Identification of Second-Order Stochastic Dynamical Systems

Sergey Lototsky
Department of Mathematics
University of Southern California

Based on joint work with Wei Liu

First Order vs Second Order in Time

First-order SODE: OU process $d X+a X(t) d t=d W(t)$
Three options: $a>0, a=0, a<0$.
First-order SPDE: $d u=a u_{x x} d t+d W(t, x)$
One option: $a>0$ (Infinite-dimensional stable OU process.)
Second-order SODE: $\ddot{X}(t)+a \dot{X}(t)+b X(t)=\dot{W}(t)$ How many options?
Second-order SPDE: $u_{t t}=\mathcal{A} u+\mathcal{B} u_{t}+\dot{W}(t, x)$. How many options? (Certainly more than one...)

Basic SPDE Model

Stochastic wave equation:

$$
\frac{\partial^{2} u}{\partial t^{2}}=a^{2} \frac{\partial^{2} u}{\partial x^{2}}+b \frac{\partial u}{\partial t}+\dot{W}(t, x), 0<t<T, 0<x<\pi
$$

zero initial and boundary conditions.

What is what:

- $u=u(t, x)$ - displacement of a string
- $a>0$ - propagation speed
- $b \in \mathbb{R}$ - damping/amplification coefficient:

$$
\frac{d}{d t} \int_{0}^{\pi}\left(u_{t}^{2}(t, x)+a^{2} u_{x}^{2}(t, x)\right) d x=2 b \int_{0}^{\pi} u_{t}^{2}(t, x) d x
$$

(amplification is $b>0$; damping is $b<0$).

- $\dot{W}(t, x)$ is space-time white noise.

Background

$$
u_{t t}=a^{2} u_{x x}+b u_{t}+\dot{W}(t, x)
$$

Motivation:

- Guitar in the sand storm: Walsh (1984)
- Interest rate models: Santa-Clara and Sornette (2001)

Parameter Estimation:

- Huebner, Khasminskii, and Rozovskii (1992) - Heat equation
- Huebner and Rozovskii (1995) - Beyond the heat equation.

Our Objectives:

- Wave equation
(1) Existence and uniqueness of solution.
(2) Estimating a^{2} and b.
- Beyond the wave equation.

The equation: Definition of solution

$u_{t t}=a^{2} u_{x x}+b u_{t}+\dot{W}(t, x), 0<t<T, 0<x<\pi$.
Space-time white noise: $\dot{W}(t, x)=\sqrt{\frac{2}{\pi}} \sum_{k \geq 1} \sin (k x) \dot{w}_{k}(t)$
$W_{f}(t)=\sum_{k \geq 1} f_{k} w_{k}(t), f \in L_{2}((0, \pi))$.
Sobolev spaces $H^{\gamma}:\|f\|_{\gamma}^{2}=\sum_{k \geq 1} k^{2 \gamma} f_{k}^{2}$;
Solution of the equation:
$u \in L_{2}(\Omega \times(0, T) \times(0, \pi)), \quad v \in L_{2}\left(\Omega ; L_{2}\left((0, T) ; H^{-1}\right)\right)$,

$$
\begin{aligned}
& (u(t, \cdot), f)=\int_{0}^{t}(v(t, \cdot), f)(s) d s \\
& (v(t, \cdot), f)=\int_{0}^{t}\left(a^{2}\left(u(t, \cdot), f^{\prime \prime}\right)-2 b(v(t, \cdot), f)\right) d s+W_{f}(t)
\end{aligned}
$$

The equation: Existence of solution

$u_{t t}=a^{2} u_{x x}+b u_{t}+\dot{W}(t, x), 0<t<T, 0<x<\pi$.
Fundamental solution: $\varphi_{k}^{\prime \prime}(t)-b \varphi_{k}^{\prime}(t)+k^{2} a^{2} \varphi_{k}(t)=0$,
$\varphi_{k}(0)=0, \varphi_{k}^{\prime}(0)=1$.
Fourier coefficients:
$u_{k}(t)=\int_{0}^{t} \varphi_{k}(t-s) d w_{k}(s), \quad v_{k}(t)=\int_{0}^{t} \varphi_{k}^{\prime}(t-s) d w_{k}(s)$.

Theorem.

