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Abstract 
 
We study the relation between the ownership structure of financial assets and non-fundamental 
risk. We define an asset to be fragile if it is susceptible to non-fundamental shifts in demand. An 
asset can be fragile because of concentrated ownership, or because its owners face correlated or 
volatile liquidity shocks, i.e., they must buy or sell at the same time. We formalize this idea and 
apply it to mutual fund ownership of US stocks. Consistent with our predictions, fragility 
strongly predicts price volatility. We then extend the logic of fragility to investigate two natural 
extensions: (1) the forecast of stock return comovement and (2) the potentially destabilizing 
impact of arbitrageurs on stock prices. 
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1. Introduction 

In traditional asset pricing theory, the composition of ownership of a financial asset does 

not influence future returns or risk. If the current holders of the asset buy or sell for reasons 

unrelated to fundamentals, new owners immediately take their place, with no impact on price. 

Underlying the conventional theory is the assumption that arbitrageurs are willing to trade 

aggressively against the liquidity shocks of other investors, thus ensuring that demand curves for 

individual financial assets are flat. However, a vast empirical literature in finance challenges this 

assumption, finding that investor demand unrelated to fundamentals can impact prices. 1  A 

natural implication of these findings is that knowing whether the owners of a financial asset will 

collectively face liquidity shocks should be useful for forecasting non-fundamental risk. While it 

is challenging to forecast liquidity shocks, it may be simpler to forecast the volatility of these 

shocks based on the prior behavior of the owners.  

In this paper, we show how to compute the expected volatility of non-fundamental 

demand given an asset’s ownership structure. We call this variable “fragility.” We then calculate 

fragility for US stocks using mutual fund ownership data, and show that fragility strongly 

predicts stock return volatility. We explore extensions of this approach to stock return 

comovement, and to the potentially stabilizing role of arbitrage in dampening non-fundamental 

risk.  

To illustrate the basic reasoning, consider an asset with few owners who each hold large 

percentage stakes. If the volatility of their liquidity needs is low (i.e., they never have to buy or 

                                                 
1 For example, Shleifer (1986) and Harris and Gurel (1986) show that stock prices rise when stocks are added to 

a stock index. More recent work has extended these findings to document price effects of investor demand in 
numerous settings, including retail demand for stocks (Barber, Odean, and Zhu, 2009; Foucault, Sraer, and Thesmar, 
2009), retail demand for options (Garleanu, Pedersen, and Poteshman, 2009), hedge fund demand for convertible 
bonds (Mitchell, Pederse,n and Pulvino, 2007), investor demand for bonds (Greenwood and Vayanos, 2009), and 
mutual funds’ flow-driven demand for stocks (Coval and Stafford, 2007; Frazzini and Lamont, 2008; Lou, 2010).  
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sell for reasons unrelated to the fundamentals of the asset), then the asset is not exposed to much 

non-fundamental risk. However, if one of the owners were to experience volatile liquidity shocks, 

his trading is unlikely to be “cancelled” by the trades of the other owners, resulting in price 

impact. In this case, non-fundamental volatility will be high.  

On the opposite extreme, consider a financial asset with diversified ownership—the 

typical blue chip stock trading on the NYSE, for example. The owners may individually 

experience liquidity shocks which require them to buy more shares or to scale their position 

down. Yet, the net effect on price is mitigated by the effective cancelling of their trades. There 

are limits to such ownership diversification, however: an asset with diversified ownership will 

still be fragile if its owners’ liquidity shocks are highly correlated. Overall, fragility depends on 

ownership concentration and the volatilities and correlations of owners’ expected liquidity trades. 

 While the intuition underlying fragility is straightforward, whether it is useful empirically 

depends on whether we can measure (a) the composition of ownership and (b) the ex ante 

variance-covariance structure of the liquidity needs faced by its owners. For many assets, even if 

we can observe ownership, estimating the volatility or correlation of the owners’ liquidity needs 

presents a challenge. Fortunately, mutual fund ownership of US-listed equities satisfies both 

criteria above, because the correlation structure of mutual funds’ liquidity-driven trades can be 

inferred from investor flows into and out of these funds, and because mutual funds regularly 

report their positions. We thus implement our suggested measures of fragility on US stocks 

between 1990 and 2007. 

Our findings are as follows. First, fragility is a statistically strong and economically 

significant predictor of future total and idiosyncratic volatility (the univariate R² is approximately 

8%). This predictive power remains once we control for the determinants of volatility suggested 
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by the existing literature. The strength of these results is particularly surprising given that mutual 

funds own only about 15% of the shares outstanding for the median stock in our sample, 

meaning that we measure true fragility (i.e., the non-fundamental demand volatility of all owners, 

not just mutual funds) with quite a lot of noise.  

