A Study of Stochastic Differential Equations

Xue-Mei Li

University of Warwick/Courant Institute
Joint work with M. Scheutzow

Stochastic Differential Equation(SDE)

X^{i}, C^{1} vector fields on a state space \mathbf{R}^{n} (or on a manifold).

$$
\begin{equation*}
d x_{t}=\sum_{i=1}^{m} X_{i}\left(x_{t}\right) d B_{t}^{i}+X_{0}\left(x_{t}\right) d t \tag{1}
\end{equation*}
$$

Stochastic Differential Equation(SDE)

X^{i}, C^{1} vector fields on a state space \mathbf{R}^{n} (or on a manifold).

$$
\begin{equation*}
d x_{t}=\sum_{i=1}^{m} X_{i}\left(x_{t}\right) d B_{t}^{i}+X_{0}\left(x_{t}\right) d t \tag{1}
\end{equation*}
$$

- If there is a global solution $F_{t}(x, \omega)$, SDE is complete, also called non-explosive, conservative.
- If $(t, x) \in[0, \infty) \times \mathbf{R}^{n} \mapsto F_{t}(x, \omega)$ is continuous a.s., SDE is strongly complete, also called strict conservative=smooth flow exists.
- Flow of diffeomorphism: if in addition to continuous flow, $x \mapsto F_{t}(x, \omega)$ is a diffeomorphism a.s. Flow of diffeomorphism exists if the SDE and the adjoint SDE are strongly complete.

Stochastic Differential Equation(SDE)

X^{i}, C^{1} vector fields on a state space \mathbf{R}^{n} (or on a manifold).

$$
\begin{equation*}
d x_{t}=\sum_{i=1}^{m} X_{i}\left(x_{t}\right) d B_{t}^{i}+X_{0}\left(x_{t}\right) d t \tag{1}
\end{equation*}
$$

- If there is a global solution $F_{t}(x, \omega)$, SDE is complete, also called non-explosive, conservative.
- If $(t, x) \in[0, \infty) \times \mathbf{R}^{n} \mapsto F_{t}(x, \omega)$ is continuous a.s., SDE is strongly complete, also called strict conservative=smooth flow exists.
- Flow of diffeomorphism: if in addition to continuous flow, $x \mapsto F_{t}(x, \omega)$ is a diffeomorphism a.s. Flow of diffeomorphism exists if the SDE and the adjoint SDE are strongly complete.

Stochastic Differential Equation(SDE)

X^{i}, C^{1} vector fields on a state space \mathbf{R}^{n} (or on a manifold).

$$
\begin{equation*}
d x_{t}=\sum_{i=1}^{m} X_{i}\left(x_{t}\right) d B_{t}^{i}+X_{0}\left(x_{t}\right) d t \tag{1}
\end{equation*}
$$

- If there is a global solution $F_{t}(x, \omega)$, SDE is complete, also called non-explosive, conservative.
- If $(t, x) \in[0, \infty) \times \mathbf{R}^{n} \mapsto F_{t}(x, \omega)$ is continuous a.s., SDE is strongly complete, also called strict conservative=smooth flow exists.
- Flow of diffeomorphism: if in addition to continuous flow, $x \mapsto F_{t}(x, \omega)$ is a diffeomorphism a.s. Flow of diffeomorphism exists if the SDE and the adjoint SDE are strongly complete.

Why strong completeness?

(1) In numerical computation, the initial point is often only an approximate value.
(2) It is required when an SDE is studied as a dynamical system.
(3) If strong complete, we have a homotopy of maps. The solution flow could be used to feel the shape of the underlying space. e.g. If the solution sends a C^{1} curve to a C^{1} curve and that it shrinks the curve, Moment stable, ?technicalities, we have $\pi_{1}(M)=\{0\}$ Similarly one can show there is no non-trivial harmonic p form if in addition that the SDE is p moment stable.

Why strong completeness?

(1) In numerical computation, the initial point is often only an approximate value.
(2) It is required when an SDE is studied as a dynamical system.
© If strong complete, we have a homotopy of maps. The solution flow could be used to feel the shape of the underlying space. e.g. If the solution sends a C^{1} curve to a C^{1} curve and that it shrinks the curve, Moment stable, ?technicalities, we have $\pi_{1}(M)=\{0\}$ Similarly one can show there is no non-trivial harmonic p form if in addition that the SDE is p moment stable.

Why strong completeness?

(1) In numerical computation, the initial point is often only an approximate value.
(2) It is required when an SDE is studied as a dynamical system.
(3) If strong complete, we have a homotopy of maps. The solution flow could be used to feel the shape of the underlying space. e.g. If the solution sends a C^{1} curve to a C^{1} curve and that it shrinks the curve, Moment stable, ?technicalities, we have $\pi_{1}(M)=\{0\}$. Similarly one can show there is no non-trivial harmonic p form if in addition that the SDE is p moment stable.

Completenss $=$ Strong Completeness

$$
d x_{t}=\sum_{i=1}^{m} X_{i}\left(x_{t}\right) \circ d B_{t}^{i}+X_{0}\left(x_{t}\right) d t
$$

(1) ODE.
((1-dimensional SDE.
(3) 1 vector field X, If $\phi(t, x)=X\left(\phi_{t}(x)\right)$, $\phi\left(B_{t}(\omega), x\right)$ is solution to SDE.

- Commuting vector field: $\left[X_{i}, X_{j}\right]=0, \dot{\phi}^{j}(t, x)=X_{j}\left(\phi^{j}(t, x)\right)$

$$
\tilde{\phi}_{1}(t, x)=\phi^{1}\left(B_{t}^{1}, x\right), \quad \tilde{\phi}_{j+1}(t, x)=\phi\left(B_{t}^{j}, \tilde{\phi}_{j}(t, x)\right),
$$

$\Longrightarrow \tilde{\phi}^{(n)}(t, x)$ is solution to SDE.

