Identification of Second-Order Stochastic Dynamical Systems

Sergey Lototsky
Department of Mathematics
University of Southern California

Based on joint work with Wei Liu

First Order vs Second Order in Time

First-order SODE: OU process dX + aX(t)dt = dW(t)

Three options: a > 0, a = 0, a < 0.

First-order SPDE: $du = au_{xx}dt + dW(t,x)$

One option: a > 0 (Infinite-dimensional stable OU process.)

Second-order SODE: $\ddot{X}(t) + a\dot{X}(t) + bX(t) = \dot{W}(t)$

How many options?

Second-order SPDE: $u_{tt} = Au + Bu_t + \dot{W}(t, x)$.

How many options? (Certainly more than one...)

Basic SPDE Model

Stochastic wave equation:

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} + b \frac{\partial u}{\partial t} + \dot{W}(t, x), \ 0 < t < T, \ 0 < x < \pi;$$

zero initial and boundary conditions.

What is what:

- u = u(t, x) displacement of a string
- a > 0 propagation speed
- $b \in \mathbb{R}$ damping/amplification coefficient:

$$\frac{d}{dt} \int_0^{\pi} \left(u_t^2(t, x) + a^2 u_x^2(t, x) \right) dx = 2b \int_0^{\pi} u_t^2(t, x) dx$$

(amplification is b > 0; damping is b < 0).

• $\dot{W}(t,x)$ is space-time white noise.

Background

$$u_{tt} = a^2 u_{xx} + bu_t + \dot{W}(t, x)$$

Motivation:

- Guitar in the sand storm: Walsh (1984)
- Interest rate models: Santa-Clara and Sornette (2001)

Parameter Estimation:

- Huebner, Khasminskii, and Rozovskii (1992) Heat equation
- Huebner and Rozovskii (1995) Beyond the heat equation.

Our Objectives:

- Wave equation
 - (1) Existence and uniqueness of solution.
 - (2) Estimating a^2 and b.
- Beyond the wave equation.

The equation: Definition of solution

$$u_{tt} = a^2 u_{xx} + bu_t + \dot{W}(t, x), \ 0 < t < T, \ 0 < x < \pi.$$

Space-time white noise:
$$\dot{W}(t,x) = \sqrt{\frac{2}{\pi}} \sum_{k \geq 1} \sin(kx) \dot{w}_k(t)$$

$$W_f(t) = \sum_{k>1} f_k w_k(t), f \in L_2((0,\pi)).$$

Sobolev spaces
$$H^{\gamma}$$
: $\|f\|_{\gamma}^2 = \sum_{k \geq 1} k^{2\gamma} f_k^2$;

Solution of the equation:

$$u \in L_2(\Omega \times (0,T) \times (0,\pi)), \quad v \in L_2(\Omega; L_2((0,T); H^{-1})),$$

$$(u(t,\cdot),f) = \int_0^t (v(t,\cdot),f)(s)ds,$$

$$(v(t,\cdot),f) = \int_0^t \left(a^2(u(t,\cdot),f'') - 2b(v(t,\cdot),f) \right) ds + W_f(t)$$

The equation: Existence of solution

$$u_{tt} = a^2 u_{xx} + bu_t + \dot{W}(t, x), \ 0 < t < T, \ 0 < x < \pi.$$

Fundamental solution: $\varphi_k''(t) - b\varphi_k'(t) + k^2a^2\varphi_k(t) = 0$,

$$\varphi_k(0) = 0, \ \varphi'_k(0) = 1.$$

Fourier coefficients:

$$u_k(t) = \int_0^t \varphi_k(t-s)dw_k(s), \quad v_k(t) = \int_0^t \varphi'_k(t-s)dw_k(s).$$

Theorem.

$$u(t,x) = \sqrt{\frac{2}{\pi}} \sum_{k \ge 1} u_k(t) \sin(kx), \quad v(t,x) = \sqrt{\frac{2}{\pi}} \sum_{k \ge 1} v_k(t) \sin(kx),$$

$$u \in L_2(\Omega; L_2((0,T); H^{\gamma})); v \in L_2(\Omega; L_2((0,T); H^{\gamma-1})), \gamma < 1/2.$$

Note: If
$$4a^2k^2>b^2$$
 and $\ell_k=\sqrt{4a^2k^2-b^2}$, then
$$\varphi_k(t)=\frac{2}{\ell_k}\exp(bt/2)\sin(\ell_kt/2).$$

MLE, Part I

 $u_{tt} = \theta_1 u_{xx} + \theta_2 u_t + \dot{W}(t, x), \ 0 < t < T, \ 0 < x < \pi, \ \theta_1 > 0, \ \theta_2 \in \mathbb{R}.$

Observations: $(u_k(t), u'_k(t)), 0 < t < T, k = 1, ..., N.$

Notation: $v_k(t) = u'_k(t)$.

