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Abstract 
Human implicit learning can be investigated with implicit 
artificial grammar learning, a simple model for aspects of 
natural language acquisition. In this paper we investigate the 
remaining effect of modality transfer in syntactic 
classification of an acquired grammatical sequence structure 
after implicit grammar acquisition. Participants practiced 
either on acoustically presented syllable sequences or visually 
presented consonant letter sequences. During classification 
we independently manipulated the statistical frequency-based 
and rule-based characteristics of the classification stimuli. 
Participants performed reliably above chance on the within 
modality classification task although more so for those 
working on syllable sequence acquisition. These subjects 
were also the only group that kept a significant performance 
level in transfer classification. We speculate that this finding 
is of particular relevance in consideration of an ecological 
validity in the input signal in the use of artificial grammar 
learning and in language learning paradigms at large. 
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Introduction 
Humans possess adaptive mechanisms capable of implicitly 
extracting structural information solely from observation 
(Stadler & Frensch, 1998), as indicated by for example 
artificial grammar learning. Reber (1967) suggested that 
humans can learn artificial grammars implicitly by an 
abstraction process intrinsic to natural language acquisition. 
Natural language is an example of the infinite use of finite 
means. The simplest relevant formal model incorporating 
this idea is represented by the family of right-linear phrase 
structure grammars, which can be implemented in the finite-
state architecture, are typically used in artificial grammar 
learning. 

Natural language acquisition is a largely spontaneous, 
non-supervised, and self-organized process. The structural 
aspects of natural language are acquired at an early age 
largely without explicit feedback (Jackendoff, 2002) while 

reading and writing are examples of typically explicitly 
taught cognitive skills. Implicit learning has four 
characteristics: (1) no or limited explicit access to the 
acquired knowledge; (2) the acquired knowledge is more 
complex than simple associations or exemplar-specific 
frequency-counts; (3) is an incidental consequence of 
information processing; and (4) does not rely on declarative 
memory (Forkstam & Petersson, 2005). Implicit learning as 
used in the artificial grammar learning paradigm is a process 
whereby a complex, rule-governed knowledge base is 
acquired largely independent of awareness of both the 
process and product of acquisition. 

Recently, the artificial grammar learning paradigm has 
been proposed as a model for aspects of language 
acquisition (Gomez & Gerken, 1999) and for exploring 
differences between human and animal learning relevant to 
the faculty of language (Hauser et al., 2002). Evidence from 
functional neuroimaging data is consistent with this 
suggestion. Brain regions related to natural language syntax 
are also engaged in artificial syntactic processing. In 
particular, the left inferior prefrontal cortex centered on 
Broca’s region (Brodmann’s area 44/45) is sensitive to 
artificial syntactic violations (Forkstam, Hagoort, 
Fernandez, Ingvar, & Petersson, 2006; Petersson, Forkstam, 
& Ingvar, 2004). Moreover, this region is specifically 
sensitive to the structural properties rather than to local 
linear surface features of the input items. 

In the current study we investigated the difference in the 
lasting effects of artificial grammar learning in a modality 
transfer over the visual/acoustic signal relevant to the 
language function distinction over reading/listening, using 
working on either orthographically represented letter 
sequence (cf. e.g., Forkstam, Elwér, Ingvar, & Petersson, 
2008) and acoustically represented syllable sequences (cf. 
e.g., Faísca, Bramão, Forkstam, Reis, & Petersson, 2007), 
respectively. We used an implicit acquisition paradigm 
without feedback in which the participants were only 
exposed to positive examples (i.e., well-formed consonant 
strings) generated by the Reber grammar. We used a 
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between subject design with two groups practicing on either 
acoustically or visually presented sequences. Classification 
strings were balanced for substring familiarity relative the 
acquisition string-set, independent of grammatical status. In 
order to keep the similarity over modality as tight as 
possible were the strings presented in a sequential fashion 
for both the acoustically presented syllables and the visually 
presented consonant letter strings. To minimize the 
influence of explicit knowledge and explicit strategies were 
the subject never informed during the acquisition about the 
underlying structure in the acquisition strings. Partly for the 
same purpose we used repeated short-term memory tasks 
extending over 5 days as prolonged acquisition over several 
days has shown still increasing performance in artificial 
grammar learning in (Forkstam et al., 2008). After the last 
acquisition session on day 5 were the subjects informed 
about the existence of the grammatical structure in the 
acquisition input and instructed to perform grammaticality 
classifications on new strings similar to the acquisition 
strings. This first grammaticality classification test was 
performed in the same modality as during acquisition and 
was followed by a second grammaticality classification 
performed in the transfer modality. 

