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Random Attractors for Wave Equations

QOutline

e Stochastic wave equations on R".
e Random attractors theory.

e Random absorbing sets for wave equations.
e Pullback asymptotic compactness.

e Existence of random attractors.
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Wave Equations

The stochastic wave equation on R":

dw

g + auy — Au+ Au+ f(x,u) = g(x) + h(az)ﬁ

e )\ and « are positive constants.

e g and h are given functions on R".

e w Is a two-sided Wiener process.

e f is a smooth nonlinear function satisfying
certain growth conditions.
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Random Attractors

Question: Long term behavior of solutions?

e Stochastic PDEs on bounded domains:

— Crauel and Flandoli (1994);

— Flandoli and Schmalfuss (1996);

— Arnold (1998);

— Caraballo, Langa and Robinson (2001);
— Chueshov and Scheutzow (2004);

— Chueshov and Schmalfuss (2007);

— Li and Guo (2008), etc.

e Stochastic systems on unbounded domains:

— Bates, Lisei and Lu (2006);
— Brzezniak and Li (2006);
— Bates, Lu and Wang (2008).
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Random Attractors

Difficulty: Sobolev embeddings are not compact
on unbounded domains.

Some methods to overcome the difficulty:

e Weighted spaces:
Abergel (1989); Babin and Vishik (1990), etc.

e Energy equation approach:
Ball (1997, 2004); Rosa (1998); Moise, Rosa
and X.Wang (1998); Ju (2000, 2001); Goubet
and Rosa (2002); Brzezniak and Li (2006), etc.

e Tail estimates approach:
B.Wang (1999); Antoci and Prizzi (2001,
2002); Morillas and Valero (2005); Prizzi
(2005); Yang, Sun and Zhong (2007); Bates,
Lu and Wang (2008), etc.
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Stochastic Wave Equation

Goal: Prove existence of a random attractor
for the stochastic wave equation.

The concept of random attractors for stochastic
PDEs is an extension of global attractors of
deterministic PDEs. This extension was developed

by Crauel-Flandoli (1994) and Flandoli-Schmalfuss
(1996).
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Random Attractors

(X, d): metric space with Borel o-algebra B(X).
(2, F, P): probability space.
D: collection of some random subsets of X.

Definition (Shift Operators). Let §: R x Q — ()
be (B(R) x F,F)-measurable. Then (0;)icr is
called a family of shift operators on () if

e 0, is the identity on (2;

e 0,1, =0,00, for all s,t € R.

Definition (Metric Dynamical System). Let
(0;)ick be a family of shift operators. Then
(Q,F, P, (0:)ter) is called a metric dynamical
system if (6;);cx is measure preserving, i.e.,
0,.P = P for all ¢t € R.
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Random Attractors

Definition (Random Dynamical System). Let
(Q,F,P,(0;)cr) be a metric dynamical system,
and ® a mapping:

P:R"xOxX —-X (tw,z)— Ot w,x).

Then @ is called a continuous random dynamical
system on X if ® is (B(R") x F x B(X),B(X))-
measurable and satisfies, for P-a.e. w € (),

(i) ®(0,w,-) is the identity on X;
(i) P(t+s,w,:) = P(t, 05w, )oP(s,w, ) Vt,s > 0;

(ii)) ®(t,w, ) : X — X is continuous Vi € R,

— Typeset by Foil TEX — 8



Random Attractors

Definition (Tempered Sets). Let {B(w)}.,cq be
a random bounded subset of X. Then {B(w)}.ecq
is called tempered with respect to (0;);cr if there
exists xg € X such that for P-a.e. w € (),

lim e’'d(zo, B(Aw)) =0 for all 5> 0.

t——o00

All bounded deterministic sets are tempered.
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Random Attractors

Definition (Random Absorbing Sets). Let D
be a collection of random subsets of X and

{K(w)}wea € D. Then {K(w)},cq is called a
random absorbing set of ® in D if for every B € D
and P-a.e. w € (), there exists T(w, B) > 0 such

that

d(t,0_w,B(0_w)) C K(w) forallt>T(w,B).