To get an MLE:

$$dv_k(t) = \left(-k^2\theta_1 \int_0^t v_k(s)ds + \theta_2 v_k(t)\right)dt + dw_k(t).$$

The likelihood ratio:

$$\frac{d\mathbf{P}^{v,N}}{d\mathbf{P}^{w,N}}(v_{1,...,N}) = \exp\left(\sum_{k=1}^{N} \int_{0}^{T} \left(-\theta_{1}k^{2}u_{k}(t) + \theta_{2}v_{k}(t)\right)dv_{k}(t) - \frac{1}{2} \sum_{k=1}^{N} \int_{0}^{T} \left(-\theta_{1}k^{2}u_{k}(t) + \theta_{2}v_{k}(t)\right)^{2}dt\right);$$

MLE, Part II

Explicit formulas

$$\widehat{\theta}_{1,N} = \frac{B_{1,N}J_{2,N} + B_{2,N}J_{12,N}}{J_{1,N}J_{2,N} - J_{12,N}^2}, \quad \widehat{\theta}_{2,N} = \frac{B_{1,N}J_{12,N} + B_{2,N}J_{1,N}}{J_{1,N}J_{2,N} - J_{12,N}^2}.$$

where

$$J_{1,N} = \sum_{k=1}^{N} k^4 \int_0^T u_k^2(t) dt, \quad J_{2,N} = \sum_{k=1}^{N} \int_0^T v_k^2(t) dt,$$

$$J_{12,N} = \sum_{k=1}^{N} k^2 \int_0^T u_k(t) v_k(t) dt;$$

$$B_{1,N} = -\sum_{k=1}^{N} k^2 \int_0^T u_k(t) dv_k(t), \ B_{2,N} = \sum_{k=1}^{N} \int_0^T v_k(t) dv_k(t).$$

Some pictures

MLE, Part III

Theorem. We have

$$\lim_{N \to \infty} \widehat{\theta}_{1,N} = \theta_1, \quad \lim_{N \to \infty} \widehat{\theta}_{2,N} = \theta_2$$

with probability one and

$$\lim_{N \to \infty} N^{3/2}(\widehat{\theta}_{1,N} - \theta_1) = \mathfrak{N}\left(0, \frac{3\theta_1}{T^2 M(\theta_2 T)}\right),$$

$$\lim_{N \to \infty} N^{1/2}(\widehat{\theta}_{2,N} - \theta_2) = \mathfrak{N}\left(0, \frac{1}{T^2 M(\theta_2 T)}\right)$$

in distribution, where

$$M(x) = \begin{cases} \frac{e^x - x - 1}{2x^2}, & \text{if } x \neq 0; \\ \frac{1}{4}, & \text{if } x = 0. \end{cases}$$

About the proof

$$D_N = \frac{J_{12,N}^2}{J_{1,N}J_{2,N}}, \ \xi_{1,N} = \sum_{k=1}^N k^2 \int_0^T u_k(t)dw_k(t),$$

$$\xi_{2,N} = \sum_{k=1}^{N} \int_{0}^{T} v_k(t) dw_k(t)$$

$$\widehat{\theta}_{1,N} = \theta_1 + \frac{1}{1 - D_N} \left(\frac{\xi_{1,N}}{J_{1,N}} + \xi_{2,N} \frac{J_{12,N}}{J_{1,N}J_{2,N}} \right),$$

$$\widehat{\theta}_{2,N} = \theta_2 + \frac{1}{1 - D_N} \left(\frac{\xi_{2,N}}{J_{2,N}} + \xi_{1,N} \frac{J_{12,N}}{J_{1,N}J_{2,N}} \right).$$

Strong Law of Large Numbers:

$$D_N \to 0, \ J_{1,N} \simeq N^3, \ J_{2,N} \simeq N.$$

CLT:
$$\frac{\xi_{i,N}}{\sqrt{J_{1,N}}} \sim \mathfrak{N}(0,1), i = 1, 2.$$

A generalization

$$\ddot{u} + (\mathcal{A}_0 + \theta_1 \mathcal{A}_1)u = (\mathcal{B}_0 + \theta_2 \mathcal{B}_1)\dot{u} + \dot{W}$$

Evolution operator: $A = A_0 + \theta_1 A_1$;

Dissipation operator: $\mathcal{B} = \mathcal{B}_0 + \theta_2 \mathcal{B}_1$; " $\mathcal{B} > 0$ " is amplification.