Implicit statistical learning 
A complementary perspective on artificial grammar learning 
views this as a model for investigating implicit learning 
(Forkstam & Petersson, 2005). Reber (1967) defined 
implicit learning as the process by which an individual 
comes to respond appropriately to the statistical structure 
inherent in the input. Thus, he argued, the capacity for 
generalization that the participants show in grammaticality 
classification is based on the implicit acquisition of 
structural regularities reflected in the input sample. Reber 
(1967) suggested that humans acquire implicit knowledge of 
the underlying structure through an inductive statistical 
learning process and that this knowledge is put to use during 
classification. Support for the implicit character of artificial 
grammar learning comes for example from lesion studies on 
amnesic patients. Knowlton and Squire (1996) investigated 
amnesic patients and normal controls on a classical and a 
transfer version of the artificial grammar learning task. The 
patients and their normal controls performed similarly on 
both artificial grammar learning tasks while the amnesic 
patients showed no explicit recollection of whole-item or 
fragment (i.e., bi- or tri-gram) information. Based on the 
results from the transfer version they argued that artificial 
grammar learning depends on the implicit acquisition of 
both abstract and exemplar-specific information. Knowlton 
and Squire (1996) suggested that the latter indicates that 
distributional information of local sequential regularities is 
acquired, while the former suggests that abstract (i.e., ‘rule-
based’) representations are also acquired. Moreover, recent 
studies provide evidence that rapid (on the order of 2 – 10 
min) ‘rule-abstraction’ (Marcus, Vijayan, Bandi Rao, & 
Vishton, 1999), learning of transition probabilities in 
artificial syllable sequences (Saffran, Aslin, & Newport, 
1996), and artificial grammar learning (Gomez & Gerken, 
1999) also occur in young infants. Furthermore, the study of 

Gomez and Gerken (1999), also demonstrated that infants 
can show some transfer capacity, suggesting that they were 
abstracting beyond the acquisition material. In addition, 
learning of long distance dependencies has been 
demonstrated in both sequence learning paradigms as well 
as in artificial grammar learning (Ellefson & Christiansen, 
2000). Moreover, it has been suggested that induction 
cannot be explained entirely in terms of the acquisition of 
local sequential regularities (Meulemans & Van der Linden, 
1997). Thus, while Reber (1967) originally argued that the 
implicit learning process abstracted ‘rule-based’ knowledge 
(see Reber, 1993 for a modification of his position ), these 
more recent studies suggest that dual mechanisms may be at 
play (cf. e.g., Forkstam & Petersson, 2005). 

The Reber grammar 
In general, formal (artificial) grammars serve as an 
intentional definition of languages. These represent the 
formal specification of mechanism(s) that generate various 
types of structural regularities (cf. e.g., Davis, Sigal, & 
Weyuker, 1994), and they are relevant for any cognitive 
domain which engages processes operating on structured 
representations, including for example the temporal 
organization of actions (i.e. planning), language, and 
perception/generation of musical sound patterns (Petersson 
et al., 2004). A formal grammar, as the one used in this 
artificial grammar learning study, thus represents a 
specification of a finite generating/recognizing mechanism 
for a particular language; in our case the Reber language. 
Thus, the transition graph representation of the Reber 
machine (Figure 1) is an explicit generating and recognition 
mechanism for the Reber language (e.g., Davis et al., 1994). 
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Figure 1: The Reber grammar is an example of a right-

linear phrase structure grammar which can be implemented 
in a finite-state architecture, here represented by its 
transition graph. Grammatical strings are generated by 
traversing the transition graph from state 0 through the 
internal states along the indicated direction until reaching an 
end state. The grammar will e.g. generate/parse 
<MSSVRXSV> as a grammatical string but not the non-
grammatical string <MXSVRXVV>. 

