilities, attention and 

social function (Hofman et al, 1994; North et al, 1997; Dilts et al, 1996; Brewer et 

al, 1997; Johnson et al, 1999; Kayl and Moore 2000; Noll et al, 2007). In addition 

to previous studies in the CNS, this dissertation identifies disruptions in SCF-

mediated hyperactivation of MAPK in Nf1+/- neurons cultured from the PFC and 

observed increases in IPSCs in glutamatergic projection neurons in BLA. 

Thereby, these findings are consistent with Nf1 haploinsufficiency in CNS 

neurons. Similar to the biologic and cellular interactions in the tumor 

microenvironment (Staser et al, 2010), Nf1 haploinsufficiency may redefine the 

tripartite synapse in multiple brain regions resulting in disruption in CNS function, 

and ultimately abnormalities in CNS processes (e.g., learning and memory). 

However, the Nf1+/- microenvironment in the CNS defined by interactions 

between pre-synaptic neurons, post-synaptic neurons, and glia remains to be 

elucidated. 

While much progress has been made to identify the mechanism(s) that 

underlie the learning disabilities observed in Nf1+/- mouse model, the 

mechanism(s) is not yet clearly established. Previous studies have focused on 

processes involved in hippocampal-based learning, and have implicated 



 

129 

 

increases in RAS activation and MAPK signaling, and have found increases in 

GABA-mediated inhibition and deficits in LTP in Nf1+/- mice (Silva et al, 1997; 

Costa et al, 2002; Li et al, 2005). Thereby, MAPK hyperactivation and increases 

in GABA-mediated inhibition have been proposed as potential mechanisms 

underlying hippocampal-based learning abnormalities (Shilyansky et al, 2010). 

To further characterize the mechanism(s) underlying the disruptions in social 

learning, this dissertation focused on the prefrontal-amygdala circuit. Similar to 

previous findings in the hippocampus, this dissertation demonstrates that the 

Nf1+/- mouse model displays MAPK hyperactivation in the PFC and increases in 

GABA-mediated inhibition in the BLA. This dissertation further demonstrates 

these disruptions in social learning, MAPK signaling and IPSCs are mediated in a 

Pak1-dependent manner. Due to its activation of PAK1 and MAPK, SCF/c-kit 

signaling represents a potential mechanism of interest to learning abnormalities 

seen in Nf1-deficient mice.  

Expression profiling strategies have been implemented to identify 

candidate genes and/or candidate proteins that contribute to endophenotypes 

associated with disease. For this purpose, mass spectrometry was conducted to 

identify protein expression differences associated with the Nf1+/- genotype in 

mice that were rescued by the co-deletion of Pak1. Because the disruption in 

long-term social learning/memory is mediated in a Pak1-dependent manner, this 

dissertation identified proteins with expression profiles that are consistent with a 

Pak1-dependent rescue. In the PFC, proteins involved in the regulation of F-actin 

and microtubule dynamics represent targets of interest due to their close 
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association with PAK1 and MAPK signaling in the regulation of cytoskeletal 

dynamics and vesicular release (see Kreis and Barnier, 2009 for review). 

Consistent with disruption in cytoskeletal dynamics (i.e., F-actin growth, 

microtubule stabilization), a reduction in neurite lengths and growth cone areas 

have been documented in hippocampal neurons cultured from Nf1+/- mouse 

embryos (Brown et al, 2010). LSAMP and STXB1, and DREB have been 

implicated in neurite formation (Pimenta and Levitt, 2004; Steiner et al, 2002; 

Geraldo et al, 2008). In the BLA, ADAM22 provides an interesting protein 

candidate due to its role in the regulation of AMPA receptors by stabilizing the 

AMPAR/stargazing complex on the PSD-95 scaffolding platform and anchoring 

the AMPAR/stargazin complex at postsynaptic sites (Fukata et al, 2010). 

Therefore, disruption in the amygdala-prefrontal circuit may contribute to 

abnormalities in social learning seen in the Nf1+/- mouse model. 

 

E. NF1, the amygdala, and autism 

Autism spectrum disorders comprise a heterogeneous group of conditions 

characterized by developmental abnormalities in cognition, communication, and 

social function (see Pardo and Eberhart, 2007 for review). NF1 shows a 

dramatically increased frequency in autistic patients with an estimated 

prevalence of 1.2% (Martin et al, 2007). Furthermore, the chromosomal region 

harboring the NF1 locus has been linked to autism (IMGSAC, 2001; Yonan et al, 

2003), and several studies have detected a significant association between the 

NF1 locus and autism in humans (Mbarek  et al, 1999; Mouridsen et al, 1992; 
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Marui et al, 2004). While the relationship between autism and NF1 is not yet well-

established, the NF1 gene deletion may represent an important etiological 

variable for autistic development. 