$u(t, x)=\sqrt{\frac{2}{\pi}} \sum_{k \geq 1} u_{k}(t) \sin (k x), \quad v(t, x)=\sqrt{\frac{2}{\pi}} \sum_{k \geq 1} v_{k}(t) \sin (k x)$,
$u \in L_{2}\left(\Omega ; L_{2}\left((0, T) ; H^{\gamma}\right)\right) ; v \in L_{2}\left(\Omega ; L_{2}\left((0, T) ; H^{\gamma-1}\right)\right), \gamma<1 / 2$.
Note: If $4 a^{2} k^{2}>b^{2}$ and $\ell_{k}=\sqrt{4 a^{2} k^{2}-b^{2}}$, then

$$
\varphi_{k}(t)=\frac{\tilde{2}}{\ell_{k}} \exp (b t / 2) \sin \left(\ell_{k} t / 2\right) .
$$

MLE, Part I

$u_{t t}=\theta_{1} u_{x x}+\theta_{2} u_{t}+\dot{W}(t, x), 0<t<T, 0<x<\pi, \theta_{1}>0, \theta_{2} \in \mathbb{R}$.
Observations: $\left(u_{k}(t), u_{k}^{\prime}(t)\right), 0<t<T, k=1, \ldots, N$.
Notation: $v_{k}(t)=u_{k}^{\prime}(t)$.
To get an MLE:
$d v_{k}(t)=\left(-k^{2} \theta_{1} \int_{0}^{t} v_{k}(s) d s+\theta_{2} v_{k}(t)\right) d t+d w_{k}(t)$.
The likelihood ratio:

$$
\begin{aligned}
\frac{d \mathbf{P}^{v, N}}{d \mathbf{P}^{w, N}}\left(v_{1, \ldots, N}\right) & =\exp \left(\sum_{k=1}^{N} \int_{0}^{T}\left(-\theta_{1} k^{2} u_{k}(t)+\theta_{2} v_{k}(t)\right) d v_{k}(t)\right. \\
& \left.-\frac{1}{2} \sum_{k=1}^{N} \int_{0}^{T}\left(-\theta_{1} k^{2} u_{k}(t)+\theta_{2} v_{k}(t)\right)^{2} d t\right) ;
\end{aligned}
$$

MLE, Part II

Explicit formulas

$$
\widehat{\theta}_{1, N}=\frac{B_{1, N} J_{2, N}+B_{2, N} J_{12, N}}{J_{1, N} J_{2, N}-J_{12, N}^{2}}, \quad \widehat{\theta}_{2, N}=\frac{B_{1, N} J_{12, N}+B_{2, N} J_{1, N}}{J_{1, N} J_{2, N}-J_{12, N}^{2}} .
$$

where

$$
\begin{aligned}
& J_{1, N}=\sum_{k=1}^{N} k^{4} \int_{0}^{T} u_{k}^{2}(t) d t, \quad J_{2, N}=\sum_{k=1}^{N} \int_{0}^{T} v_{k}^{2}(t) d t \\
& J_{12, N}=\sum_{k=1}^{N} k^{2} \int_{0}^{T} u_{k}(t) v_{k}(t) d t \\
& B_{1, N}=-\sum_{k=1}^{N} k^{2} \int_{0}^{T} u_{k}(t) d v_{k}(t), \quad B_{2, N}=\sum_{k=1}^{N} \int_{0}^{T} v_{k}(t) d v_{k}(t) .
\end{aligned}
$$

Some pictures

MLE, Part III

Theorem. We have

$$
\lim _{N \rightarrow \infty} \widehat{\theta}_{1, N}=\theta_{1}, \quad \lim _{N \rightarrow \infty} \widehat{\theta}_{2, N}=\theta_{2}
$$

with probability one and

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} N^{3 / 2}\left(\widehat{\theta}_{1, N}-\theta_{1}\right)=\mathfrak{N}\left(0, \frac{3 \theta_{1}}{T^{2} M\left(\theta_{2} T\right)}\right), \\
& \lim _{N \rightarrow \infty} N^{1 / 2}\left(\widehat{\theta}_{2, N}-\theta_{2}\right)=\mathfrak{N}\left(0, \frac{1}{T^{2} M\left(\theta_{2} T\right)}\right)
\end{aligned}
$$

in distribution, where

$$
M(x)= \begin{cases}\frac{e^{x}-x-1}{2 x^{2}}, & \text { if } x \neq 0 \\ \frac{1}{4}, & \text { if } x=0\end{cases}
$$

