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Stochastic Differential Equation(SDE)

X i , C 1 vector fields on a state space Rn (or on a manifold).

dxt =
m∑

i=1

Xi (xt)dB i
t + X0(xt)dt. (1)

If there is a global solution Ft(x , ω), SDE is complete, also called
non-explosive, conservative.

If (t, x) ∈ [0,∞)× Rn 7→ Ft(x , ω) is continuous a.s., SDE is strongly
complete, also called strict conservative=smooth flow exists.

Flow of diffeomorphism: if in addition to continuous flow,
x 7→ Ft(x , ω) is a diffeomorphism a.s. Flow of diffeomorphism exists if
the SDE and the adjoint SDE are strongly complete.
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Why strong completeness?

1 In numerical computation, the initial point is often only an
approximate value.

2 It is required when an SDE is studied as a dynamical system.

3 If strong complete, we have a homotopy of maps. The solution flow
could be used to feel the shape of the underlying space.
e.g. If the solution sends a C 1 curve to a C 1 curve and that it shrinks
the curve, Moment stable, ?technicalities, we have π1(M) = {0}.
Similarly one can show there is no non-trivial harmonic p form if in
addition that the SDE is p moment stable.
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Completenss = Strong Completeness

dxt =
m∑

i=1

Xi (xt) ◦ dB i
t + X0(xt)dt

1 ODE.

2 1-dimensional SDE.

3 1 vector field X , If φ(t, x) = X (φt(x)),
φ(Bt(ω), x) is solution to SDE.

4 Commuting vector field: [Xi ,Xj ] = 0, φ̇j(t, x) = Xj(φ
j(t, x))

φ̃1(t, x) = φ1(B1
t , x), φ̃j+1(t, x) = φ(B j

t , φ̃j(t, x)),

=⇒ φ̃(n)(t, x) is solution to SDE.
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Standard Results:

Directional Linear growth at ∞ =⇒ complete.

Lipschitz continuous (Bounded derivatives), =⇒ strongly complete.
Compute E|Ft(x)− Ft(y)|p and use Kolmogrov’s continuity theorem
(a trick working only in linear spaces).

Compact state space, C 1/C 2 vector fields, strong completeness. For
non-compact manifold, see Li95.
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A Basic tool : Partial Flow

∃ a partial smooth flow Ft(x , ω), t < ζ(x , ω) which is a maximal solution
such that

Mt(ω) = {x : ζ(x , ω) > t} is an open set.

(s, x) 7→ Fs(x , ω) is continuous on Mt(ω).

For any compact set K , set

ζK = inf
x∈K

ζ(x , ω).

On {ζK <∞}
lim

t→ζK
sup
x∈K

d(Ft(x , ω),O) =∞.

(Kunia, Elworthy, Carverhill).
This works for C 1 vector fields for Itô SDE.
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The Characteristics of the two concepts

Conservation of an SDE says that the measures µx on the path space
are probability measures. It is a property of the infinitesimal generator
A of the S.D.E., c.f. Varadhan-Stroock’s martingale formulation.

Strong completeness is related to the Hörmander form decomposition
of the second order differential operator A:

A =
1

2

m∑
i=1

LXi
LXi

+ LX0 .
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An example

A complete, but not strongly complete SDE.

on Rn − {0} (Elworthy 78), dxt = dBt .

The equation dxt = dBt on Rn − {0} is conservative.

Bt(ω) + x is a maximal solution. P(x + Bt(ω) = 0 for some x ) = 1.

Planer Brownian motion has capacity 0 on co-dimension 2 sets, hence
the SDE is strongly n − 2 complete. [Li95].
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Two SDEs with the same generator, Carverhill

Generator A = r4∆, Lyapunov function log r . Hence conservative.

Strongly complete.

dxt =
xt

rt
dB1

t −
yt

rt
dB2

t

dyt =
yt

rt
dB1

t +
xt

rt
dB2

t

It is dzt = zt
|zt |dBt on C .