NF1 children often show problems with social interaction and social 

perception in that they inappropriately perceive and interpret social cues, 

including facial expressions, body gestures, and tone of voice (Eliason, 1986). 

The present dissertation demonstrates that Nf1+/- mice show deficits in social 

learning that are associated with disruption in the prefrontal-amygdala circuit. 

Likewise, subjects with autism and Asperger‟s syndrome display symptoms of 

prosopagnosia or marked impairments in the processing of facial expressions 

(Davies et al, 1994; Schultz et al, 2000). Interestingly, human subjects with 

amygdala damage also have difficulty with facial recognition tasks (Adolphs et al, 

1994; Young et al, 1995; Adolphs et al, 1998). In autistic patients, disruption in 

face processing is associated with abnormalities in structure and functional 

activation of the amygdala (Pierce et al, 2001). In addition, a postmortem study 

found abnormalities in neuronal structure (i.e., neuronal size, cell packing 

density) in various sub-nuclei of the amygdala (Kemper and Bauman, 1998). 

Therefore, “social learning” may be an important variable to consider in 

examining the relationship between the NF1 gene deletion, NF1-related social 

deficits, and autism. 

Several brain regions have been implicated in autistic development such 

as the cerebellum, amygdala, hippocampus, and PFC (Courchesne et al, 1988; 

Sweeten et al, 2002). In particular, the amygdala represents a region of interest 
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due to its role in the mediation of social and aggressive behaviors (see Aggleton, 

1992 for review). For instance, the bilateral removal of the amygdala, 

hippocampus and cortical regions in monkeys that are six months of age present 

autistic-like features, including unexpressive faces, very little eye contact, 

stereotypic behaviors, and self-directed activity (see Bachevalier, 1994 for 

review; Bachevalier, 1996). Additionally, several structural neuroimaging studies 

have shown abnormalities in the sizes of the amygdala, hippocampus and other 

limbic areas in patients with autism, as compared to controls (Kates et al, 1998; 

Aylward et al, 1999; Abell et al, 1999). Other imaging studies using MRI 

techniques found an enlargement in cortical regions in autistic patients relative to 

controls (Piven et al, 1995; Piven et al, 1996). Because the Nf1+/- mouse model 

displays social learning abnormalities, the genetic, molecular, 

electrophysiological and behavioral findings presented in this dissertation may 

help identify novel targets for the treatment for social deficits in NF1 patients and 

potentially NF1-related autism. 

 
F. Summary and future directions 

The present dissertation first screened the Nf1+/- mouse model in order to 

assess aspects of social and emotional learning. We found selective deficits in 

long-term social learning in Nf1+/- mice, while we detected no differences in their 

preference for social interaction, short-term social learning, anxiety, one-trial 

learning (EPM) or depression-associated response. The deficits in social learning 

seen in the Nf1+/- mouse model are consistent with social problems seen in NF1 

patients. Given that patients with autism have an increased incidence of NF1, the 
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NF1 gene has been identified as a potential risk factor for some forms of autism 

(see Zafeiriou et al, 2007 for review). In the Nf1+/- mouse model, behavioral 

studies could be conducted to further characterize social learning and social 

communication including the social transmission of food preference test and 

ultrasonic vocalization test, respectively.  

The social transmission of food preference test measures the ability of 

mice to obtain meaningful information associated with food preference (non-

social cues) through social interactions with a cage-mate (Wrenn, 2004). To 

assess the development of social communication in rodents, ultrasonic 

vocalizations induced by their separation from their dam are measured in mouse 

pups (Scattoni et al, 2009). Low levels of separation-induced of infant 

vocalization (50-80 kHz) and low levels of retrieval by the dam would be 

indicative of a failure to respond appropriately to socially meaningful stimuli. 

Likewise, disruption in ultrasonic vocalization (e.g., fewer ultrasonic vocalization 

calls or less quieting by mouse pups; failure to respond by dam) would be 

consistent with abnormal development of rodent communication. 