Definition (Pullback Asymptotic Compactness).
® is said to be D-pullback asymptotically compact
in X if for P-a.e. w e Q, {®(t,,0_+ w,z,)}52, has
a convergent subsequence in X whenever t,, — oo,
and z,, € B(6_; w) with {B(w)}.cq € D.
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Random Attractors

Definition (Random Attractor). A random set
{A(w)}weq € D is called a D-random attractor for
® if for P-a.e. w € ) and all t > 0,

e A(w) is compact, and w — d(z, A(w)) Iis
measurable for every r € X;

o {A(w)}oeq is invariant: O(t,w, A(w)) = A(Gw);

o {A(w)},cq attracts every set in D: for every
B ={B(w)}weqn € D,

lim d(®(t,0_w, B(_w)), A(w)) =0,

t— o0

where d is the Hausdorff semi-distance.
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Random Attractors

Definition (Inclusion-Closed Collection). A
collection D of random subsets of X is called
inclusion closed if {D(w)},co € D and D(w) C
D(w) for all w € Q imply D € D.

Proposition (see, e.g., Bates-Lisei-Lu, 2006). Let
D be inclusion closed and ® be continuous on
X over (QF,P,(0s)icr). If & has a closed
absorbing set {K(w)},cq in D and is also D-
pullback asymptotically compact in X, then ® has
a unique D-random attractor {A(w)},cq:

Aw) =) | @@t 0_w, K(0_w)).

720 t>71
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Stochastic Wave Equation

The stochastic wave equation on R3:

d
Ut + auy — Au+ A+ f(x,u) = g(x) + h(x)d—ff

The nonlinearity f and its antiderivative F' satisfy,
for some ~ € [1, 3],

[f(z,u)| < erlul” + oa1(x),

| fu@ u)| < calul "™ + o(),
f(a:,u)u — C3F(5E7u) > ¢3($)7

F(2,u) > calul "™ — ¢a(a),

Example. f(u) = |u|""'u, -~ = 3: critical.
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Stochastic Wave Equation

The probability space (€2, F, P) is given by
e O ={weC(R,R):w(0)=0}.

e 7 is the Borel o-algebra induced by the
compact-open topology of ().

e P is the Wiener measure on ({2, F).

The shift operator is given by

() =w(-+t) —w(t), we, teR.

(2, F, P, (0:)tcr) is @ metric dynamical system.
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Stochastic Wave Equation

Change of variables:

z=us +ou, 0>0.

The system for (u, z) is given by

%Jr&u:z,

%Jr(04—5)z+()\+52—045)U—Au+f(% u) = 9+h¢%’

with the initial conditions:

w(x, 7) =ur(z), 2(z,7)=2:().

Change of variables:

v(t, T,w,v;) = z(t, T,w, 2,) — hw(t).
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Stochastic Wave Equation

The system for (u,v) is given by

ou
o + du — v = hw(t),

%+(a_5)v+(x+52—a5)u—m+f (,u) = g+(0—a)hw(t),

with the initial conditions:

u(z, 7) =ur(x), v(z,7) = v () = 2 () —h(z)w(7).

This problem is well-posed in H'(R?) x L*(R?).

z is given by z(t,7,w, z;) = v(t, T, w, v, ) + hw(t).
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Stochastic Wave Equation

Let ® be a mapping given by
®: RTxQOx (HYR?) x L*(R?)) — H'(R?) x L*(R?),

O(t,w, (ug,vg)) = (u(t,0,w,ug), 2(t,0,w, 29)),
where z(t,0,w, z9) = v(t,0,w, vg) + hw(t).

® is a continuous random dynamical system on
HY(R?) x L*(R3) over (Q, F, P, (0;)¢cr)-

D = {{B(w)}yecq : Bis temped in H'(R?)xL*(R%)}.
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Random Absorbing Set

Lemma. For every B = {B(w)}weo € D and
P-a.e. w € (), there exists T'= T'(w, B) < 0 such
that for all 7 <T and ¢t € [7,0],

et 7,0, we) 2y sy + (s 7, 0,072 < € Fr(w),

where ¢ > 0 is a constant, and r(w) is tempered.

Particularly, for ¢ = 0, we have:

Hu(077_7w7u7'>”§—[1(R3) -+ HU(O,T,W,UT)H2 S T(W).

A random absorbing set is given by:

K(w) = {(u,v) € H'(R*)xL*(R?) : ||ullzn+]v]]* < r(w)}
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Uniform Tail Estimates

Lemma. For every ¢ > 0, B = {B(w)}wen and
P-a.e. w € (), there exist T'=T(¢,w,B) < 0 and
K(e,w) > 0 such that for all 7 < T and ¢ € [7,0],

/ (\u(t,T,w, uT)|2 + |Vu(t, 7, w, uT)\Q) dr < ee ¢,

x| > K

/ lv(t, T, w,v,)|?de < ee™ 7,
| > K

where o is a positive deterministic constant.