Experimental design 
In the present study we employed the implicit artificial 
grammar learning paradigm to investigate the difference in 



the lasting effects of artificial grammar learning in a 
modality transfer over the visual/acoustic signal relevant to 
the language function distinction over reading/listening. We 
used a between subject design with two groups practicing on 
either orthographically represented letter sequence or 
acoustically represented syllable sequences. We used an 
implicit acquisition paradigm without feedback in which the 
participants were only exposed to positive examples (i.e., 
well-formed consonant strings) generated by the Reber 
grammar (Figure 1). 

25 right-handed healthy university students volunteered to 
participate in the study (14 females, mean age = 26 years, 
range = 20-36 years). They were all pre-screened for 
medication use, history of drug abuse, head trauma, 
neurological or psychiatric illness, and family history of 
neurological or psychiatric illness. Written informed consent 
was obtained according to the Declaration of Helsinki and 
the local medical ethics committee approved the study. 
Eleven of the participants were included in the syllable 
group and 14 participants in the consonant letter group. 

The strings presented in a sequential fashion for both the 
acoustically presented syllables and the visually presented 
consonant letter strings during acquisition as well as 
classification. The sequences presented in the acoustic 
modality were generated from a set of normally occuring 
syllables in Swedish (i.e., {bå, fe, lu, pa, ti}) while the 
visual presented sequences were generated from a consonant 
letter alphabet (i.e., {M, S, V, R, X}). The sequences were 
presented in a sequential order 300 ms on 300 ms off in both 
modalities using the Presentation software (nbs.neuro-
bs.com). 

Before the first acquisition session, and in the same 
modality as during acquisition, did the participants perform 
in baseline preference classification where they indicated if 
they liked a string or not based on their immediate intuitive 
impression (i.e., guessing based on “gut feeling”. 

During each acquisition phase for each of the 5 days, to 
keep the structural information of the stimulus material 
covert to the participants, were the participants engaged in 
repeated short-term memory task without performance 
feedback. They were presented in a self-paced fashion with 
pairs of either syllable sequences or consonant letter strings 
from the acquisition sample generated from the Reber 
grammar and had to respond whether the sequences were 
the same or different immediately after presentation. 

After the last acquisition session on day 5 were the 
subjects informed about the existence of a complex system 
of rules used to generate the acquisition strings (but were 
not informed about the actual rules) and instructed to 
classify novel strings generated from the same system of 
rules as the acquisition strings as grammatical or non-
grammatical based on their immediate intuitive impression 
(i.e., guessing based on ‘’gut feeling’’). This first 
grammaticality classification test was performed in the same 
modality as during acquisition and was immediately 
followed by a second grammaticality classification 
performed in the transfer modality. The classification string 
sets were balanced for substring familiarity relative the 
acquisition string set, independent of grammatical status. 

Stimulus Material 
Grammatical strings with a string length of 5-12 were 
generated from the Reber grammar. The frequency 
distribution of bi- and trigrams (2 and 3 letter chunks) for 
both terminal and whole string positions were calculated for 
each string in order to derive the associative chunk strength 
(ACS) for each item (cf., Meulemans & Van der Linden, 
1997). An acquisition set was selected as well as 
grammatical and non-grammatical classification test strings. 
The non-grammatical strings were generated by a switch of 
letters in two non terminal positions in a grammatical string. 
The classification set was further divided into high and low 
ACS items relative the acquisition string set. We thus 
manipulated two independent stimulus factors with respect 
to the classification set, grammaticality (grammatical/non-
grammatical) and ACS (high/low) in a 2x2 factorial 
experimental design. 