Not strongly complete

dxt = (y2
t − x2

t )dB1
t + 2xtytdB2

t

dyt = −2xtytdB1
t + (y2

t − x2
t )dB2

t .
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The derivative flow

Consider the S.D.E. in Stratnovitch form and its linearization:

dvt =
m∑

i=1

DX i (xt)(vt) ◦ dBt + DX0(xt)(vt)dt.

The solution from v0 is vt = Tx0Ft(v0).
Moments: E|TFt |pχt<τ . See [Li95-2] for estimates.

Assume that Ft(x0) does not explode, then the SDE is strongly
complete, [Li92, 95], if

sup
x∈K

E

(
sup
s≤t
|TxFs |nχs<ξ

)
<∞.
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A criterion for SDEs on Rn

dxt =
m∑

i=1

Xi (xt)dB i
t + X0(xt)dt.

We apply the theorem to the above SDE in Rn. The following is a
reformulation of that given in [Li92], [Li95].

Let g be a Lyapunov function. Then the SDE is strongly complete if it is
complete from one point, if the following holds,

2
〈DX0(x)(v), v〉

|v |2
+

m∑
i=1

|DXi (x)(v)|2

|v |2
+ (n − 2)

m∑
i=1

〈DXi (x)(v), v〉2

|v |4

≤ ln
( 1

6n2
g(x)

)
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A little geometry

For elliptic SDE: suppose that m = n and there is no drift, and that the
linear connection associated to the SDE is the Levi-Civita connection then
the SDE is strongly complete if it is complete. The linear connection is as
defined in [Elworthy-LeJan-Li 97, 99.



Objectives: Li+ Scheutzow

To gain some understanding why solutions of SDE lose regularity.
Does it depend on the smoothness of the vector fields or on the
growth of vector fields at infinity?

Construct a 2-dimensional SDE with coefficients
smooth, bounded, locally Lipschitz continuous
for which strong completeness does not hold.
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Example[Li+ Scheutzow]

An elliptic SDE run by 1 Brownian motion:

dX (t) = σ(X (t),Y (t))dW (t)

dY (t) = 0

We seek a bounded C∞ function σ : R2 → R+ and such that the
SDE is not strongly complete.
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Where should smoothness fail?

dX (t) = σ(X (t),Y (t))dW (t)

dY (t) = 0

A 2-dimensional SDE cannot be strongly 1-complete. Smoothness
should fail on a 1-dimensional subset.

Subset of the form {x} × [a, b] as initial data set will reduce the
system to 1-dimension.

Look at a subset of the form [0, 1]× {y} as initial data set.
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Exit Times and Completeness

Let U1 ⊂ U2 ⊂ U3 ⊂ be a sequence of relatively compact open sets.
Let τn be the first exit time of the solution, starting from a point in
Un−1, from Un. If there exists

∑
δn =∞,

P(τn ≤ t) ≤ ct2, t ≤ δn

=⇒ SDE is complete. [Li89], [Li94]

Sharp.

E.g. A Brownian motion on a Riemannian manifold with
K (s) = − infBs Ricci(x) ∧ 0,

∫∞
1

1√
K(s)

ds =∞ has the above

property and so does SDE on Rn with linear growth.
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Exit Times and Strong Completeness

We work on the smooth partial flow Ft(x , ω), t < ζ(x), ζK .

Similar stopping time estimates as for τn give strong completeness.

However the image set FτK (K , ω) can be very big. It is difficult to get
sharp estimates.
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Basic Observations

P(τn ≤ t) ≤ ct2 implies completeness.

If ζ ≤
∑∞

n=1 Tn, Tn finite stopping times, and {an}, {bn} be two
summable sequences such that

P(Tn > an) < bn

then ζ <∞ almost surely. This can be used to show explosion or the
failing of strong completeness.

However this does not work in our case as we do not expect almost
surely that ξK <∞.
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Intuitive Idea

The following illustrates why strong completenss could fail while
completeness holds.

(B1
t ,B

2
t , . . . ), Independent Brownian motions on Rn.

P(sup
s≤a
|B i

s | ≥ 1)→ Ca2, for a small .

→ BM is complete.

P( sup
1≤i≤n

sup
s≤a
|B i

s | ≤ 1)→ 0, as n→∞.