The estimates for t = 0 are of particular interest.
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Asymptotic Compactness: Subcritical Case

Asymptotic compactness: For P-a.e. w €
Q, {®(tn,0_¢,w, (uon,v0n))} has a convergent
subsequence in H!(R?) x L?(R?) provided t,, — oo,
B ={B(w)}weq € D and (ug n,v0.n) € B(0_t,w).

Idea of proof:
e By tail estimates, Ve > 0, 3K (¢), N(e) > O:

||(I)(tn7 e—tnwv (UO,na UO,n)) HHl(R3\QK)xL2(R3\QK) < €,

for n > N and Qg = {z € R* : |z] < K(¢)}.

e Prove @ is asymptotically compact in H'(Q ) x
L?*(Qr) by a decomposition trick.
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Asymptotic Compactness: Subcritical Case

Let ¢y be a smooth function such that

Y(s)=1 if |s| < 1; P(s) =0 if|s| > 2.

Given k£ > 1, set u = w(%')u and v = w(ﬁk')v.

The system for (@, v) is defined on Qo:
Uy + 01 — 9 = hw(t),

U+ (= 0)0+ (A + 0% —ad)i — AU+ f(z,u)
=g+ (§ — a)Yhw(t) — ulAyp — 2VYVu,

with zero boundary conditions.
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Asymptotic Compactness: Subcritical Case

Consider the eigenvalue problem:
—Au =Xt in @, with 4|pg, =0.

Eigenvalues: \{ < )\, < ... <)\, — .

Eigenfunctions: {e,}°°,, a basis of L?(Q2).

X, =span{ei, - ,e,} and P, : L?(Qa2r) — Xp.

Lemma. For every ¢ > 0, B = {B(w)}weq € D
and P-a.e. w € (), there exist K = K(w,¢e) > 0,
N = N(w,e) >0and T =T(B,w,€) < 0 such that
forall k> K, n>Nand 7 <T,

[(T=Po)ia(0, 7,73 e HI (TP (0, 7, 0)l| 2 <
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Asymptotic Compactness: Subcritical Case

Proof. Set 4, = (I — P,)u and v, = (I — P,)®.

d ,, . _ N _

7 (191 + cllinl* + IV |* + 200 f (2, w), @n))
+o (H’ﬁnll2 +an[@n]® + [ Vin|* + 200 f (2, 1), @n))

3y—3 C
< ATy (1l + [l 3572) + g llulid + ..

For v < 3 and sufficiently large n and k:
d -2 =12 =12 .
= ([Tal” + arll@nl|” + [1Van | + 2( f (2, u), @n))

7 (Tll? + el + Va2 + 206 f (2, ), Gn)
3v—3
<e ([0l + ul ) +elluldn + ...
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Asymptotic Compactness: Subcritical Case

Asymptotic compactness: {®(t,,0_;, w, (Uon,von))}
has a convergent subsequence in H'(R?) x L*(R?)
if t, — oo and (ug n,v0n) € B(O_t,w).

Proof:
e Tail estimates: Ve, 4K, AN s.t. for n > N,

”(I)(t’m 0_t,w, (uO,m UO,TL))HHl(R3\QK)xL2(R3\QK) < €,

e There is m > 0 such that for n > N,

[(L=P) @ (tn, 0—t,w, (U0,ns Vo)) | H1(Qr)xL2(QK) < €

o P (P(tn,0_1,w,(Upn,von))) is bounded in the
finite dimensional space P,,,(H!'(Qx) x L*(Qx))-
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Asymptotic Compactness: Critical Case

Method: Tail estimates and energy equations.

Idea of the energy equation approach:

Up — win L? <= u, — win L? and ||u, |2 — ||u|| 2

The energy equation approach was

e introduced by J. M. Ball (1997, 2004);

e used by Rosa (1998); Moise, Rosa and X.Wang
(1998); Ju (2000, 2001); Goubet and Rosa
(2002); Brzezniak and Li (2006), and many
others.
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Asymptotic Compactness: Critical Case

H' x L? energy of wave equation:

d
gE(U,’U) + 40E(u,v) = V(u,v),

E(u,v) = Hvll2+(A+52—a5)Hull2+HVuH2+2/ F(z,u)dz,
R3

U(u,v) = —2(a—0-20)||v||*—=2(6—20) (A5 —ad)||u||?