It has been argued that sensitivity to the level of ACS is a 
reflection of a statistical fragment-based learning 
mechanism while sensitivity to grammaticality status 
independent of ACS is related to a structure-based 
acquisition mechanism (Knowlton & Squire, 1996; 
Meulemans & Van der Linden, 1997). Consequently, it has 
been argued that sensitivity to ACS reflects an explicit 
declarative learning mechanism while sensitivity to 
grammaticality status independent of ACS reflects an 
implicit procedural learning mechanism. 

Data analysis 
Mixed-effect repeated measures ANOVAs were used for the 
analysis of the classification performance translated to d-
prime over both factors grammaticality and ACS using 
standard signal detection theory in the statistics package R 
(www.r-project.org). For each analysis we modeled the 
main factors classification session [within modality/between 
modality] as within subjects fixed-effects, group 
[acoustic/visual] as between subjects fixed-effect, and 
subjects as random-effects. An overall significance level of 
P < 0.05 was used for statistical inference, and explanatory 
investigations for significant effects were restricted to the 
reduced ANOVA contrasted over the appropriate factor 
levels. 

Results 

Classification Performance 
The Syllable group showed significant grammaticality 

sensitivity in the within modality syllable classification 
(85% performance level; F(1, 10) = 137, P < 0.001) and 
managed also to transfer into the visual modality (62%; F(1, 
10) = 19, P = 0.001; Figure 1 & 2). A static substring 
sensitivity persisted throughout acquisition from the 
baseline preference classification (F(1, 9) = 6.2, P = 0.032) 
to the last day grammaticality classification (F(1, 10) = 15, 
P < 0.003) but then disappeared in the transfer modality 
classification (P > 0.25; Figure 3). 

The consonant letter group lso showed significant 
grammaticality sensitivity in the within modality consonant 
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classification (68% performance level; F(1, 13) = 25, P = 
0.001) but failed to transfer into the acoustic modality (52%; 
P > 0.19; Figure 1 & 2). A static substring sensitivity 
persisted throughout transfer from the within modality 
classification (F(1, 13) = 60, P < 0.001) to the transfer 
acoustic modality (F(1, 13) = 23, P < 0.001; Figure 3). 

Between group effects persisted for grammaticality 
sensitivity where the syllable group performed better on the 
within modality test (F(1, 22) = 20, P < 0.001) and between 
modality (F(1, 22) = 10, P = 0.004), indicating a persisted 
transfer effect for the syllable group as opposed to the 
consonant group random performance. No difference 
between group in substring sensitivity transfer was found (P 
> 0.08). 
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Figure 2: Percent correct data for the syllable and 

consonant string group. Error bars correspond to the 
standard error of the mean. 

Discussion 
In the present study we employed the implicit artificial 
grammar learning paradigm to investigate the difference in 
the lasting effects of artificial grammar learning in a 
modality transfer over the acoustic/visual signal. In 
grammaticality classification after 5 days of implicit 
acquisition both subjects which had practiced on 
acoustically presented syllables and subjects which had 
practiced on visually presented consonant letter strings 
showed high performance levels (Figure 2). However, when 
tested in cross-modality did only participants which had 
acquired the acoustical syllable sequences (the equivalence 
to the language function listening signal) manage to show 
significantly transfer performance to the orthographically 
represented letter sequences (equivalent to the reading 
signal) of the grammatical structure and not vice versa. We 
believe this finding implicates a relevance of ecological 
validity in the input signal in the use of artificial language 
paradigms such as artificial grammar learning, and 
potentially also in language learning paradigms at large. 
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Figure 3: D-prime as a function of grammaticality 

status for the syllable and consonant string group. 
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Figure 4: D-prime as a function of substring familiarity 

(ACS) status for the syllable and consonant string group. 
 

Most studies reporting successful transfer using the artificial 
grammar learning paradigm have been working within the 
visual modality and in specific with letter sequences 
(Gomez & Schvaneveldt, 1994; Reber, 1969). Transfer over 
letter alphabet has also successfully shown lasting effects of 
transfer in amnesic patients (Knowlton & Squire, 1996). 
Within transfer investigation in the acoustic modality have 
also shown successful performance in 8-month-old infants 
in the transfer from linguistic to non-linguistic input 
(Malmberg, 2004). Few studies have reported strong (if any) 
cross-modality transfer effects. Altmann, Dienes & Goode 
(1995) and Bigand, Perruchet & Boyer (1998) showed 
successful transfer from musical tones to letters sequences, 
and Altmann and colleagues (1995) found also successful 
transfer from acoustical syllables to graphic symbols as well 
as from graphical symbols to written syllables. 



