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First Order vs Second Order in Time

First-order SODE: OU process dX + aX (t)dt = dW (t)
Three options: a > 0,a =0, a <0.

First-order SPDE: du = au,,dt + dW (¢, x)
One option: a > 0 (Infinite-dimensional stable OU process.)

Second-order SODE: X (t) + aX (t) + bX (t) = W(¢)
How many options?

Second-order SPDE: u;; = Au + Bu, + W(t, x).
How many options? (Certainly more than one...)
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Basic SPDE Model

Stochastic wave equation:

2 2
%Z&Q%—l—b%—l—W(t,l’), O0<t<T 0<ux<m;
zero initial and boundary conditions.
What is what:
e u = u(t,z) — displacement of a string
e a > (0 — propagation speed
e b € R — damping/amplification coefficient:

d T

— (ui (t, z) + a*u(t,x))ds = Zb/ ur(t, z)dx

(amplification is b > 0; damping is b < 0).
e W (t,x) is space-time white noise.
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Background

U = Q2 Upy + DUy + W(t, T)

Motivation:

e Guitar in the sand storm: Walsh (1984)

e Interest rate models: Santa-Clara and Sornette (2001)

Parameter Estimation:
e Huebner, Khasminskii, and Rozovskii (1992) — Heat equation
e Huebner and Rozovskii (1995) — Beyond the heat equation.

Our Objectives:

e \Wave equation
(1) Existence and uniqueness of solution.
(2) Estimating a* and b.

e Beyond the wave equation.
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The equation: Definition of solution

utt:azum—l—but—l—W(t,x), O0<t<T, O0<zx<mr.

Space-time white noise: T (t,z) = \/ngin(kx)wk(t)
Wit) =3 foun(®), f € Lo((0,7).

Sobolev spaces H": | || = Z el
k>1
Solution of the equation:

u€ Lo(Qx (0,T) x (0,m)), ve La(Q; La((0,T); H 1)),
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The equation: Existence of solution

utt:azum—l—but—l—W(t,x), O<t<T, O<z<m.
Fundamental solution: ¢} (t) — by (t) + k*a*p(t) = 0,
ve(0) =0, ¢, (0) = 1.

Fourier cqtefficients:

u(t) = / ou(t — $)dw(s), velt) = / St — 8)dwy(s).

Theorem.

\/7221% sin(kx), v(t,x) \/722}14 sin(kzx),

k>1 k>1

u € Lo(Q; La((0,T); H)); v € Lo(%; Lo((0,T); H'7Y)), v < 1/2.

Note: If 4a%k? > b? and &2: v4a2k? — b2, then

pu(t) = ;- exp(bt/2) sin((yt/2).
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MLE, Part |

Ut = O1Ugs + Oour + W (t,z), 0<t<T, 0<z<m, 6; >0, 6 €R.
Observations: (uy(t), uj(t)), 0<t<T, k=1,...,N.
Notation: vy (t) = w)(%).
To get an MLE:
dvg(t) = <—k291 /t vp(s)ds + Hgvk(t)) dt + dwy(t).

0

The likelihood ratio:
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MLE, Part ||

Explicit formulas

~ By nJon + BanJian  ~ By yJion + BanJin

0y = N
b JiNJa N — J122,N 2 JinJa N — J122,N
where
N T N T
Jin = Zk4/ wy(t)dt, Jon = Z/ vi (t)dt,
k=1 0 k=10

T
0

N
JiaN = Z kz/ ug(t)vg(t)dt;
k=1

Biy=— ; k2 /O up(t)dvg(t), Bay = ; /0 g () dug(t).
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Some pictures

U = 1 gy —1 -ug + W
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MLE, Part III

— Theorem. We have

lim (/9\17]\[ = (91, lim 52’]\] — (92

N —o0 N —o0

with probability one and

~ 30
lim N3/2(917N—(91) :‘ﬁ(O ! ) ,

N —o0 7 T2M((92T)
AN 1
im N2 —0,) =N
i N7 (02,5 = 62) (O’ T2M(6’2T))

in distribution, where
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About the proof

Dy = Jiz ¢ —ikz/Tu(t)dw (t)
N J1,NJ2,N7 1,N — . k kL),
N T
bx =3 [ wdu
k=10

~ 1 J
Oy =01+ (gl—N + &N =n ) 7

l1—-Dy \ 1N JinJo N
o 1 Eo.N J12.N
0o v =0 2 : .
2N =02 1 - Dy (Jz,N oLy J1,NJ2,N)

Strong Law of Large Numbers:

DN — O, Jl,N = NS, JQ)N = N.

~N(0,1), i =1,2.
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A generalization

i+ (A + 01.A)u = (By + :81)0 + W

Evolution operator: A = A, + 0, A;;
Dissipation operator: 5 = By + 0,5;; “B > 0" is amplification.
Diagonalizable: common system of eigenfunctions, ensures

i = (0r + 0176 )ur + (pr + Oovg )tg + Wy

Hyperbolic: “A > 0", “not too much amplification”
Examples

Wy = 01U + Oouy + W (just considered.)
ug = 01 Au + 3 Auy + W (Why not if 6, > 0?)
Uy = 01 AU — O AU, + W (Even more so if 65 > 0.)
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Second-Order ODE

— Fundamental solution:
ij(t) — 2by(t) + a*y(t) =0, y(0) =0, H(0)=1.

(sin(lt)

€ a’ > b*:
y(t) =¢  te”, a> =% 0= \/|a®— b
\Sinlrz(ét) 6bwt7 a2 < b2;

SODE: X()—sz+a2X() w(t), X(O):X(O)—O.
X(t) = / y(t — s)dw(s), EIX(1)]? = / y(s)[2ds,

E| X (¢) / 5(s)|ds.
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What is (Stochastic) Hyperbolic?