About the proof

$$
\begin{aligned}
& D_{N}=\frac{J_{12, N}^{2}}{J_{1, N} J_{2, N}}, \xi_{1, N}=\sum_{k=1}^{N} k^{2} \int_{0}^{T} u_{k}(t) d w_{k}(t), \\
& \xi_{2, N}=\sum_{k=1}^{N} \int_{0}^{T} v_{k}(t) d w_{k}(t) \\
& \widehat{\theta}_{1, N}=\theta_{1}+\frac{1}{1-D_{N}}\left(\frac{\xi_{1, N}}{J_{1, N}}+\xi_{2, N} \frac{J_{12, N}}{J_{1, N} J_{2, N}}\right), \\
& \widehat{\theta}_{2, N}=\theta_{2}+\frac{1}{1-D_{N}}\left(\frac{\xi_{2, N}}{J_{2, N}}+\xi_{1, N} \frac{J_{12, N}}{J_{1, N} J_{2, N}}\right) .
\end{aligned}
$$

Strong Law of Large Numbers:

$$
D_{N} \rightarrow 0, \quad J_{1, N} \asymp N^{3}, \quad J_{2, N} \asymp N .
$$

CLT: $\frac{\xi_{i, N}}{\sqrt{J_{1, N}}} \sim \mathfrak{N}(0,1), i=1,2$.

A generalization

$$
\ddot{u}+\left(\mathcal{A}_{0}+\theta_{1} \mathcal{A}_{1}\right) u=\left(\mathcal{B}_{0}+\theta_{2} \mathcal{B}_{1}\right) \dot{u}+\dot{W}
$$

Evolution operator: $\mathcal{A}=\mathcal{A}_{0}+\theta_{1} \mathcal{A}_{1}$;
Dissipation operator: $\mathcal{B}=\mathcal{B}_{0}+\theta_{2} \mathcal{B}_{1}$; " $\mathcal{B}>0$ " is amplification. Diagonalizable: common system of eigenfunctions, ensures

$$
\ddot{u}_{k}=\left(\varrho_{k}+\theta_{1} \tau_{k}\right) u_{k}+\left(\rho_{k}+\theta_{2} \nu_{k}\right) \dot{u}_{k}+\dot{w}_{k} .
$$

Hyperbolic: " $\mathcal{A}>0$ ", "not too much amplification"
Examples

$$
\begin{aligned}
& u_{t t}=\theta_{1} \Delta u+\theta_{2} u_{t}+\dot{W}(\text { just considered. }) \\
& u_{t t}=\theta_{1} \Delta u+\theta_{2} \Delta u_{t}+\dot{W}\left(\text { Why not if } \theta_{2}>0 ?\right) \\
& u_{t t}=\theta_{1} \Delta u-\theta_{2} \Delta^{2} u_{t}+\dot{W}\left(\text { Even more so if } \theta_{2}>0 .\right)
\end{aligned}
$$

Second-Order ODE

Fundamental solution:

$$
\begin{aligned}
& \ddot{y}(t)-2 b \dot{y}(t)+a^{2} y(t)=0, \quad y(0)=0, \quad \dot{y}(0)=1 . \\
& y(t)= \begin{cases}\frac{\sin (\ell t)}{\ell} e^{b t}, & a^{2}>b^{2} ; \\
t e^{b t}, & a^{2}=b^{2} ; \quad \ell=\sqrt{\left|a^{2}-b^{2}\right|} \\
\frac{\sinh (\ell t)}{\ell} e^{b t}, & a^{2}<b^{2} ;\end{cases}
\end{aligned}
$$

SODE: $\ddot{X}(t)-2 b \dot{X}+a^{2} X(t)=\dot{w}(t), X(0)=\dot{X}(0)=0$.
$X(t)=\int_{0}^{t} y(t-s) d w(s), \mathbb{E}|X(t)|^{2}=\int_{0}^{t}|y(s)|^{2} d s$,

$$
\mathbb{E}|\dot{X}(t)|^{2}=\int_{0}^{t}|\dot{y}(s)|^{2} d s
$$

What is (Stochastic) Hyperbolic?