Grammar learning 
As previously introduced, Reber (1967) defined implicit 
learning as the process by which an individual comes to 
respond appropriately to the structure in the input ensemble. 
Thus, he argued, the capacity to generalize is based on 
implicit acquisition of structural regularities reflected in the 
input sample. However, alternative theoretical frameworks 
have questioned the abstract (‘rule’) acquisition 
interpretation and instead suggest that grammaticality 
classification utilizes exemplar-based (Vokey & Brooks, 
1992) or, alternatively, is based on chunk (n-gram) 
representations (Perruchet & Pacteau, 1991). Thus, grammar 
learning, whether natural or artificial, is commonly 
conceptualized either in terms of structure-based (‘rule’) 
acquisition mechanisms or statistical learning mechanisms. 
Some aspects of natural language (e.g., syntax) are 
amenable to an analysis within the classical framework of 
cognitive science, which suggests that isomorphic models of 
cognition can be found within the framework of Church-
Turing computability (Davis et al., 1994). These language 
models typically allow for a greater structural expressivity 
than can be (strictly) implemented in the finite-state 
architecture. The finite-state architecture supports unlimited 
concatenation recursion and can support finite recursion of 
general type. These latter aspects are also characteristic for 
human performance. From a neurophysiological 
perspective, it seems natural to assume that the brain is 
finite with respect to its memory organization. Now, if one 
assumes that the brain implements a classical model of 
language, then it follows immediately from the assumption 
of a finite memory organization that this model can be 
implemented in a finite-state architecture, although a 
context-sensitive or any other suitable formalism might be 
used as long as the finite memory organization is 
appropriately handled (Petersson, 2005; Petersson et al., 
2004). 

Lexicalization 
Prefrontal functions are commonly formulated within a 
framework of cognitive control and executive attention. 
Prefrontal working memory functions include on-line short-
term sustainability of representations (‘maintenance’, e.g., 
Baddeley, Gathercole, & Papagano, 1998) processing and 
integration of structured information (‘manipulation’ and 
‘selection’), as well as monitoring and inhibition (Mesulam, 
2002). A simple formalization of some aspects of these 
ideas takes advantage of the fact that hierarchically 
structured information can be represented in terms of nested 
bracketed expressions or hierarchically structured trees 
(Petersson, 2005; Petersson, Grenholm, & Forkstam, 2005). 
If one assumes that these representations are recursively 
constructed from more primitive structures stored in long-
term memory, one possibility is to interpret integration of 
structured information as resulting from the retrieval of 
simple long-term memory representations for on-line 
incremental integration by successive merging of primitive 
structures (‘unification’). 

Returning to the issue of grammar learning, it is possible 
to take a view that is placed somewhere between the two 

more common conceptualizations. For example, the 
generative mechanism of the Reber machine is easily 
translated into a Minimalist-type or unification-based 
framework (Chomsky, 1995; Joshi & Schabes, 1997). Given 
a transition from state sj to sk when the terminal symbol T is 
recognized (sj →T sk in the transition graph), this would 
translate into a lexical item or feature vector [sj, T, sk], 
where sj, T, and sk should be interpreted as ‘syntactic’ 
features (e.g., ‘specifier’ feature sj, and ‘complement’ 
feature sk) and T as a ‘surface’ or ‘phonological’ feature. A 
finite transition graph thus generates a finite number of 
lexical items. The syntactic features of these representations 
could very well be generated or estimated based on a 
statistical learning mechanism. Moreover, there is no need 
for a specific ‘rule’ acquisition mechanism, because the 
parsing process might use general structure integration 
mechanisms already in place for merging or unifying 
structured representations (e.g., in the left inferior frontal 
region), as suggested in Petersson et al. (2004). Here, two 
lexical items, [si, R, sj], [sk, Q, sl], are allowed to unify if 
and only if sj = sk, or sl = si. Note also that the syntactic 
features have acquired a particular functional role in this 
picture. This can be described in terms of monitoring or 
governing of the integration process based on selecting the 
pieces of information that can be merged. In other words, 
the finite-state control has been distributed over the mental 
lexicon (long-term memory) among the lexical items in 
terms of control features. This view is more akin to lexical 
acquisition in that it suggests that simple structured 
representations are created (i.e., lexical items [sj, T, sk]) 
during acquisition. In essence, this re-traces a major trend in 
theoretical linguistics in which more of the grammar is 
shifted into the mental lexicon and the distinction between 
lexical items and grammatical rules is beginning to vanish 
(cf. e.g., Jackendoff, 2002; Joshi & Schabes, 1997; Vosse & 
Kempen, 2000). 