This dissertation demonstrates a SCF-mediated hyperactivation of MAPK 

signaling in neurons cultured from the PFC of Nf1+/- mouse pups that are 

mediated in a Pak1-dependent manner. In addition to MAPK signaling (Beeser et 

al, 2005; Park et al, 2007), PAK1 regulates LIM kinase activity leading to the 

destabilization cofilin and the polymerization F-actin (Ishibashi, 2008). Future 

studies utilizing pharmacological manipulation strategies to selectively target 

MAPK and/or LIMK signaling could better characterize the signaling pathway(s) 
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that regulates social learning deficits seen in Nf1+/- mice. Additionally, 

electrophysiological studies could be conducted to characterize how 

pharmacological inhibition of MAPK and/or LIMK affect IPSCs observed in 

glutamatergic projection neurons in the BLA. Thereby, these future studies would 

determine the down-stream pathways that underlie the Pak1-dependent rescue 

of social learning and IPSCs seen in Nf1+/- mice.  

Using the whole-cell patch clamp, this dissertation demonstrates 

increases in the frequency of IPSCs measured in glutamatergic projection 

neurons in the BLA of Nf1+/- mice. The administration of a GABAA antagonist (SR 

95531 hydrobromide) and a GABAB antagonist (CGP 52432) block the IPSCs; 

therefore, these IPSCs are consistent with GABA-mediated inhibition. However, it 

is not known whether these increases in IPSC frequency are a product of 

increases in presynaptic GABA release from inhibitory interneurons localized to 

the BLA (see Figure 4). Utilizing microdialysis strategies, future studies could 

test how the Nf1+/- genotype affects the synaptic release of GABA in the BLA. 

Microdialysis could also be used to determine whether the co-deletion of Pak1 

restores GABA release in the BLA. Similarly, electrophysiological and 

microdialysis strategies could be further applied to these genetic intercrosses to 

analyze excitatory synaptic currents (EPSCs) in glutamatergic projection neurons 

in the BLA.  

Utilizing mass spectrometry, protein expression was characterized in the 

PFC and BLA. These results were independently analyzed and confirmed using 

SPSS statistical software (SPSS Incorporated, Chicago, IL). In total, twenty-one 
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proteins were identified in the PFC, and one protein was identified in the BLA. In 

the PFC, multiple proteins were identified that are associated with F-actin and 

microtubule dynamics. Future studies using immunohistochemistry could be used 

to better characterize neuronal morphology including the distribution and content 

of F-actin and microtubules in neurons in the PFC in each genetic intercross. 

Due to the role of MAPK and synapsin I in F-actin disassembly and vesicular 

release (Yamagata et al, 2002), microdialysis strategies could be used to 

measure vesicular release in neurons localized to the PFC. In addition, individual 

proteins of interest were identified in the PFC and BLA. For instance, LSAMP, 

STXBP1, and DREB play important roles in neurite formation and outgrowth 

(Pimenta and Levitt, 2004; Steiner et al, 2002; Geraldo et al, 2008), and THY1 is 

associated with social learning abnormalities in mice (Mayeux-Portas et al, 

2000). In the BLA, ADAM22 stabilizes the AMPAR/stargazing complex on the 

PSD-95 scaffolding platform, and thereby is involved in the regulation of AMPA 

receptors (Fukata et al, 2010). Following their confirmation using Western 

blotting, future studies could target each respective protein of interest using 

genetic and pharmacological manipulation in order to determine how each 

protein affects social learning in mice. 

In conclusion, this dissertation demonstrates a selective disruption in long-

term social learning / memory in Nf1+/- mice that is restored by the co-deletion of 

Pak1. The Pak1 co-deletion also restores the Nf1+/--related hyperactivation in 

MAPK and increases in IPSCs in the prefrontal-amygdala circuit, brain regions 

that have been implicated in social and emotional processes. Additionally, the 
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Nf1+/- mouse models show dysregulation in protein expression in the PFC and 

BLA that are restored by the co-deletion of Pak1 gene. This dissertation identifies 

dysfunction in F-actin and microtubule dynamics as well as several proteins of 

interest identified in the PFC (i.e., DREB, LSAMP, STXBP1, and THY1) and BLA 

(i.e, ADAM22). Together, these findings establish a role for Nf1 and Pak1 genes 

in the regulation of social learning in Nf1-deficient mice, and indicate that the 

pharmacological inhibition of PAK1 may represent a therapeutic target for the 

treatment of NF1-related social deficits in humans. However, future studies are 

necessary to clearly assess the predictive validity of Pak1 gene as a viable 

candidate for the treatment of NF1-related social deficits. 
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