Completenss $=$ Strong Completeness

$$
d x_{t}=\sum_{i=1}^{m} X_{i}\left(x_{t}\right) \circ d B_{t}^{i}+X_{0}\left(x_{t}\right) d t
$$

(1) ODE.
(2) 1-dimensional SDE.
© 1 vector field X, If $\phi(t, x)=X\left(\phi_{t}(x)\right)$, $\phi\left(B_{t}(\omega), x\right)$ is solution to SDE.
(-) Commuting vector field: $\left[X_{i}, X_{j}\right]=0, \phi^{j}(t, x)=X_{j}\left(\phi^{j}(t, x)\right)$

$$
\tilde{\phi}_{1}(t, x)=\phi^{1}\left(B_{t}^{1}, x\right), \quad \tilde{\phi}_{j+1}(t, x)=\phi\left(B_{t}^{j}, \tilde{\phi}_{j}(t, x)\right)
$$

$\Longrightarrow \tilde{\phi}^{(n)}(t, x)$ is solution to SDE.

Completenss $=$ Strong Completeness

$$
d x_{t}=\sum_{i=1}^{m} X_{i}\left(x_{t}\right) \circ d B_{t}^{i}+X_{0}\left(x_{t}\right) d t
$$

(1) ODE.
(2) 1-dimensional SDE.
(3) 1 vector field X, If $\phi(t, x)=X\left(\phi_{t}(x)\right)$, $\phi\left(B_{t}(\omega), x\right)$ is solution to SDE.

- Commuting vector field: $\left[X_{i}, X_{j}\right]=0, \dot{\phi}^{j}(t, x)=X_{j}\left(\phi^{j}(t, x)\right)$

$$
\tilde{\phi}_{1}(t, x)=\phi^{1}\left(B_{t}^{1}, x\right),
$$

$\Longrightarrow \tilde{\phi}^{(n)}(t, x)$ is solution to SDE.

Completenss $=$ Strong Completeness

$$
d x_{t}=\sum_{i=1}^{m} X_{i}\left(x_{t}\right) \circ d B_{t}^{i}+X_{0}\left(x_{t}\right) d t
$$

(1) ODE.
(2) 1-dimensional SDE.
(3) 1 vector field X, If $\phi(t, x)=X\left(\phi_{t}(x)\right)$, $\phi\left(B_{t}(\omega), x\right)$ is solution to SDE.
(1) Commuting vector field: $\left[X_{i}, X_{j}\right]=0, \dot{\phi}^{j}(t, x)=X_{j}\left(\phi^{j}(t, x)\right)$

$$
\tilde{\phi}_{1}(t, x)=\phi^{1}\left(B_{t}^{1}, x\right), \quad \tilde{\phi}_{j+1}(t, x)=\phi\left(B_{t}^{j}, \tilde{\phi}_{j}(t, x)\right)
$$

$\Longrightarrow \tilde{\phi}^{(n)}(t, x)$ is solution to SDE.

Standard Results:

- Directional Linear growth at $\infty \Longrightarrow$ complete.
- Lipschitz continuous (Bounded derivatives), \Longrightarrow strongly complete. Compute $\mathbf{E}\left|F_{t}(x)-F_{t}(y)\right|^{p}$ and use Kolmogrov's continuity theorem (a trick working only in linear spaces).
- Compact state space, C^{1} / C^{2} vector fields, strong completeness. For non-compact manifold, see Li95.

Standard Results:

- Directional Linear growth at $\infty \Longrightarrow$ complete.
- Lipschitz continuous (Bounded derivatives), \Longrightarrow strongly complete. Compute $\mathbf{E}\left|F_{t}(x)-F_{t}(y)\right|^{p}$ and use Kolmogrov's continuity theorem (a trick working only in linear spaces).
- Compact state space, C^{1} / C^{2} vector fields, strong completeness. For non-compact manifold, see Li95.

Standard Results:

- Directional Linear growth at $\infty \Longrightarrow$ complete.
- Lipschitz continuous (Bounded derivatives), \Longrightarrow strongly complete. Compute $\mathbf{E}\left|F_{t}(x)-F_{t}(y)\right|^{p}$ and use Kolmogrov's continuity theorem (a trick working only in linear spaces).
- Compact state space, C^{1} / C^{2} vector fields, strong completeness. For non-compact manifold, see Li95.

A Basic tool : Partial Flow

\exists a partial smooth flow $F_{t}(x, \omega), t<\zeta(x, \omega)$ which is a maximal solution such that

A Basic tool : Partial Flow

\exists a partial smooth flow $F_{t}(x, \omega), t<\zeta(x, \omega)$ which is a maximal solution such that

- $M_{t}(\omega)=\{x: \zeta(x, \omega)>t\}$ is an open set.
- $(s, x) \mapsto F_{s}(x, \omega)$ is continuous on $M_{t}(\omega)$.
- For any compact set K, set

On $\left\{\zeta^{K}<\infty\right\}$ $\lim _{t \rightarrow \zeta^{K}} \sup _{x \in K} d\left(F_{t}(x, \omega), O\right)=\infty$.
(Kunia, Elworthy, Carverhill).
This works for C^{1} vector fields for Itô SDE.

A Basic tool : Partial Flow

\exists a partial smooth flow $F_{t}(x, \omega), t<\zeta(x, \omega)$ which is a maximal solution such that

- $M_{t}(\omega)=\{x: \zeta(x, \omega)>t\}$ is an open set.
- $(s, x) \mapsto F_{s}(x, \omega)$ is continuous on $M_{t}(\omega)$.
- For any compact set K, set

(Kunia, Elworthy, Carverhill).
This works for C^{1} vector fields for Itô SDE.

A Basic tool : Partial Flow

\exists a partial smooth flow $F_{t}(x, \omega), t<\zeta(x, \omega)$ which is a maximal solution such that

- $M_{t}(\omega)=\{x: \zeta(x, \omega)>t\}$ is an open set.
- $(s, x) \mapsto F_{s}(x, \omega)$ is continuous on $M_{t}(\omega)$.
- For any compact set K, set

$$
\zeta^{K}=\inf _{x \in K} \zeta(x, \omega) .
$$

On $\left\{\zeta^{K}<\infty\right\}$

$$
\lim _{t \rightarrow \zeta^{K}} \sup _{x \in K} d\left(F_{t}(x, \omega), O\right)=\infty
$$

(Kunia, Elworthy, Carverhill).
This works for C^{1} vector fields for Itô SDE.