—2(5—20)||Vu||2+80/ F(z,u)dx—26 | f(x,u)udzx
R3 R3

+2(\ + 8% — ) (u, h)w(t) + 2(Vu, Vh)w(t)

+2w(t) g f(x,u)h(x)dx+2(g,v)+2(0—a)(v, h)w(t).
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Asymptotic Compactness: Critical Case

H' x L? energy equation:

E(u(t,r,w,u.),v(t, 7w, v;)) = e 2T E(u,, v,)

[
+/ e4a(£_t>\11(u(§,7',w,u¢),fv(ﬁ,’r,w,'UT))df.

Lemma (asymptotic compactness)

{®(t,,0_1,w, (uon,v0n))} is precompact in
HY(R3) x L*(R3) if t, — oo and (ugn,von) €
B(6_;, w); that is,

{(u(0, —tp, w, up ), v(0, —t,,w,v9,))} has a convergent
subsequence in H!(R?) x L?(R3) if ¢, — oo and
(©p.nyVo.n) € B(O_t,w).
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Asymptotic Compactness: Critical Case

Proof.
e There is N such that for all n > N,

||u((), _tnv W, uO,n)”%ﬁ"‘HU(Ov _tnv W, UO,n)H2 < R(w)'

o Thereis (i1,7) € H'(R3) x L?(R?) such that, up
to a subsequence,

~

(w(0, —tp, w, ug pn), v(0, —t,,w,v0.n)) — (4, v) weakly,
This implies that

lim inf || (u(0, —tn, w, to,n), (0, —tn, w, vo.n))ll = [|(@ D)

We only need to prove

lim sup ||(w(0, —t,, w, uo,n), v(0, —tn,w,v0,n))| < ||(@,?)|

n—00
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Asymptotic Compactness: Critical Case

e Notice that, for any fixed m > 1,
u(0, —tn, w, ug.n) = (0, —m, w, u(—m, —t,,w,up.,)),
and

v(0, —tpn,w,vo.n) = v(0, —m,w,v(—m, —t,,w, Vo.n)).

e Energy equation in H! x L?:

E(u(t,r,w,u.),v(t, 7,w,v;)) = e 2T E(u,, v,)

t
| / AT EDG (e, 7,0, 1), (€, 7w, 02) )
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Asymptotic Compactness: Critical Case

E(U(O, _tna W, uO,n)a U(Oa _tna W, UO,n))

= e_4amE(u(—m, —tn, w,ug,n), v(—m, —tn,w,v9n))
0
—2(a— 6 — 20) / e4a§||’u(£, —m,w,v(—m, —tn, w, vo,n))||2d£
—m
5 2 O 4ot 2
_ (5_20)(>‘+5 _aé) € ||’U,(£, —-m, w, u(—m, _tna w, uO,n))H dg
0 4 - 2
—2(8 — 20)/ e8|V u(E, —m, w, u(—m, —tn, w, ug.n))||2dé
—m
0
—}—80/ 6405/ F(x,u(§, —m,w,u(—m, —tn,w, ug y)))dxd§
—m R3
0
_26/ 6405/ U(g, —m,w,u(—m, _tn)w7u0,n))xf(x7u(£a —m,w,u))
—m R3
0
—-m R
0
+2/ 6405/ Vh(CU) ’ vu(ga —-m,w, u(—m, —tn, w, Uo,n))w(g)
—-m R3
0
w2 [ h@) (= w, u(—m, —tn,w,10,0))(©)
—m

0
+2/ 640_5 /]R?) g(m)’v(ga_mawav(_ma —tnaW,’UO,n))dl’df
—m

0
+26-0) [t [ h(@)ug —mw, o(=m, —tn,w, v00))w(§)dd
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Asymptotic Compactness: Critical Case

e For any fixed m, there is (i,,,7,,) € H' x L*:

o =u(0,—m,w,u,,) and 0 =v(0,—m,w, ),

e Energy equation in H! x L?:

E(u(t,,w,u.),v(t, 7,w,v;)) = e 2T E(u,, v,)

t
—|_ / 640(£_t)qj(u(§7 7_7 wa uT)7 U(’Sa 7_7 wa /UT))df
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Asymptotic Compactness: Critical Case