— i + (o + O17R)ur, = (pr + O2vp) s, + iy, 0 <t < T.
W(t) = w(t)hy, hy, CONS in H

E>1

W(t) € X if H C X; Hilbert-Schmidt embedding: »  ||h[|5 < oo.
k

Hyperbolic Diagonalizable SPDE:
® O —|—(917'k / —+00 (“A > O”)
o u(t)e X,te|0,T] ("well-posed”)

Theorem (a) If T'(pr + O2v) < In(ox + 017,) + C then
sup E|ug (t)]* < oo, and so u(t) € Lo(€Q; X) for all t € [0,T].
kT

(b) If (px + Oo1vr) < C (bounded amplification), then
u(t), u(t) € Lo(2; X) for all t € [0, T.
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MLE

U + (ok + 017 )ur = (pr + Govg)tg + Wy, 0 <t < T.
Expressions for 0, y, 02 n: really do not want to see them...
Important terms:

\Ile_ZE/ Toug(t)dt, \DQN_ZIE/ vivr (t)dt.
>k Gk

The reason: 0, y — 0, = , (i, are independent, zero-mean,

Uy N
T
E( = IE/ Tous (t)dt. Same for 92N — 0.
0
Goals
e Consistency: A}lm 6’7,N =0, 1=1,2.
e Asymptotic normality: A}im \/\IJZ-N(@-N — «92-) = 91(0,1).
A reasonable guess: Need ]\}lm U, n = +00.

Sometimes, that is all we need, sometimes not...
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How to study the MLE?

— The key relations: )\k(ﬁ) = o + 071y, ,uk(H) = Pk T Oy,

. /OT 2 (8)dE ~ TQM)\(Z;(,;LS(%)) ' Var /OT U2 (£)dt ~ T4V§;,L9Lf)(92)) |

E/T vi(t)dt ~ T° M (Tux(62)), Var /T vi(t)dt ~ T*V (T ux(62)),

where ’e“”—x2—1’ if 2 0,
—, it v = 0;
L4
(2T | 4e® — dge® — 2 — 5
P A o5y, g
\
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Algebraic case

— i+ (Ao + 01 A D u+ (Bo + 0:B) 0+ W
For “real-life” (positive-definite elliptic self-adjoint) operators
order of the operator

(eigenvalue);, < k <dimension of the space) (order can be fractional)

Example. If A is the Laplace operator in a smooth bounded
domain G € RY with zero boundary conditions, and v € R, then

k—th eigenvalue of (1 — A)?/? < k7/4,

Theorem. e lim 51,]\[ =01 (P—a.s) <

N —o0

1
order(A;) > 5 (order(Ao + 60, A,) + order(By + 0,581) — d);
X 1
o lim 0,y =0y (P—a.s) & order(B); > 5 (order(Bo + 0:81) — d).

— 00

e Consistency = Asymptotic normality
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Many parameters

The results extend to a more general estimation problem

n m

U+ Z 0;Au = Z 0, B;us + W, as long as all the operators
i=0 §=0

A;, B; have a common system of eigenfunctions:

e the coefficient 6, can be consistently estimated if and only if

1 mn m
order(.A4,) > 5 (order (Zz; 6’12-AZ-> + order (Z 92j8j> — d) :

j=0
e the coefficient 0y, can be consistently estimated if and only if

1 m
order(B,) > 5 (order (QZO 6’2]-83-) — d) .

Parabolic case: Huebner (1997).
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Examples

1. Uy = (91AU‘|‘ egAut + W in G C R2
)\k = 6)17'k = k, Wi = ngk = ]C;

N'Y2(0yn — 01) ~ N(0,0%), N(Bzn — 02) ~ N0, 03).

Note: Aw is more regular that Aw;.

2. utt+A2u:91Au+Aut+92ut+W In GCRz
e <K%, Tk, <k, v, = 1;

(In N)Y2(0, 5 — 01) ~ N(0,02), (InN)Y2(0, x5 — b5) ~ N0, 52).

Note 1: Au is as regular as u;.
Note 2: In R', no consistency for either 6; 5 or 05 y.
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Non-algebraic case

Example. 7, = ¢, 1, = Inln(k + 3).

Why?
e Why not?
e Multi-channel observations (Korostelev and Yin (2006))

What do we gain? Generality

What do we lose? Strong consistency, simplicity.
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Algebraic vs General

— N

—>00b
N g1

Weak Law of Large Numbers: Need
lim — Z Var &, = 0 (to apply Chebyshev’s Inequality)

Strong Law of Large Numbers: Need
Z Vab,r Sk < oo (to apply Kolmogorov's SLLN)

E>1 k
Slowly increasing sequence: a;, >0, » -, a; = +00 AND
ZkN 1 T a,
. _ \ "
Either >0 or Z 5 < Q.

YY) (i)

e Not an issue in algebraic case
e Could be worse (Adler, Rosansky (1991))
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The General Result

U + (ok + 017 )ur = (pr + Govg) g + Wy, 0 <t < T.

Theorem

. {Tsz(Mk(ez))
Ak (61)

probability) and asymptotic normality of 51,]\;;

o {v;M(u(62)), k> 1} is slowly increasing = consistency (in

probability) and asymptotic normality of 52,]\;.

k> 1} is slowly increasing = consistency (in

2z, z— —o0
(22)7% €*, x — +o00.
An example: 7, = e*, \, = 0,€F + e?F,

v, =Inln(k + 3), px = 6 Inln(k + 3).

A useful relation: M(x) ~
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Conclusion

Equations that are second-order time are more
than twice the fun of the first-order equations!

(And even the first-order fun is not over yet...)
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