The Characteristics of the two concepts

- Conservation of an SDE says that the measures μ_{x} on the path space are probability measures. It is a property of the infinitesimal generator \mathcal{A} of the S.D.E., c.f. Varadhan-Stroock's martingale formulation.
- Strong completeness is related to the Hörmander form decomposition of the second order differential operator \mathcal{A} :

The Characteristics of the two concepts

- Conservation of an SDE says that the measures μ_{x} on the path space are probability measures. It is a property of the infinitesimal generator \mathcal{A} of the S.D.E., c.f. Varadhan-Stroock's martingale formulation.
- Strong completeness is related to the Hörmander form decomposition of the second order differential operator \mathcal{A} :

$$
\mathcal{A}=\frac{1}{2} \sum_{i=1}^{m} L_{X_{i}} L_{X_{i}}+L_{X_{0}} .
$$

An example

A complete, but not strongly complete SDE.

An example

A complete, but not strongly complete SDE .

- on $\mathbf{R}^{n}-\{0\}$ (Elworthy 78), $d x_{t}=d B_{t}$.
- The equation $d x_{t}=d B_{t}$ on $\mathbf{R}^{n}-\{0\}$ is conservative.
- $B_{t}(\omega)+x$ is a maximal solution. $P\left(x+B_{t}(\omega)=0\right.$ for some $\left.x\right)=1$.
- Planer Brownian motion has capacity 0 on co-dimension 2 sets, hence the SDE is strongly $n-2$ complete. [Li95].

An example

A complete, but not strongly complete SDE .

- on $\mathbf{R}^{n}-\{0\}$ (Elworthy 78), $d x_{t}=d B_{t}$.
- The equation $d x_{t}=d B_{t}$ on $\mathbf{R}^{\boldsymbol{n}}-\{0\}$ is conservative.
- $B_{t}(\omega)+x$ is a maximal solution. $P\left(x+B_{t}(\omega)=0\right.$ for some $\left.x\right)=1$.
- Planer Brownian motion has capacity 0 on co-dimension 2 sets, hence the SDE is strongly $n-2$ complete. [Li95].

An example

A complete, but not strongly complete SDE.

- on $\mathbf{R}^{n}-\{0\}$ (Elworthy 78), $d x_{t}=d B_{t}$.
- The equation $d x_{t}=d B_{t}$ on $\mathbf{R}^{n}-\{0\}$ is conservative.
- $B_{t}(\omega)+x$ is a maximal solution. $P\left(x+B_{t}(\omega)=0\right.$ for some $\left.x\right)=1$.
- Planer Brownian motion has capacity 0 on co-dimension 2 sets, hence the SDE is strongly $n-2$ complete. [Li95].

An example

A complete, but not strongly complete SDE.

- on $\mathbf{R}^{n}-\{0\}$ (Elworthy 78), $d x_{t}=d B_{t}$.
- The equation $d x_{t}=d B_{t}$ on $\mathbf{R}^{n}-\{0\}$ is conservative.
- $B_{t}(\omega)+x$ is a maximal solution. $P\left(x+B_{t}(\omega)=0\right.$ for some $\left.x\right)=1$.
- Planer Brownian motion has capacity 0 on co-dimension 2 sets, hence the SDE is strongly $n-2$ complete. [Li95].

Two SDEs with the same generator, Carverhill

Generator $\mathcal{A}=r^{4} \Delta$, Lyapunov function $\log r$. Hence conservative.

Two SDEs with the same generator, Carverhill

Generator $\mathcal{A}=r^{4} \Delta$, Lyapunov function $\log r$. Hence conservative.

- Strongly complete.

$$
\begin{aligned}
d x_{t} & =\frac{x_{t}}{r_{t}} d B_{t}^{1}-\frac{y_{t}}{r_{t}} d B_{t}^{2} \\
d y_{t} & =\frac{y_{t}}{r_{t}} d B_{t}^{1}+\frac{x_{t}}{r_{t}} d B_{t}^{2}
\end{aligned}
$$

It is $d z_{t}=\frac{z_{t}}{\left|z_{t}\right|} d B_{t}$ on C.

- Not strongly complete

Two SDEs with the same generator, Carverhill

Generator $\mathcal{A}=r^{4} \Delta$, Lyapunov function $\log r$. Hence conservative.

- Strongly complete.

$$
\begin{aligned}
& d x_{t}=\frac{x_{t}}{r_{t}} d B_{t}^{1}-\frac{y_{t}}{r_{t}} d B_{t}^{2} \\
& d y_{t}=\frac{y_{t}}{r_{t}} d B_{t}^{1}+\frac{x_{t}}{r_{t}} d B_{t}^{2}
\end{aligned}
$$

It is $d z_{t}=\frac{z_{t}}{\left|z_{t}\right|} d B_{t}$ on C.

- Not strongly complete

$$
\begin{aligned}
& d x_{t}=\left(y_{t}^{2}-x_{t}^{2}\right) d B_{t}^{1}+2 x_{t} y_{t} d B_{t}^{2} \\
& d y_{t}=-2 x_{t} y_{t} d B_{t}^{1}+\left(y_{t}^{2}-x_{t}^{2}\right) d B_{t}^{2}
\end{aligned}
$$

The derivative flow

- Consider the S.D.E. in Stratnovitch form and its linearization:

$$
d v_{t}=\sum_{i=1}^{m} D X^{i}\left(x_{t}\right)\left(v_{t}\right) \circ d B_{t}+D X_{0}\left(x_{t}\right)\left(v_{t}\right) d t
$$

The solution from v_{0} is $v_{t}=T_{x_{0}} F_{t}\left(v_{0}\right)$. Moments: $\mathbf{E}\left|T F_{t}\right|^{p} \chi_{t<\tau}$. See [Li95-2] for estimates.