E(0,0) = e * " E (i, )
0
—2(a—5—2a)/ A7 (e, —m, w, b)) ||2de
0
26 — 20)(A + 6% — af) /_ A w(e, —m, w, i) || 2de
0
—2(6 - 20) / ATV (e, —m, w, i) || 2de
0
+s0 [ et /RSF(az,u@,—m,w,am))dwds
0
25 /_m LS /R?)u(g,—m,w,am) X f(z,u(€, —m,w, iim))
0
1200467 = a8) [ [ n(@ute, —m.w, i) (©
0
42 /_ i Aot /R , VA(@) - V€, —m, w, im)w(€)dedg
0
w2 [ [ @) ue —m . ) (6)
0
+2 / ¢4 /R L9(0)0(E, —m, w, D) dde

0 40& ~
+2(6 — ) /_m e /]1%3 h(z)v(&, —m, w, Om)w(&)dzdE.
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Asymptotic Compactness: Critical Case

E(U(O, _tna W, uO,n)a U(Oa _tna W, UO,n))

= e_4amE(u(—m, —tn, w,uq,n), v(—m, —tn,w,v9n))
0
—2(04 — 0 — 20) / 640-5”’0(5, -m, w, U(_ma —ln,w, UO,n))||2d£
2 - 0 4 2
~2(5-20)(\+67=a8) [ M ulg, —m,w, u(—m, —tn, w, w0.0)) | dg
—m
0 yoe 2
—2(6 — 20) / e 75| Vu(E, —m, w,u(—m, —tn, w, ug,n))||"dé
—m
0
—}—80/ 6405/ F(x,u(§, —m,w,u(—m, —tn,w, ug y)))dxd§
—m R3
0
_26/ 6405/ U(g, —m,w,u(—m, _tn)w7u0,n))xf(x7u(£a —m,w,u))
—m R3
0
—-m R
0
w2 [ [ Th@) Tu(E —mw, u(m, —ta, w0 n))w(€)dods
R

(&
—m

0
42 / 4ot /R @) f (@, (€, —m, w0, u(—m, —tn, 0, ugn)) )W ()

(&
—m

0
+2/ 408 /]1%3 g(m)’v(ga_mawav(_ma —tnaW,’UO,n))dl’df

(&
—m

0
+26-0) [ [ h(@)ue —mw.o(—m, —tn,w, v00))w(§)ddé
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Asymptotic Compactness: Critical Case

For instance, the following convergence holds:

0
im [ et / Fa, u(€, —m, w, u(—m, —tn, @, to.n)))
m R3

n—oo

0
_ / 10t / Fa, u(€, —m, w, @) dzdé,
—m R3

which is implied by

0
40& e w. ul—mm. — . . ~
[ [ (Pl —mow, u(=m, —tn, w0, ug,0)) — Fla, (€ —mw,im)))|

0
= / 640-5 | |>k |F(.’E7u(£7 —m,w,u(—m, —tn,w,ug,n)))—F(x,u(ﬁ, _m7w’ﬂm))|
xr

—m
0
+| 6405/ F(:B,u(&,—m,w,u(—m,—tn,w,uo n)))—F(m,u(f, —m,w,ﬂm)ﬂ
—-m || <k ’
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Asymptotic Compactness: Critical Case

Finally, we have

limsup E(u(0, —t,,w, ugp n), v(0, —tn,w,vo)) < E(a,v),

n—oo

which implies that

lim Sup ||(U(O, —tn, W, uO,n)v U(Ov —tn, W, UO,n))” < ||(’&, 6)”

n—aoo

We also have

lim inf [|((0, ~tn, @, u0,), 0(0, by w, vo.0))| 2 [1(@ )]

n— 00 o
Then it follows that
Tim{[(u(0, =tn, w, w0,n), v(0, —tn, w, vo,.0)) || = [[(@, )],

which along with the weak convergence yields

(w(0, —=tn, w, up pn), v(0, —tn,w,vpn)) — (@, V) strongly.
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Existence of Random Attractors

Theorem. The random dynamical system ¢
has a unique D-random attractor {A(w)},cq in
HY(R?) x L*(R3), i.e., for P-a.e. w € (),

e A(w) is compact in L*(R").
o {A(w)},eq is invariant:

o(t,w, Alw)) = A(Ow), Vt>0.

o {A(w)}wen attracts every tempered random
subset {B(w)},ecq € D:

lim d 1, p2(6(t, 0w, BO_w)), Aw)) = 0.

t— 00
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Conclusion

Remarks:

e Existence of attractors in

Dy = {D = {D(w)}wen : lim ¢ 7| D(H_w)]| = 0}.

e Existence of invariant measures.
Future work:

e Uniqueness of invariant measures.

e Structures of attractors.
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