Diagonalizable: common system of eigenfunctions, ensures

$$\ddot{u}_k = (\varrho_k + \theta_1 \tau_k) u_k + (\rho_k + \theta_2 \nu_k) \dot{u}_k + \dot{w}_k.$$

Hyperbolic: "A > 0", "not too much amplification" **Examples**

$$u_{tt} = \theta_1 \Delta u + \theta_2 u_t + \dot{W}$$
 (just considered.)
 $u_{tt} = \theta_1 \Delta u + \theta_2 \Delta u_t + \dot{W}$ (Why not if $\theta_2 > 0$?)
 $u_{tt} = \theta_1 \Delta u - \theta_2 \Delta^2 u_t + \dot{W}$ (Even more so if $\theta_2 > 0$.)

Second-Order ODE

Fundamental solution:

$$\ddot{y}(t) - 2b\dot{y}(t) + a^2y(t) = 0, \quad y(0) = 0, \quad \dot{y}(0) = 1.$$

$$y(t) = \begin{cases} \frac{\sin(\ell t)}{\ell} e^{bt}, & a^2 > b^2; \\ te^{bt}, & a^2 = b^2; \\ \frac{\sinh(\ell t)}{\ell} e^{bt}, & a^2 < b^2; \end{cases}$$

SODE:
$$\ddot{X}(t) - 2b\dot{X} + a^2X(t) = \dot{w}(t)$$
, $X(0) = \dot{X}(0) = 0$. $X(t) = \int_0^t y(t-s)dw(s)$, $\mathbb{E}|X(t)|^2 = \int_0^t |y(s)|^2 ds$, $\mathbb{E}|\dot{X}(t)|^2 = \int_0^t |\dot{y}(s)|^2 ds$.

What is (Stochastic) Hyperbolic?

$$\ddot{u}_k + (\varrho_k + \theta_1 \tau_k) u_k = (\rho_k + \theta_2 \nu_k) \dot{u}_k + \dot{w}_k, \ 0 < t < T.$$

$$W(t) = \sum_{k>1} w_k(t) h_k, h_k \text{ CONS in } H$$

$$W(t) \in X$$
 if $H \subset X$; Hilbert-Schmidt embedding: $\sum_{k} \|h_k\|_X^2 < \infty$.

Hyperbolic Diagonalizable SPDE:

- $\varrho_k + \theta_1 \tau_k \nearrow +\infty ("A > 0")$
- $u(t) \in X$, $t \in [0,T]$ ("well-posed")

Theorem (a) If $T(\rho_k + \theta_2 \nu_k) \leq \ln(\varrho_k + \theta_1 \tau_k) + C$ then $\sup_{k,T} \mathbb{E}|u_k(t)|^2 < \infty$, and so $u(t) \in L_2(\Omega;X)$ for all $t \in [0,T]$.

(b) If
$$(\rho_k + \theta_2 \nu_k) \leq C$$
 (bounded amplification), then $u(t), \dot{u}(t) \in L_2(\Omega; X)$ for all $t \in [0, T]$.

MLE

$$\ddot{u}_k + (\varrho_k + \theta_1 \tau_k) u_k = (\rho_k + \theta_2 \nu_k) \dot{u}_k + \dot{w}_k, \ 0 < t < T.$$

Expressions for $\theta_{1,N}, \ \theta_{2,N}$: really do not want to see them...

Important terms:

$$\Psi_{1,N} = \sum_{k=1}^{N} \mathbb{E} \int_{0}^{T} \tau_{k}^{2} u_{k}^{2}(t) dt, \ \Psi_{2,N} = \sum_{k=1}^{N} \mathbb{E} \int_{0}^{T} \nu_{k}^{2} v_{k}^{2}(t) dt.$$

The reason: $\widehat{\theta}_{1,N} - \theta_1 pprox \frac{\sum_{k=1}^N \zeta_k}{\Psi_{1,N}}$, ζ_k are independent, zero-mean,

$$\mathbb{E}\zeta_k^2 = \mathbb{E}\int_0^T \tau_k^2 u_k^2(t) dt$$
. Same for $\widehat{\theta}_{2,N} - \theta_2$.