Problem: The solutions Ft(x1),Ft(x2), . . . , are far from being
independent.
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Problem: The solutions Ft(x1),Ft(x2), . . . , are far from being
independent.
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A Key Lemma

A SDE on R1

dX ε(t) = H(
1

ε
X ε(t))dW (t)

X ε(0) = 0.

H : R→ (0,∞), continuous with period 1.

εn+1/εn → 0 as n→∞
(X εn ,X εn+1 , ...) converges weakly to (αB0 + βB1, αB0 + βB2, ...) as
n→∞.
(B0,B1,B2, . . . ) are independent standard BM’s.
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Example

dX (t) = σ(X (t),Y (t))dW (t), x(0) fixed

dY (t) = 0, y(0) ∈ [0, 1]

Define σ(x , y) = H(x) for x , y ∈ [0, 1], H smooth period 1, bounded
away from 0.
Define σ(x , y) = H( 1

ε(x ,y)x).

R = (−∞, 0) ∪ [0, 1] ∪ · · · ∪ [n, n + 1] ∪ . . . .
At level n, partition [0, 1] into Mn equal pieces:

[0, 1] = ∆n
1 ∪ · · · ∪∆n

Mn

If (x , y) ∈ [n, n + 1]×∆n
i , define

1

ε(x , y)
= an

i , constant to be determined.

Extend and smooth it up.



Example

dX (t) = σ(X (t),Y (t))dW (t), x(0) fixed

dY (t) = 0, y(0) ∈ [0, 1]

Define σ(x , y) = H(x) for x , y ∈ [0, 1], H smooth period 1, bounded
away from 0.
Define σ(x , y) = H( 1

ε(x ,y)x).

R = (−∞, 0) ∪ [0, 1] ∪ · · · ∪ [n, n + 1] ∪ . . . .
At level n, partition [0, 1] into Mn equal pieces:

[0, 1] = ∆n
1 ∪ · · · ∪∆n

Mn

If (x , y) ∈ [n, n + 1]×∆n
i , define

1

ε(x , y)
= an

i , constant to be determined.

Extend and smooth it up.



Example

dX (t) = σ(X (t),Y (t))dW (t), x(0) fixed

dY (t) = 0, y(0) ∈ [0, 1]

Define σ(x , y) = H(x) for x , y ∈ [0, 1], H smooth period 1, bounded
away from 0.
Define σ(x , y) = H( 1

ε(x ,y)x).

R = (−∞, 0) ∪ [0, 1] ∪ · · · ∪ [n, n + 1] ∪ . . . .
At level n, partition [0, 1] into Mn equal pieces:

[0, 1] = ∆n
1 ∪ · · · ∪∆n

Mn

If (x , y) ∈ [n, n + 1]×∆n
i , define

1

ε(x , y)
= an

i , constant to be determined.

Extend and smooth it up.



Example

dX (t) = σ(X (t),Y (t))dW (t), x(0) fixed

dY (t) = 0, y(0) ∈ [0, 1]

Define σ(x , y) = H(x) for x , y ∈ [0, 1], H smooth period 1, bounded
away from 0.
Define σ(x , y) = H( 1

ε(x ,y)x).

R = (−∞, 0) ∪ [0, 1] ∪ · · · ∪ [n, n + 1] ∪ . . . .
At level n, partition [0, 1] into Mn equal pieces:

[0, 1] = ∆n
1 ∪ · · · ∪∆n

Mn

If (x , y) ∈ [n, n + 1]×∆n
i , define

1

ε(x , y)
= an

i , constant to be determined.

Extend and smooth it up.



Example

dX (t) = σ(X (t),Y (t))dW (t), x(0) fixed

dY (t) = 0, y(0) ∈ [0, 1]

Define σ(x , y) = H(x) for x , y ∈ [0, 1], H smooth period 1, bounded
away from 0.
Define σ(x , y) = H( 1

ε(x ,y)x).

R = (−∞, 0) ∪ [0, 1] ∪ · · · ∪ [n, n + 1] ∪ . . . .
At level n, partition [0, 1] into Mn equal pieces:

[0, 1] = ∆n
1 ∪ · · · ∪∆n

Mn

If (x , y) ∈ [n, n + 1]×∆n
i , define

1

ε(x , y)
= an

i , constant to be determined.