$\ddot{u}_{k}+\left(\varrho_{k}+\theta_{1} \tau_{k}\right) u_{k}=\left(\rho_{k}+\theta_{2} \nu_{k}\right) \dot{u}_{k}+\dot{w}_{k}, 0<t<T$.
$W(t)=\sum_{k \geq 1} w_{k}(t) h_{k}, h_{k}$ CONS in H
$W(t) \in X$ if $H \subset X$; Hilbert-Schmidt embedding: $\sum_{k}\left\|h_{k}\right\|_{X}^{2}<\infty$.

Hyperbolic Diagonalizable SPDE:

- $\varrho_{k}+\theta_{1} \tau_{k} \nearrow+\infty(" \mathcal{A}>0$ " $)$
- $u(t) \in X, t \in[0, T]$ ("well-posed")

Theorem (a) If $T\left(\rho_{k}+\theta_{2} \nu_{k}\right) \leq \ln \left(\varrho_{k}+\theta_{1} \tau_{k}\right)+C$ then $\sup \mathbb{E}\left|u_{k}(t)\right|^{2}<\infty$, and so $u(t) \in L_{2}(\Omega ; X)$ for all $t \in[0, T]$. k, T
(b) If $\left(\rho_{k}+\theta_{2} \nu_{k}\right) \leq C$ (bounded amplification), then $u(t), \dot{u}(t) \in L_{2}(\Omega ; X)$ for all $t \in[0, T]$.

MLE

$\ddot{u}_{k}+\left(\varrho_{k}+\theta_{1} \tau_{k}\right) u_{k}=\left(\rho_{k}+\theta_{2} \nu_{k}\right) \dot{u}_{k}+\dot{w}_{k}, 0<t<T$.
Expressions for $\widehat{\theta}_{1, N}, \widehat{\theta}_{2, N}$: really do not want to see them... Important terms:
$\Psi_{1, N}=\sum_{k=1}^{N} \mathbb{E} \int_{0}^{T} \tau_{k}^{2} u_{k}^{2}(t) d t, \Psi_{2, N}=\sum_{k=1}^{N} \mathbb{E} \int_{0}^{T} \nu_{k}^{2} v_{k}^{2}(t) d t$.
The reason: $\widehat{\theta}_{1, N}-\theta_{1} \approx \frac{\sum_{k=1}^{N} \zeta_{k}}{\Psi_{1, N}}, \zeta_{k}$ are independent, zero-mean,
$\mathbb{E} \zeta_{k}^{2}=\mathbb{E} \int_{0}^{T} \tau_{k}^{2} u_{k}^{2}(t) d t$. Same for $\widehat{\theta}_{2, N}-\theta_{2}$.
Goals

- Consistency: $\lim _{N \rightarrow \infty} \widehat{\theta}_{i, N}=\theta_{i}, i=1,2$.
- Asymptotic normality: $\lim _{N \rightarrow \infty} \sqrt{\Psi_{i, N}}\left(\widehat{\theta}_{i, N}-\theta_{i}\right)=\mathfrak{N}(0,1)$.

A reasonable guess: Need $\lim _{N \rightarrow \infty} \Psi_{i, N}=+\infty$.
Sometimes, that is all we need, sometimes not...

How to study the MLE?

The key relations: $\lambda_{k}(\theta)=\varrho_{k}+\theta \tau_{k}, \mu_{k}(\theta)=\rho_{k}+\theta \nu_{k}$,

$$
\begin{aligned}
& \mathbb{E} \int_{0}^{T} u_{k}^{2}(t) d t \sim \frac{T^{2} M\left(T \mu_{k}\left(\theta_{2}\right)\right)}{\lambda_{k}\left(\theta_{1}\right)}, \operatorname{Var} \int_{0}^{T} u_{k}^{2}(t) d t \sim \frac{T^{4} V\left(T \mu_{k}\left(\theta_{2}\right)\right)}{\lambda_{k}^{2}\left(\theta_{1}\right)}, \\
& \mathbb{E} \int_{0}^{T} v_{k}^{2}(t) d t \sim T^{2} M\left(T \mu_{k}\left(\theta_{2}\right)\right), \operatorname{Var} \int_{0}^{T} v_{k}^{2}(t) d t \sim T^{4} V\left(T \mu_{k}\left(\theta_{2}\right)\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& M(x)= \begin{cases}\frac{e^{x}-x-1}{2 x^{2}}, & \text { if } x \neq 0 \\
\frac{1}{4}, & \text { if } x=0\end{cases} \\
& V(x)= \begin{cases}\frac{e^{2 x}+4 e^{x}-4 x e^{x}-2 x-5}{4 x^{4}}, & \text { if } x \neq 0 \\
\frac{1}{24}, & \text { if } x=0\end{cases}
\end{aligned}
$$