Goals

- Consistency: $\lim_{N\to\infty} \widehat{\theta}_{i,N} = \theta_i, i = 1, 2.$
- Asymptotic normality: $\lim_{N\to\infty} \sqrt{\Psi_{i,N}} \left(\widehat{\theta}_{i,N} \theta_i \right) = \mathfrak{N}(0,1).$

A reasonable guess: Need $\lim_{N\to\infty} \Psi_{i,N} = +\infty$.

Sometimes, that is all we need, sometimes not...

How to study the MLE?

The key relations: $\lambda_k(\theta) = \varrho_k + \theta \tau_k$, $\mu_k(\theta) = \rho_k + \theta \nu_k$,

$$\mathbb{E} \int_0^T u_k^2(t)dt \sim \frac{T^2 M \left(T \mu_k(\theta_2)\right)}{\lambda_k(\theta_1)}, \quad \text{Var} \int_0^T u_k^2(t)dt \sim \frac{T^4 V \left(T \mu_k(\theta_2)\right)}{\lambda_k^2(\theta_1)},$$

$$\mathbb{E} \int_0^T v_k^2(t)dt \sim T^2 M(T\mu_k(\theta_2)), \text{ Var } \int_0^T v_k^2(t)dt \sim T^4 V(T\mu_k(\theta_2)),$$

where

$$M(x) = \begin{cases} \frac{e^x - x - 1}{2x^2}, & \text{if } x \neq 0, \\ \frac{1}{4}, & \text{if } x = 0; \end{cases}$$

$$V(x) = \begin{cases} \frac{e^{2x} + 4e^x - 4xe^x - 2x - 5}{4x^4}, & \text{if } x \neq 0, \\ \frac{1}{24}, & \text{if } x = 0. \end{cases}$$

Algebraic case

$$\ddot{u} + (\mathcal{A}_0 + \theta_1 \mathcal{A}_1)u + (\mathcal{B}_0 + \theta_2 \mathcal{B}_1)\dot{u} + \dot{W}$$

For "real-life" (positive-definite elliptic self-adjoint) operators

(eigenvalue)_k
$$\approx k^{\left(\frac{\text{order of the operator}}{\text{dimension of the space}}\right)}$$
 (order can be fractional)

Example. If Δ is the Laplace operator in a smooth bounded domain $G \in \mathbb{R}^d$ with zero boundary conditions, and $\gamma \in \mathbb{R}$, then

$$k$$
-th eigenvalue of $(1 - \Delta)^{\gamma/2} \approx k^{\gamma/d}$.

Theorem. •
$$\lim_{N\to\infty} \widehat{\theta}_{1,N} = \theta_1 \ (\mathbb{P} - a.s) \Leftrightarrow$$
 $\operatorname{order}(\mathcal{A}_1) \geq \frac{1}{2} \Big(\operatorname{order}(\mathcal{A}_0 + \theta_1 \mathcal{A}_1) + \operatorname{order}(\mathcal{B}_0 + \theta_2 \mathcal{B}_1) - d \Big);$

- $\lim_{N\to\infty} \widehat{\theta}_{2,N} = \theta_2 \ (\mathbb{P} a.s) \Leftrightarrow \operatorname{order}(\mathcal{B})_1 \ge \frac{1}{2} \left(\operatorname{order}(\mathcal{B}_0 + \theta_2 \mathcal{B}_1) d \right).$

Many parameters

The results extend to a more general estimation problem

$$\ddot{u} + \sum_{i=0}^n \theta_{1i} \mathcal{A}_i u = \sum_{j=0}^m \theta_{2j} \mathcal{B}_j u_t + \dot{W}$$
, as long as all the operators

 A_i, B_j have a common system of eigenfunctions:

• the coefficient θ_{1p} can be consistently estimated if and only if

$$\operatorname{order}(\mathcal{A}_p) \ge \frac{1}{2} \left(\operatorname{order}\left(\sum_{i=0}^n \theta_{1i} \mathcal{A}_i \right) + \operatorname{order}\left(\sum_{j=0}^m \theta_{2j} \mathcal{B}_j \right) - d \right).$$

ullet the coefficient $heta_{2q}$ can be consistently estimated if and only if

$$\operatorname{order}(\mathcal{B}_q) \ge \frac{1}{2} \left(\operatorname{order} \left(\sum_{j=0}^m \theta_{2j} \mathcal{B}_j \right) - d \right).$$

Parabolic case: Huebner (1997).