- Assume that $F_{t}\left(x_{0}\right)$ does not explode, then the SDE is strongly complete, [Li92, 95], if

The derivative flow

- Consider the S.D.E. in Stratnovitch form and its linearization:

$$
d v_{t}=\sum_{i=1}^{m} D X^{i}\left(x_{t}\right)\left(v_{t}\right) \circ d B_{t}+D X_{0}\left(x_{t}\right)\left(v_{t}\right) d t
$$

The solution from v_{0} is $v_{t}=T_{x_{0}} F_{t}\left(v_{0}\right)$. Moments: $\mathbf{E}\left|T F_{t}\right|^{p} \chi_{t<\tau}$. See [Li95-2] for estimates.

- Assume that $F_{t}\left(x_{0}\right)$ does not explode, then the SDE is strongly complete, [Li92, 95], if

$$
\sup _{x \in K} E\left(\sup _{s \leq t}\left|T_{x} F_{s}\right|^{n} \chi_{s<\xi}\right)<\infty
$$

A criterion for SDEs on \mathbf{R}^{n}

$$
d x_{t}=\sum_{i=1}^{m} X_{i}\left(x_{t}\right) d B_{t}^{i}+X_{0}\left(x_{t}\right) d t
$$

We apply the theorem to the above SDE in \mathbf{R}^{n}. The following is a reformulation of that given in [Li92], [Li95].

Let g be a Lyapunov function. Then the SDE is strongly complete if it is complete from one point, if the following holds,

A criterion for SDEs on \mathbf{R}^{n}

$$
d x_{t}=\sum_{i=1}^{m} X_{i}\left(x_{t}\right) d B_{t}^{i}+X_{0}\left(x_{t}\right) d t
$$

We apply the theorem to the above SDE in \mathbf{R}^{n}. The following is a reformulation of that given in [Li92], [Li95].

Let g be a Lyapunov function. Then the SDE is strongly complete if it is complete from one point, if the following holds,

A criterion for SDEs on \mathbf{R}^{n}

$$
d x_{t}=\sum_{i=1}^{m} X_{i}\left(x_{t}\right) d B_{t}^{i}+X_{0}\left(x_{t}\right) d t
$$

We apply the theorem to the above SDE in \mathbf{R}^{n}. The following is a reformulation of that given in [Li92], [Li95].

Let g be a Lyapunov function. Then the SDE is strongly complete if it is complete from one point, if the following holds,

$$
\begin{aligned}
& 2 \frac{\left\langle D X_{0}(x)(v), v\right\rangle}{|v|^{2}}+\sum_{i=1}^{m} \frac{\left|D X_{i}(x)(v)\right|^{2}}{|v|^{2}}+(n-2) \sum_{i=1}^{m} \frac{\left\langle D X_{i}(x)(v), v\right\rangle^{2}}{|v|^{4}} \\
& \leq \ln \left(\frac{1}{6 n^{2}} g(x)\right)
\end{aligned}
$$

A criterion for SDEs on \mathbf{R}^{n}

$$
d x_{t}=\sum_{i=1}^{m} X_{i}\left(x_{t}\right) d B_{t}^{i}+X_{0}\left(x_{t}\right) d t
$$

We apply the theorem to the above SDE in \mathbf{R}^{n}. The following is a reformulation of that given in [Li92], [Li95].

Let g be a Lyapunov function. Then the SDE is strongly complete if it is complete from one point, if the following holds,

$$
\begin{aligned}
& 2 \frac{\left\langle D X_{0}(x)(v), v\right\rangle}{|v|^{2}}+\sum_{i=1}^{m} \frac{\left|D X_{i}(x)(v)\right|^{2}}{|v|^{2}}+(n-2) \sum_{i=1}^{m} \frac{\left\langle D X_{i}(x)(v), v\right\rangle^{2}}{|v|^{4}} \\
& \leq \ln \left(\frac{1}{6 n^{2}} g(x)\right)
\end{aligned}
$$

A little geometry

For elliptic SDE: suppose that $m=n$ and there is no drift, and that the linear connection associated to the SDE is the Levi-Civita connection then the SDE is strongly complete if it is complete. The linear connection is as defined in [Elworthy-LeJan-Li 97, 99.

Objectives: Li+ Scheutzow

- To gain some understanding why solutions of SDE lose regularity. Does it depend on the smoothness of the vector fields or on the growth of vector fields at infinity?
- Construct a 2-dimensional SDE with coefficients
smooth, bounded, locally Lipschitz continuous
for which strong completeness does not hold.

Objectives: Li + Scheutzow

- To gain some understanding why solutions of SDE lose regularity. Does it depend on the smoothness of the vector fields or on the growth of vector fields at infinity?
- Construct a 2-dimensional SDE with coefficients smooth, bounded, locally Lipschitz continuous for which strong completeness does not hold.

Example[Li+ Scheutzow]

- An elliptic SDE run by 1 Brownian motion:

$$
\begin{aligned}
d X(t) & =\sigma(X(t), Y(t)) d W(t) \\
d Y(t) & =0
\end{aligned}
$$

- We seek a bounded C^{∞} function $\sigma: \mathbf{R}^{2} \rightarrow \mathbf{R}_{+}$and such that the SDE is not strongly complete.

Example[Li+ Scheutzow]

- An elliptic SDE run by 1 Brownian motion:

$$
\begin{aligned}
d X(t) & =\sigma(X(t), Y(t)) d W(t) \\
d Y(t) & =0
\end{aligned}
$$

- We seek a bounded C^{∞} function $\sigma: \mathbf{R}^{2} \rightarrow \mathbf{R}_{+}$and such that the SDE is not strongly complete.

Where should smoothness fail?

$$
\begin{aligned}
d X(t) & =\sigma(X(t), Y(t)) d W(t) \\
d Y(t) & =0
\end{aligned}
$$

- A 2-dimensional SDE cannot be strongly 1-complete. Smoothness should fail on a 1-dimensional subset.
- Subset of the form $\{x\} \times[a, b]$ as initial data set will reduce the system to 1-dimension.
- Look at a subset of the form $[0,1] \times\{y\}$ as initial data set.