This picture provides an alternative view on artificial 
grammar learning that is placed somewhere between the two 
more common conceptualizations in terms of a rule-based 
acquisition or a statistical fragment (surface) based learning 
mechanism. Instead, the ‘lexicalized’ picture suggests that 
the acquisition of simple structured representations is akin 
to lexical learning and might be supported by statistical 
learning mechanisms. These representations are then 
activated, by for example an input string, and actively 
represented and integrated in working memory during 
parsing. The latter process is dependent on general 
integrative mechanisms in the left inferior frontal cortex, 
and is further dependent during automaticity of this 
integration process on the head of the caudate nucleus. 

Conclusion 
Subjects practicing on acoustical syllables as well as 
subjects practicing on visual consonant letter strings showed 
high performance levels after 5 days of implicit acquisition. 
However, when tested in cross-modality did only 
participants working on syllables show successful transfer 
performance, while participants working on letter sequences 
did not. We speculate this to be of particular relevance in 



consideration of an ecological validity in the input signal in 
the use of artificial grammar learning and in language 
learning paradigms at large. 

Acknowledgments 
This work was supported by Vetenskapsrådet, Hedlunds 
Stiftelse and Stockholm County Council (ALF, FoUU). 

References 
Altmann, G. T., Dienes, Z., & Goode, A. (1995). Modality 

independence of implicitly learned grammatical 
knowledge. Journal of Experimental Psychology: 
Learning, Memory, & Cognition, 21(4), 899-912. 

Baddeley, A. D., Gathercole, S., & Papagano, C. (1998). 
The phonological loop as a language learning 
device. Psychological review, 105(1), 158-173. 

Bigand, E., Perruchet, P., & Boyer, M. (1998). Implicit 
learning of an artificial grammar of musical 
timbres. Cahiers de Psychologie Cognitive, 17(3), 
577-600. 

Chomsky, N. (1995). The Minimalist Program. Cambridge, 
MA: MIT Press. 

Davis, M. D., Sigal, R., & Weyuker, E. J. (1994). 
Computability, Complexity, and Languages: 
Fundamentals of Theoretical Computer Science (2 
ed.). San Diego, CA: Academic Press. 

Ellefson, M. R., & Christiansen, M. H. (2000). Subjacency 
constraints without universal grammar: evidence 
from artificial language learning and connectionist 
modeling. Proc Cogn Sci Soc, 645-650. 

Faísca, L., Bramão, I., Forkstam, C., Reis, A., & Petersson, 
K. M. (2007, 4-8 of July, 2007). Implicit learning 
of structured auditory sequences: An advantage for 
verbal stimulus. Paper presented at the The Annual 
Mid-Year Meeting of the International 
Neuropsychological Society, Bilbao, Spain. 

Forkstam, C., Elwér, Å., Ingvar, M., & Petersson, K. M. 
(2008). Instruction effects in implicit artificial 
grammar learning: A preference for 
grammaticality. Brain Res, 1221, 80-92. 

Forkstam, C., Hagoort, P., Fernandez, G., Ingvar, M., & 
Petersson, K. M. (2006). Neural correlates of 
artificial syntactic structure classification. 
NeuroImage, 32(2), 956-967. 