Examples

1.
$$u_{tt} = \theta_1 \Delta u + \theta_2 \Delta u_t + \dot{W} \text{ in } G \subset \mathbb{R}^2$$

 $\lambda_k = \theta_1 \tau_k \asymp k, \ \mu_k = \theta_2 \nu_k \asymp k;$

$$N^{1/2}(\widehat{\theta}_{1,N} - \theta_1) \sim \mathfrak{N}(0, \sigma_1^2), \ N(\widehat{\theta}_{2,N} - \theta_2) \sim \mathfrak{N}(0, \sigma_2^2).$$

Note: Δu is more regular that Δu_t .

2.
$$u_{tt} + \Delta^2 u = \theta_1 \Delta u + \Delta u_t + \theta_2 u_t + \dot{W}$$
 in $G \subset \mathbb{R}^2$ $\lambda_k \asymp k^2, \ \tau_k \asymp k, \ \mu_k \asymp k, \ \nu_k = 1;$

$$(\ln N)^{1/2}(\widehat{\theta}_{1,N} - \theta_1) \sim \mathfrak{N}(0, \sigma_1^2), \ (\ln N)^{1/2}(\widehat{\theta}_{2,N} - \theta_2) \sim \mathfrak{N}(0, \sigma_2^2).$$

Note 1: Δu is as regular as u_t .

Note 2: In \mathbb{R}^1 , no consistency for either $\widehat{\theta}_{1,N}$ or $\widehat{\theta}_{2,N}$.

Non-algebraic case

Example. $\tau_k = e^k$, $\nu_k = \ln \ln (k+3)$.

Why?

- Why not?
- Multi-channel observations (Korostelev and Yin (2006))

What do we gain? Generality

What do we lose? Strong consistency, simplicity.

Algebraic vs General

$$b_N \nearrow +\infty \Longrightarrow \lim_{N\to\infty} \frac{1}{b_N} \sum_{k=1}^N (\xi_k - \mathbb{E}\xi_k) = 0$$
 (?)

Weak Law of Large Numbers: Need

$$\lim_{N\to\infty} \frac{1}{b_N^2} \sum_{k=1}^N \operatorname{Var} \xi_k = 0 \text{ (to apply Chebyshev's Inequality)}$$

Strong Law of Large Numbers: Need

$$\sum_{k\geq 1} \frac{\operatorname{Var} \xi_k}{b_k^2} < \infty \text{ (to apply Kolmogorov's SLLN)}$$

Slowly increasing sequence: $a_k > 0$, $\sum_{k>1} a_k = +\infty$ AND

Either
$$\frac{\sum_{k=1}^{N} a_k^2}{\left(\sum_{k=1}^{N} a_k\right)^2} \to 0 \text{ or } \sum_{n\geq 1} \frac{a_n^2}{\left(\sum_{k=1}^{n} a_k\right)^2} < \infty.$$

- Not an issue in algebraic case
- Could be worse (Adler, Rosansky (1991))

The General Result

$$\ddot{u}_k + (\varrho_k + \theta_1 \tau_k) u_k = (\rho_k + \theta_2 \nu_k) \dot{u}_k + \dot{w}_k, \ 0 < t < T.$$

Theorem

• $\left\{ \frac{\tau_k^2 M\left(\mu_k(\theta_2)\right)}{\lambda_k(\theta_1)}, \ k \ge 1 \right\}$ is slowly increasing \Longrightarrow consistency (in

probability) and asymptotic normality of $\widehat{\theta}_{1,N}$;

• $\{\nu_k^2 M(\mu_k(\theta_2)), k \ge 1\}$ is slowly increasing \Longrightarrow consistency (in probability) and asymptotic normality of $\widehat{\theta}_{2,N}$.

A useful relation:
$$M(x) \sim \begin{cases} (2|x|)^{-1}, & x \to -\infty \\ (2x)^{-2} e^x, & x \to +\infty. \end{cases}$$

An example: $\tau_k = e^k, \ \lambda_k = \theta_1 e^k + e^{2k}, \ \nu_k = \ln \ln (k+3), \ \mu_k = \theta_2 \ln \ln (k+3).$

Conclusion

Equations that are second-order time are more than twice the fun of the first-order equations!

(And even the first-order fun is not over yet...)