Where should smoothness fail?

$$
\begin{aligned}
d X(t) & =\sigma(X(t), Y(t)) d W(t) \\
d Y(t) & =0
\end{aligned}
$$

- A 2-dimensional SDE cannot be strongly 1-complete. Smoothness should fail on a 1-dimensional subset.
- Subset of the form $\{x\} \times[a, b]$ as initial data set will reduce the system to 1-dimension.
- Look at a subset of the form $[0,1] \times\{y\}$ as initial data set.

Where should smoothness fail?

$$
\begin{aligned}
d X(t) & =\sigma(X(t), Y(t)) d W(t) \\
d Y(t) & =0
\end{aligned}
$$

- A 2-dimensional SDE cannot be strongly 1-complete. Smoothness should fail on a 1-dimensional subset.
- Subset of the form $\{x\} \times[a, b]$ as initial data set will reduce the system to 1-dimension.
- Look at a subset of the form $[0,1] \times\{y\}$ as initial data set.

Exit Times and Completeness

- Let $U_{1} \subset U_{2} \subset U_{3} \subset$ be a sequence of relatively compact open sets. Let τ_{n} be the first exit time of the solution, starting from a point in U_{n-1}, from U_{n}. If there exists $\sum \delta_{n}=\infty$,

$$
P\left(\tau_{n} \leq t\right) \leq c t^{2}, \quad t \leq \delta_{n}
$$

\Longrightarrow SDE is complete. [Li89], [Li94]

- Sharp.
- E.g. A Brownian motion on a Riemannian manifold with $K(s)=-\inf _{B_{s}} \operatorname{Ricci}(x) \wedge 0, \int_{1}^{\infty} \frac{1}{\sqrt{K(s)}} d s=\infty$ has the above property and so does SDE on \mathbf{R}^{n} with linear growth.

Exit Times and Completeness

- Let $U_{1} \subset U_{2} \subset U_{3} \subset$ be a sequence of relatively compact open sets. Let τ_{n} be the first exit time of the solution, starting from a point in U_{n-1}, from U_{n}. If there exists $\sum \delta_{n}=\infty$,

$$
P\left(\tau_{n} \leq t\right) \leq c t^{2}, \quad t \leq \delta_{n}
$$

\Longrightarrow SDE is complete. [Li89], [Li94]

- Sharp.
- E.g. A Brownian motion on a Riemannian manifold with $K(s)=-\inf _{B_{s}} \operatorname{Ricci}(x) \wedge 0, \int_{1}^{\infty} \frac{1}{\sqrt{K(s)}} d s=\infty$ has the above property and so does SDE on \mathbf{R}^{n} with linear growth.

Exit Times and Completeness

- Let $U_{1} \subset U_{2} \subset U_{3} \subset$ be a sequence of relatively compact open sets. Let τ_{n} be the first exit time of the solution, starting from a point in U_{n-1}, from U_{n}. If there exists $\sum \delta_{n}=\infty$,

$$
P\left(\tau_{n} \leq t\right) \leq c t^{2}, \quad t \leq \delta_{n}
$$

\Longrightarrow SDE is complete. [Li89], [Li94]

- Sharp.
- E.g. A Brownian motion on a Riemannian manifold with $K(s)=-\inf _{B_{s}} \operatorname{Ricci}(x) \wedge 0, \int_{1}^{\infty} \frac{1}{\sqrt{K(s)}} d s=\infty$ has the above property and so does SDE on \mathbf{R}^{n} with linear growth.

Exit Times and Strong Completeness

We work on the smooth partial flow $F_{t}(x, \omega), t<\zeta(x), \zeta^{K}$.

- Similar stopping time estimates as for τ_{n} give strong completeness.
- However the image set $F_{\tau^{K}}(K, \omega)$ can be very big. It is difficult to get sharp estimates.

Exit Times and Strong Completeness

We work on the smooth partial flow $F_{t}(x, \omega), t<\zeta(x), \zeta^{K}$.

- Similar stopping time estimates as for τ_{n} give strong completeness.
- However the image set $F_{\tau^{K}}(K, \omega)$ can be very big. It is difficult to get sharp estimates.

Basic Observations

$P\left(\tau_{n} \leq t\right) \leq c t^{2}$ implies completeness.

- If $\zeta \leq \sum_{n=1}^{\infty} T_{n}, T_{n}$ finite stopping times, and $\left\{a_{n}\right\},\left\{b_{n}\right\}$ be two summable sequences such that

$$
P\left(T_{n}>a_{n}\right)<b_{n}
$$

then $\zeta<\infty$ almost surely. This can be used to show explosion or the failing of strong completeness.

- However this does not work in our case as we do not expect almost surely that $\xi^{K}<\infty$.

Basic Observations

$P\left(\tau_{n} \leq t\right) \leq c t^{2}$ implies completeness.

- If $\zeta \leq \sum_{n=1}^{\infty} T_{n}, T_{n}$ finite stopping times, and $\left\{a_{n}\right\},\left\{b_{n}\right\}$ be two summable sequences such that

$$
P\left(T_{n}>a_{n}\right)<b_{n}
$$

then $\zeta<\infty$ almost surely. This can be used to show explosion or the failing of strong completeness.

- However this does not work in our case as we do not expect almost surely that $\xi^{K}<\infty$.

Basic Observations

$P\left(\tau_{n} \leq t\right) \leq c t^{2}$ implies completeness.

- If $\zeta \leq \sum_{n=1}^{\infty} T_{n}, T_{n}$ finite stopping times, and $\left\{a_{n}\right\},\left\{b_{n}\right\}$ be two summable sequences such that

$$
P\left(T_{n}>a_{n}\right)<b_{n}
$$

then $\zeta<\infty$ almost surely. This can be used to show explosion or the failing of strong completeness.