Algebraic case

$\ddot{u}+\left(\mathcal{A}_{0}+\theta_{1} \mathcal{A}_{1}\right) u+\left(\mathcal{B}_{0}+\theta_{2} \mathcal{B}_{1}\right) \dot{u}+\dot{W}$
For "real-life" (positive-definite elliptic self-adjoint) operators

Example. If $\boldsymbol{\Delta}$ is the Laplace operator in a smooth bounded domain $G \in \mathbb{R}^{d}$ with zero boundary conditions, and $\gamma \in \mathbb{R}$, then

$$
k-\text { th eigenvalue of }(1-\boldsymbol{\Delta})^{\gamma / 2} \asymp k^{\gamma / d} .
$$

Theorem. • $\lim _{N \rightarrow \infty} \widehat{\theta}_{1, N}=\theta_{1}(\mathbb{P}-a . s) \Leftrightarrow$
$\operatorname{order}\left(\mathcal{A}_{1}\right) \geq \frac{1}{2}\left(\operatorname{order}\left(\mathcal{A}_{0}+\theta_{1} \mathcal{A}_{1}\right)+\operatorname{order}\left(\mathcal{B}_{0}+\theta_{2} \mathcal{B}_{1}\right)-d\right) ;$

- $\lim _{N \rightarrow \infty} \widehat{\theta}_{2, N}=\theta_{2}(\mathbb{P}-a . s) \Leftrightarrow \operatorname{order}(\mathcal{B})_{1} \geq \frac{1}{2}\left(\operatorname{order}\left(\mathcal{B}_{0}+\theta_{2} \mathcal{B}_{1}\right)-d\right)$.
- Consistency \Longrightarrow Asymptotic normality

Many parameters

The results extend to a more general estimation problem
$\ddot{u}+\sum_{i=0}^{n} \theta_{1 i} \mathcal{A}_{i} u=\sum_{j=0}^{m} \theta_{2 j} \mathcal{B}_{j} u_{t}+\dot{W}$, as long as all the operators
$\mathcal{A}_{i}, \mathcal{B}_{j}$ have a common system of eigenfunctions:

- the coefficient $\theta_{1 p}$ can be consistently estimated if and only if $\operatorname{order}\left(\mathcal{A}_{p}\right) \geq \frac{1}{2}\left(\operatorname{order}\left(\sum_{i=0}^{n} \theta_{1 i} \mathcal{A}_{i}\right)+\operatorname{order}\left(\sum_{j=0}^{m} \theta_{2 j} \mathcal{B}_{j}\right)-d\right)$.
- the coefficient $\theta_{2 q}$ can be consistently estimated if and only if $\operatorname{order}\left(\mathcal{B}_{q}\right) \geq \frac{1}{2}\left(\operatorname{order}\left(\sum_{j=0}^{m} \theta_{2 j} \mathcal{B}_{j}\right)-d\right)$.
Parabolic case: Huebner (1997).

Examples

$$
\begin{aligned}
& \text { 1. } u_{t t}=\theta_{1} \Delta u+\theta_{2} \Delta u_{t}+\dot{W} \text { in } G \subset \mathbb{R}^{2} \\
& \lambda_{k}=\theta_{1} \tau_{k} \asymp k, \mu_{k}=\theta_{2} \nu_{k} \asymp k ; \\
& \qquad N^{1 / 2}\left(\widehat{\theta}_{1, N}-\theta_{1}\right) \sim \mathfrak{N}\left(0, \sigma_{1}^{2}\right), \quad N\left(\widehat{\theta}_{2, N}-\theta_{2}\right) \sim \mathfrak{N}\left(0, \sigma_{2}^{2}\right) .
\end{aligned}
$$