Forkstam, C., & Petersson, K. M. (2005). Towards an 
explicit account of implicit learning. Curr Opin 
Neurol, 18(4), 435-441. 

Gomez, R. L., & Gerken, L. (1999). Artificial grammar 
learning by 1-year-olds leads to specific and 
abstract knowledge. Cognition, 70, 109-135. 

Gomez, R. L., & Schvaneveldt, R. W. (1994). What is 
learned from artificial grammars? Transfer tests of 
simple association. Journal of Experimental 
Psychology: Learning, Memory, and Cognition, 
20(2), 396-410. 

Jackendoff, R. (2002). Foundations of language: Brain, 
Meaning, Grammar, Evolution. Oxford, UK: 
Oxford University Press. 

Joshi, A. K., & Schabes, Y. (1997). Tree-adjoining 
grammars (Vol. 3). Berlin: Springer Verlag. 

Knowlton, B. J., & Squire, L. R. (1996). Artificial grammar 
learning depends on implicit acquisition of both 
abstract and exemplar-specific information. 
Journal of experimental psychology. Learning, 
memory, and cognition, 22, 169-181. 

Malmberg, J. M. (2004). Domain specificity in artificial 
grammar learning by infants and adults. 
Malmberg, Jeanne M : New Mexico State U , US. 

Marcus, G. F., Vijayan, S., Bandi Rao, S., & Vishton, P. M. 
(1999). Rule learning by seven-month-old infants. 
Science, 283, 77-80. 

Mesulam, M. M. (Ed.). (2002). The human frontal lobes: 
Transcending the default mode through contingent 
encoding. Oxford, UK: Oxford University Press. 

Meulemans, T., & Van der Linden, M. (1997). Associative 
chunk strength in artificial grammar learning. 
Journal of experimental psychology. Learning, 
memory, and cognition, 23, 1007-1028. 

Perruchet, P., & Pacteau, C. (1991). Implicit acquisition of 
abstract knowledge about artificial grammar: Some 
methodological and conceptual issues. Journal of 
experimental psychology. General, 120, 112-116. 

Petersson, K. M. (2005). On the relevence of the 
neurobiological analogue of the finite state 
machine. Neurocomputing, 65-66, 825-832. 

Petersson, K. M., Forkstam, C., & Ingvar, M. (2004). 
Artificial syntactic violations activate Broca's 
region. Cognitive Science, 28, 383-407. 

Petersson, K. M., Grenholm, P., & Forkstam, C. (2005). 
Artificial grammar learning and neural networks. 
Proceedings of the Cognitive Science Society, 
1726-1731. 

Reber, A. S. (1967). Implicit learning of artificial grammars. 
Journal of Verbal Learning & Verbal Behavior, 6, 
855-863. 

Reber, A. S. (1969). Transfer of syntactic structure in 
synthetic languages. Journal of Experimental 
Psychology, 81(1), 115-119. 

Reber, A. S. (1993). Implicit learning and tacit knowledge: 
an essay on the cognitive unconscious. New York: 
Oxford Univ. Press. 

Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). 
Statistical learning by 8-month-old infants. 
Science, 274, 1926-1928. 

Stadler, M. A., & Frensch, P. A. (Eds.). (1998). Handbook 
of Implicit Learning. Thousand Oaks, CA: Sage 
Publications. 

Vokey, J. R., & Brooks, L. R. (1992). Salience of item 
knowledge in learning artificial grammar. Journal 
of experimental psychology. Learning, memory, 
and cognition, 18, 328-344. 

Vosse, T., & Kempen, G. (2000). Syntactic structure 
assembly in human parsing: A computational 
model based on competitive inhibition and a 
lexicalist grammar. Cognition, 75(2), 105-143. 

 


	Introduction 
	Implicit statistical learning 
	The Reber grammar 
	Experimental design 
	Stimulus Material 
	Data analysis 

	Results 
	Classification Performance 

	Discussion 
	Grammar learning 
	Lexicalization 

	Conclusion 
	Acknowledgments 
	References 