Extend and smooth it up.



Example

dX (t) = σ(X (t),Y (t))dW (t), x(0) fixed

dY (t) = 0, y(0) ∈ [0, 1]

Define σ(x , y) = H(x) for x , y ∈ [0, 1], H smooth period 1, bounded
away from 0.
Define σ(x , y) = H( 1

ε(x ,y)x).

R = (−∞, 0) ∪ [0, 1] ∪ · · · ∪ [n, n + 1] ∪ . . . .
At level n, partition [0, 1] into Mn equal pieces:

[0, 1] = ∆n
1 ∪ · · · ∪∆n

Mn

If (x , y) ∈ [n, n + 1]×∆n
i , define

1

ε(x , y)
= an

i , constant to be determined.

Extend and smooth it up.



Example

dX (t) = σ(X (t),Y (t))dW (t), x(0) fixed

dY (t) = 0, y(0) ∈ [0, 1]

Define σ(x , y) = H(x) for x , y ∈ [0, 1], H smooth period 1, bounded
away from 0.
Define σ(x , y) = H( 1

ε(x ,y)x).

R = (−∞, 0) ∪ [0, 1] ∪ · · · ∪ [n, n + 1] ∪ . . . .
At level n, partition [0, 1] into Mn equal pieces:

[0, 1] = ∆n
1 ∪ · · · ∪∆n

Mn

If (x , y) ∈ [n, n + 1]×∆n
i , define

1

ε(x , y)
= an

i , constant to be determined.

Extend and smooth it up.



Key Point

Let Kn,i = [n, n + 1]×∆n,i . Tn,i =first time that {φ(x , y), (x , y) ∈ Kn,i}
is greater than n + 1. We wish to prove something like following

Lemma:
∑

n tn <∞,
∑

n βn <∞, Then ∃Mn, an s.t.

P

(
inf

1≤i≤Mn

Tn.i ≤ tn)

)
≤ βn.

That is

P

(
sup

i
sup

(x ,y)∈Kn,i

sup
0≤s≤tn

φ(t, (x , y))} < n + 1

)
< Cβn.

�
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A Lemma

Lemma

For two convergent series
∑
βn and

∑
tn, ∃Nn s.t. if n > Nn,

P

(
sup

1≤j≤Nn

sup
0≤s≤tn

(B j
s + Ws) ≥ 1, inf

1≤j≤Nn

inf
0≤s≤tn

(B j
s + Ws) ≥ −δn

)
≥ 1−βn.

This can be show by large deviation result for a Brownian path deviate
from a Cameron-Martin path and an approximation of continuous path
from a Cameron-Martin path. The distribution of our diffusion converge to
that of the independent Brownian motions by an earlier lemma. The only
problem is that if the diffusion crosses backward the speed changes and we
no longer have control over the convergence speed.
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A control Strip

Choose δn > 0 where we smooth up ε(x , y).

Each diffusion at level n has a positive probability p0 of travelling δn
distance to the right.

The average time each martingale spent on the right half of the strip
is positive. By continuity there is a time slot where it spend time
there.

Show that at least Nn diffusions will be on the right half of the strip
at a given random time.
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An unanswered Question

How does adding a drift affect strong completeness? In particular,

What about adding an arbitrary drift to the previous example?
(Stratonovitch correction term gives a strongly complete SDE.)

Consider Itô SDE in Rn. Suppose that the diffusion coefficients are
globally Lipschitz and the drift term has linear growth. Is it strongly
complete?
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Consider Itô SDE in Rn. Suppose that the diffusion coefficients are
globally Lipschitz and the drift term has linear growth. Is it strongly
complete?



Trivial path space transformations preserve strong completeness:
orthogonal transform and translation by a Cameron-Martin vector.

If dxt = X (xt) ◦ dBt is strongly complete,
so is dxt = X (xt) ◦ dBt + X (xt)ḣtdt.
h=adapted Cameron-Martin on Wiener space C0(Rm). This is not
sufficient to transform a drift term. Girsanov does not do the trick.