- However this does not work in our case as we do not expect almost surely that $\xi^{K}<\infty$.

Intuitive Idea

The following illustrates why strong completenss could fail while completeness holds.

Intuitive Idea

The following illustrates why strong completenss could fail while completeness holds.

- $\left(B_{t}^{1}, B_{t}^{2}, \ldots\right)$, Independent Brownian motions on \mathbf{R}^{n}.

$$
P\left(\sup _{s \leq a}\left|B_{s}^{i}\right| \geq 1\right) \rightarrow C a^{2}, \quad \text { for a small }
$$

$\rightarrow \mathrm{BM}$ is complete.

- Problem: The solutions $F_{t}\left(x_{1}\right), F_{t}\left(x_{2}\right), \ldots$, are far from being independent.

Intuitive Idea

The following illustrates why strong completenss could fail while completeness holds.

- $\left(B_{t}^{1}, B_{t}^{2}, \ldots\right)$, Independent Brownian motions on \mathbf{R}^{n}.

$$
P\left(\sup _{s \leq a}\left|B_{s}^{i}\right| \geq 1\right) \rightarrow C a^{2}, \quad \text { for a small }
$$

$\rightarrow \mathrm{BM}$ is complete.
-

$$
P\left(\sup _{1 \leq i \leq n} \sup _{s \leq a}\left|B_{s}^{i}\right| \leq 1\right) \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

- Problem: The solutions $F_{t}\left(x_{1}\right), F_{t}\left(x_{2}\right), \ldots$, are far from being independent.

Intuitive Idea

The following illustrates why strong completenss could fail while completeness holds.

- $\left(B_{t}^{1}, B_{t}^{2}, \ldots\right)$, Independent Brownian motions on \mathbf{R}^{n}.

$$
P\left(\sup _{s \leq a}\left|B_{s}^{i}\right| \geq 1\right) \rightarrow C a^{2}, \quad \text { for a small }
$$

$\rightarrow \mathrm{BM}$ is complete.
-

$$
P\left(\sup _{1 \leq i \leq n} \sup _{s \leq a}\left|B_{s}^{i}\right| \leq 1\right) \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

- Problem: The solutions $F_{t}\left(x_{1}\right), F_{t}\left(x_{2}\right), \ldots$, are far from being independent.

A Key Lemma

A SDE on \mathbf{R}^{1}

$$
\begin{aligned}
d X^{\varepsilon}(t) & =H\left(\frac{1}{\varepsilon} X^{\varepsilon}(t)\right) d W(t) \\
X^{\varepsilon}(0) & =0
\end{aligned}
$$

- $H: \mathbf{R} \rightarrow(0, \infty)$, continuous with period 1 .
- $\left(X^{\varepsilon_{n}}, X^{\varepsilon_{n+1}}, \ldots\right)$ converges weakly to $\left(\alpha B_{0}+\beta B_{1}, \alpha B_{0}+\beta B_{2}, \ldots\right)$ as
$\left(B_{0}, B_{1}, B_{2}, \ldots\right)$ are independent standard BM's.

A Key Lemma

A SDE on \mathbf{R}^{1}

$$
\begin{aligned}
d X^{\varepsilon}(t) & =H\left(\frac{1}{\varepsilon} X^{\varepsilon}(t)\right) d W(t) \\
X^{\varepsilon}(0) & =0
\end{aligned}
$$

- $H: \mathbf{R} \rightarrow(0, \infty)$, continuous with period 1 .

A Key Lemma

A SDE on \mathbf{R}^{1}

$$
\begin{aligned}
d X^{\varepsilon}(t) & =H\left(\frac{1}{\varepsilon} X^{\varepsilon}(t)\right) d W(t) \\
X^{\varepsilon}(0) & =0
\end{aligned}
$$

- $H: \mathbf{R} \rightarrow(0, \infty)$, continuous with period 1 .
- $\varepsilon_{n+1} / \varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$
- $\left(X^{\varepsilon_{n}}, X^{\varepsilon_{n+1}}, \ldots\right)$ converges weakly to $\left(\alpha B_{0}+\beta B_{1}, \alpha B_{0}+\beta B_{2}, \ldots\right)$ as $\left(B_{0}, B_{1}, B_{2}, \ldots\right)$ are independent standard BM's.

A Key Lemma

A SDE on \mathbf{R}^{1}

$$
\begin{aligned}
d X^{\varepsilon}(t) & =H\left(\frac{1}{\varepsilon} X^{\varepsilon}(t)\right) d W(t) \\
X^{\varepsilon}(0) & =0
\end{aligned}
$$

- $H: \mathbf{R} \rightarrow(0, \infty)$, continuous with period 1 .
- $\varepsilon_{n+1} / \varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$
- $\left(X^{\varepsilon_{n}}, X^{\varepsilon_{n+1}}, \ldots\right)$ converges weakly to $\left(\alpha B_{0}+\beta B_{1}, \alpha B_{0}+\beta B_{2}, \ldots\right)$ as $n \rightarrow \infty$.
$\left(B_{0}, B_{1}, B_{2}, \ldots\right)$ are independent standard BM 's.

Example

$$
\begin{aligned}
& d X(t)=\sigma(X(t), Y(t)) d W(t), \quad x(0) \text { fixed } \\
& d Y(t)=0, \quad y(0) \in[0,1]
\end{aligned}
$$

- Define $\sigma(x, y)=H(x)$ for $x, y \in[0,1], H$ smooth period 1 , bounded away from 0 .
- Define $\sigma(x, y)=H\left(\frac{1}{\epsilon(x, y)} x\right)$.

$$
R=(-\infty, 0) \cup[0,1] \cup \cdots \cup[n, n+1] \cup
$$

- At level n, partition $[0,1]$ into M_{n} equal pieces:

$$
[0,1]=\Delta_{1}^{n} \cup \cdots \cup \Delta_{M_{n}}^{n}
$$

- If $(x, y) \in[n, n+1] \times \Delta_{i}^{n}$, define

- Extend and smooth it up.