Note: Δu is more regular that Δu_{t}.
2. $u_{t t}+\boldsymbol{\Delta}^{2} u=\theta_{1} \boldsymbol{\Delta} u+\boldsymbol{\Delta} u_{t}+\theta_{2} u_{t}+\dot{W}$ in $G \subset \mathbb{R}^{2}$
$\lambda_{k} \asymp k^{2}, \tau_{k} \asymp k, \mu_{k} \asymp k, \nu_{k}=1 ;$
$(\ln N)^{1 / 2}\left(\widehat{\theta}_{1, N}-\theta_{1}\right) \sim \mathfrak{N}\left(0, \sigma_{1}^{2}\right),(\ln N)^{1 / 2}\left(\widehat{\theta}_{2, N}-\theta_{2}\right) \sim \mathfrak{N}\left(0, \sigma_{2}^{2}\right)$.
Note 1: Δu is as regular as u_{t}.
Note 2: $\ln \mathbb{R}^{1}$, no consistency for either $\widehat{\theta}_{1, N}$ or $\widehat{\theta}_{2, N}$.

Non-algebraic case

Example. $\tau_{k}=e^{k}, \nu_{k}=\ln \ln (k+3)$.

Why?

- Why not?
- Multi-channel observations (Korostelev and Yin (2006))

What do we gain? Generality
What do we lose? Strong consistency, simplicity.

Algebraic vs General

$b_{N} \nearrow+\infty \Longrightarrow \lim _{N \rightarrow \infty} \frac{1}{b_{N}} \sum_{k=1}^{N}\left(\xi_{k}-\mathbb{E} \xi_{k}\right)=0(?)$
Weak Law of Large Numbers: Need
$\lim _{N \rightarrow \infty} \frac{1}{b_{N}^{2}} \sum_{k=1}^{N} \operatorname{Var} \xi_{k}=0$ (to apply Chebyshev's Inequality)
Strong Law of Large Numbers: Need
$\sum_{k \geq 1} \frac{\operatorname{Var} \xi_{k}}{b_{k}^{2}}<\infty$ (to apply Kolmogorov's SLLN)
Slowly increasing sequence: $a_{k}>0, \sum_{k \geq 1} a_{k}=+\infty$ AND
Either $\frac{\sum_{k=1}^{N} a_{k}^{2}}{\left(\sum_{k=1}^{N} a_{k}\right)^{2}} \rightarrow 0$ or $\sum_{n \geq 1} \frac{a_{n}^{2}}{\left(\sum_{k=1}^{n} a_{k}\right)^{2}}<\infty$.

- Not an issue in algebraic case
- Could be worse (Adler, Rosansky (1991))

The General Result

$$
\ddot{u}_{k}+\left(\varrho_{k}+\theta_{1} \tau_{k}\right) u_{k}=\left(\rho_{k}+\theta_{2} \nu_{k}\right) \dot{u}_{k}+\dot{w}_{k}, 0<t<T .
$$

Theorem

- $\left\{\frac{\tau_{k}^{2} M\left(\mu_{k}\left(\theta_{2}\right)\right)}{\lambda_{k}\left(\theta_{1}\right)}, k \geq 1\right\}$ is slowly increasing \Longrightarrow consistency (in probability) and asymptotic normality of $\widehat{\theta}_{1, N}$;
- $\left\{\nu_{k}^{2} M\left(\mu_{k}\left(\theta_{2}\right)\right), k \geq 1\right\}$ is slowly increasing \Longrightarrow consistency (in probability) and asymptotic normality of $\widehat{\theta}_{2, N}$.
A useful relation: $M(x) \sim \begin{cases}(2|x|)^{-1}, & x \rightarrow-\infty \\ (2 x)^{-2} e^{x}, & x \rightarrow+\infty .\end{cases}$
An example: $\tau_{k}=e^{k}, \lambda_{k}=\theta_{1} e^{k}+e^{2 k}$, $\nu_{k}=\ln \ln (k+3), \mu_{k}=\theta_{2} \ln \ln (k+3)$.

Conclusion

Equations that are second-order time are more than twice the fun of the first-order equations!
(And even the first-order fun is not over yet...)