Example

$$
\begin{aligned}
& d X(t)=\sigma(X(t), Y(t)) d W(t), \quad x(0) \text { fixed } \\
& d Y(t)=0, \quad y(0) \in[0,1]
\end{aligned}
$$

- Define $\sigma(x, y)=H(x)$ for $x, y \in[0,1], H$ smooth period 1 , bounded away from 0 .
- Define $\sigma(x, y)=H\left(\frac{1}{\epsilon(x, y)} x\right)$.

$$
R=(-\infty, 0) \cup[0,1] \cup \cdots \cup[n, n+1] \cup
$$

- At level n, partition $[0,1]$ into M_{n} equal pieces:

$$
[0,1]=\Delta_{1}^{n} \cup \cdots \cup \Delta_{M_{n}}^{n}
$$

- If $(x, y) \in[n, n+1] \times \Delta_{i}^{n}$, define

- Extend and smooth it up.

Example

$$
\begin{aligned}
& d X(t)=\sigma(X(t), Y(t)) d W(t), \quad x(0) \text { fixed } \\
& d Y(t)=0, \quad y(0) \in[0,1]
\end{aligned}
$$

- Define $\sigma(x, y)=H(x)$ for $x, y \in[0,1], H$ smooth period 1 , bounded away from 0 .
- Define $\sigma(x, y)=H\left(\frac{1}{\epsilon(x, y)} x\right)$.

$$
R=(-\infty, 0) \cup[0,1] \cup \cdots \cup[n, n+1] \cup
$$

- At level n, partition $[0,1]$ into M_{n} equal pieces:

$$
[0,1]=\Delta_{1}^{n} \cup \cdots \cup \Delta_{M_{n}}^{n}
$$

- If $(x, y) \in[n, n+1] \times \Delta_{i}^{n}$, define

Example

$$
\begin{aligned}
& d X(t)=\sigma(X(t), Y(t)) d W(t), \quad x(0) \text { fixed } \\
& d Y(t)=0, \quad y(0) \in[0,1]
\end{aligned}
$$

- Define $\sigma(x, y)=H(x)$ for $x, y \in[0,1], H$ smooth period 1 , bounded away from 0 .
- Define $\sigma(x, y)=H\left(\frac{1}{\epsilon(x, y)} x\right)$.

$$
R=(-\infty, 0) \cup[0,1] \cup \cdots \cup[n, n+1] \cup \ldots
$$

- At level n, partition $[0,1]$ into M_{n} equal pieces:

$$
[0,1]=\Delta_{1}^{n} \cup \cdots \cup \Delta_{M_{n}}^{n}
$$

- If $(x, y) \in[n, n+1] \times \Delta_{i}^{n}$, define

- Extend and smooth it up.

Example

$$
\begin{aligned}
& d X(t)=\sigma(X(t), Y(t)) d W(t), \quad x(0) \text { fixed } \\
& d Y(t)=0, \quad y(0) \in[0,1]
\end{aligned}
$$

- Define $\sigma(x, y)=H(x)$ for $x, y \in[0,1], H$ smooth period 1 , bounded away from 0 .
- Define $\sigma(x, y)=H\left(\frac{1}{\epsilon(x, y)} x\right)$.

$$
R=(-\infty, 0) \cup[0,1] \cup \cdots \cup[n, n+1] \cup \ldots
$$

- At level n, partition $[0,1]$ into M_{n} equal pieces:

$$
[0,1]=\Delta_{1}^{n} \cup \cdots \cup \Delta_{M_{n}}^{n}
$$

- If $(x, y) \in[n, n+1] \times \Delta_{i}^{n}$, define

- Extend and smooth it up.

Example

$$
\begin{aligned}
& d X(t)=\sigma(X(t), Y(t)) d W(t), \quad x(0) \text { fixed } \\
& d Y(t)=0, \quad y(0) \in[0,1]
\end{aligned}
$$

- Define $\sigma(x, y)=H(x)$ for $x, y \in[0,1]$, H smooth period 1 , bounded away from 0 .
- Define $\sigma(x, y)=H\left(\frac{1}{\epsilon(x, y)} x\right)$.

$$
R=(-\infty, 0) \cup[0,1] \cup \cdots \cup[n, n+1] \cup \cdots
$$

- At level n, partition $[0,1]$ into M_{n} equal pieces:

$$
[0,1]=\Delta_{1}^{n} \cup \cdots \cup \Delta_{M_{n}}^{n}
$$

- If $(x, y) \in[n, n+1] \times \Delta_{i}^{n}$, define

$$
\frac{1}{\epsilon(x, y)}=a_{i}^{n}, \text { constant to be determined. }
$$

Example

$$
\begin{aligned}
& d X(t)=\sigma(X(t), Y(t)) d W(t), \quad x(0) \text { fixed } \\
& d Y(t)=0, \quad y(0) \in[0,1]
\end{aligned}
$$

- Define $\sigma(x, y)=H(x)$ for $x, y \in[0,1], H$ smooth period 1 , bounded away from 0 .
- Define $\sigma(x, y)=H\left(\frac{1}{\epsilon(x, y)} x\right)$.

$$
R=(-\infty, 0) \cup[0,1] \cup \cdots \cup[n, n+1] \cup \ldots
$$

- At level n, partition $[0,1]$ into M_{n} equal pieces:

$$
[0,1]=\Delta_{1}^{n} \cup \cdots \cup \Delta_{M_{n}}^{n}
$$

- If $(x, y) \in[n, n+1] \times \Delta_{i}^{n}$, define

$$
\frac{1}{\epsilon(x, y)}=a_{i}^{n}, \text { constant to be determined. }
$$

- Extend and smooth it up.

Key Point

Let $K_{n, i}=[n, n+1] \times \Delta_{n, i} . T_{n, i}=$ first time that $\left\{\phi(x, y),(x, y) \in K_{n, i}\right\}$ is greater than $n+1$. We wish to prove something like following

Key Point

Let $K_{n, i}=[n, n+1] \times \Delta_{n, i} . T_{n, i}=$ first time that $\left\{\phi(x, y),(x, y) \in K_{n, i}\right\}$ is greater than $n+1$. We wish to prove something like following

- Lemma: $\sum_{n} t_{n}<\infty, \sum_{n} \beta_{n}<\infty$, Then $\exists M_{n}, a_{n}$ s.t.

$$
\left.P\left(\inf _{1 \leq i \leq M_{n}} T_{n . i} \leq t_{n}\right)\right) \leq \beta_{n}
$$

- That is

$$
\left.P\left(\sup _{i} \sup _{(x, y) \in K_{n, i}} \sup _{0 \leq s \leq t_{n}} \phi(t,(x, y))\right\}<n+1\right)<C \beta_{n} .
$$

A Lemma

Lemma
For two convergent series $\sum \beta_{n}$ and $\sum t_{n}, \exists N_{n}$ s.t. if $n>N_{n}$,
$P\left(\sup _{1 \leq j \leq N_{n}} \sup _{0 \leq s \leq t_{n}}\left(B_{s}^{j}+W_{s}\right) \geq 1, \inf _{1 \leq j \leq N_{n}} \inf _{0 \leq s \leq t_{n}}\left(B_{s}^{j}+W_{s}\right) \geq-\delta_{n}\right) \geq 1-\beta_{n}$.
This can be show by large deviation result for a Brownian path deviate from a Cameron-Martin path and an approximation of continuous path from a Cameron-Martin path. The distribution of our diffusion converge to that of the independent Brownian motions by an earlier lemma. The only problem is that if the diffusion crosses backward the speed changes and we no longer have control over the convergence speed.

A Lemma

Lemma

For two convergent series $\sum \beta_{n}$ and $\sum t_{n}, \exists N_{n}$ s.t. if $n>N_{n}$,
$P\left(\sup _{1 \leq j \leq N_{n}} \sup _{0 \leq s \leq t_{n}}\left(B_{s}^{j}+W_{s}\right) \geq 1, \inf _{1 \leq j \leq N_{n}} \inf _{0 \leq s \leq t_{n}}\left(B_{s}^{j}+W_{s}\right) \geq-\delta_{n}\right) \geq 1-\beta_{n}$.
This can be show by large deviation result for a Brownian path deviate from a Cameron-Martin path and an approximation of continuous path from a Cameron-Martin path.
problem is that if the diffusion crosses backward the speed changes and we
no longer have control over the convergence speed.

A Lemma

Lemma
For two convergent series $\sum \beta_{n}$ and $\sum t_{n}, \exists N_{n}$ s.t. if $n>N_{n}$,
$P\left(\sup _{1 \leq j \leq N_{n}} \sup _{0 \leq s \leq t_{n}}\left(B_{s}^{j}+W_{s}\right) \geq 1, \inf _{1 \leq j \leq N_{n}} \inf _{0 \leq s \leq t_{n}}\left(B_{s}^{j}+W_{s}\right) \geq-\delta_{n}\right) \geq 1-\beta_{n}$.
This can be show by large deviation result for a Brownian path deviate from a Cameron-Martin path and an approximation of continuous path from a Cameron-Martin path. The distribution of our diffusion converge to that of the independent Brownian motions by an earlier lemma. The only problem is that if the diffusion crosses backward the speed changes and we no longer have control over the convergence speed.

A control Strip

- Choose $\delta_{n}>0$ where we smooth up $\epsilon(x, y)$.
- Each diffusion at level n has a positive probability po of travelling δ_{n} distance to the right.
- The average time each martingale spent on the right half of the strip is positive. By continuity there is a time slot where it spend time there.
- Show that at least N_{n} diffusions will be on the right half of the strip at a given random time.

A control Strip

- Choose $\delta_{n}>0$ where we smooth up $\epsilon(x, y)$.
- Each diffusion at level n has a positive probability p_{0} of travelling δ_{n} distance to the right.
- The average time each martingale spent on the right half of the strip is positive. By continuity there is a time slot where it spend time there.
- Show that at least N_{n} diffusions will be on the right half of the strip at a given random time

A control Strip

- Choose $\delta_{n}>0$ where we smooth up $\epsilon(x, y)$.
- Each diffusion at level n has a positive probability p_{0} of travelling δ_{n} distance to the right.
- The average time each martingale spent on the right half of the strip is positive. By continuity there is a time slot where it spend time there.
- Show that at least N_{n} diffusions will be on the right half of the strip at a given random time.

A control Strip

- Choose $\delta_{n}>0$ where we smooth up $\epsilon(x, y)$.
- Each diffusion at level n has a positive probability p_{0} of travelling δ_{n} distance to the right.
- The average time each martingale spent on the right half of the strip is positive. By continuity there is a time slot where it spend time there.
- Show that at least N_{n} diffusions will be on the right half of the strip at a given random time.

An unanswered Question

How does adding a drift affect strong completeness? In particular,

- What about adding an arbitrary drift to the previous example? (Stratonovitch correction term gives a strongly complete SDE.)
- Consider Itô SDE in \mathbf{R}^{n}. Suppose that the diffusion coefficients are globally Lipschitz and the drift term has linear growth. Is it strongly complete?

An unanswered Question

How does adding a drift affect strong completeness? In particular,

- What about adding an arbitrary drift to the previous example? (Stratonovitch correction term gives a strongly complete SDE.)
- Consider Itô SDE in \mathbf{R}^{n}. Suppose that the diffusion coefficients are globally Lipschitz and the drift term has linear growth. Is it strongly complete?

Trivial path space transformations preserve strong completeness: orthogonal transform and translation by a Cameron-Martin vector.

- If $d x_{t}=X\left(x_{t}\right) \circ d B_{t}$ is strongly complete, so is $d x_{t}=X\left(x_{t}\right) \circ d B_{t}+X\left(x_{t}\right) \dot{h}_{t} d t$.
$h=$ adapted Cameron-Martin on Wiener space $C_{0}\left(\mathbf{R}^{m}\right)$. This is not sufficient to transform a drift term. Girsanov does not do the trick.