 We next study two natural extensions of our fragility measure. First, the logic of fragility 

can be extended to forecast comovement: We define two assets to be “co-fragile” if they are held 

by investors who have correlated trading needs. The notion of co-fragility can be used to derive a 

“fragility beta,” which measures the extent to which an asset’s owners have flows which are 

correlated with the flows into a given portfolio—e.g., a stock has a high fragility beta if it tends 

to experience inflows at the same time as the market portfolio experiences inflows. Empirically, 

co-fragility and fragility betas both predict comovement quite well. For instance, 25% of the 

cross-sectional variation in the beta with respect to the Fama and French (1993) HML factor can 

be explained by the ownership of these securities: i.e., many stocks comove with HML simply 

because they are held by funds which have flows that are correlated with flows into value funds.  

In our second extension, we try to understand under which circumstances fragility will be 

a better forecaster of non-fundamental risk. In principle, fragility will be less useful for 

forecasting non-fundamental risk if the flow-driven trades of mutual funds are aggressively 

accommodated by other investors. We investigate this idea, focusing on hedge funds as potential 

liquidity providers, but also considering whether mutual funds may play a role through their non-

flow-driven active trades. Consistent with the intuition outlined above, we find that fragility 

exerts a more modest effect on volatility among stocks in which arbitrageurs are willing to trade 

against liquidity shocks. Conversely, for some stocks where arbitrageurs tend to trade in the 

same direction as mutual funds’ liquidity trades, fragility has a stronger effect on volatility. Our 
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results here are linked to a number of recent papers that investigate the price destabilizing 

behavior of arbitrageurs.2 

 Taken together, our results establish a connection between ownership structure and risk, 

thus shedding light on earlier work which correlates institutional ownership with stock price 

volatility (Sias, 1996; Bushee and Noe, 2000; Koch, Ruenzi, and Starks, 2009). We note that it is 

not so much the fraction of mutual fund ownership per se, but rather the composition of 

ownership that matters for predicting volatility.  

An important concern in interpreting our results is that ownership structure is potentially 

endogenous. For example, the relationship between fragility and volatility could partly reflect the 

selection of funds with volatile flows into stocks with volatile fundamentals. We partially 

address this concern by controlling for a host of time-varying determinants of volatility, as well 

as using firm fixed effects in several specifications. Concerns about endogeneity loom larger, 

however, when interpreting the evidence that links ownership structure with stock return 

comovement. Here it is easy to see reasons why funds with correlated flows might rush into 

similar stocks, constituting a form of omitted variable bias. Although we again seek to control 

for as many fundamental determinants of return comovement as possible, we view these results 

as more suggestive.  

Our findings build on a series of papers on the price impact of mutual fund flow-driven 

trades. Frazzini and Lamont (2008) show that stocks bought by funds that receive 

disproportionate inflows underperform in the long run. Coval and Stafford (2007) show that 

stocks heavily sold by distressed mutual funds have positive long-run returns. These two papers 

                                                 
2 Brunnermeier and Nagel (2004) and Griffin, Harri,s and Topaloglu (2009) study the role of hedge funds in the 

technology bubble. Both studies find that hedge funds have amplified mispricing. Fishman, Hong, and Kubik (2009) 
study positive earnings announcements for heavily shorted stocks. Chen, Hanson, Hong, and Stein (2008) study 
hedge fund responses to mutual fund liquidity trades.  
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provide evidence that flow-driven trading by mutual funds has price impact. We build more 

directly on Lou (2010), who also explores the relationship between flow-driven trading and 

returns. After establishing the relationship between flow-driven trading and returns, Lou uses it 

to provide a joint explanation of stock return momentum and mutual fund performance 

persistence: when a stock performs well, funds that hold it perform well, leading to future 

inflows which generate additional buying pressure and positive returns. 

Our co-fragility results contribute to the literature on the excess comovement of stock 

returns (Barberis and Shleifer, 2003; Barberis, Shleifer, and Wurgler, 2005). Our comovement 

results are closest to two recent papers. Kumar, Page, and Spalt (2009) predict comovement by 

looking at aggregate retail investor trading: we focus instead on mutual funds, which allows us to 

identify trades that are less likely to be connected with information. Anton and Polk (2010) show 

that stocks with common owners have more correlated returns: our co-fragility measure 

complements their approach by showing that stocks also comove because different owners have 

correlated trading needs. In contrast to us, however, Anton and Polk look at different asset 

pricing implications of their comovement measure: they find that stocks held by common owners 

that temporarily diverge can be predicted to eventually reconverge, leading to a profitable trading 

strategy. 

 We proceed as follows. The next section formalizes a definition of fragility. Section 3 

describes how we calculate fragility for common stocks using mutual fund ownership data. 

Section 4 analyzes the relationship between fragility and volatility. Section 5 turns to our first 

extension: co-fragility and fragility betas. In Section 6, we look at the impact of arbitrageur 

trading in volatility. The last section concludes. 

 
2. Asset fragility 
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In this section, we develop our fragility measure and use it to explore the link between 

ownership structure and non-fundamental risk. We first assume (Section 2.1) that we can observe 

the portfolios of the complete universe of investors and their holdings in all securities. Section 

2.2 illustrates the intuition with a simple example. Section 2.3 discusses the issues that arise 

when we try to compute fragility empirically using data on an incomplete subset of investors.  

 

2.1.  Definition 

For a given investor k, the dollar weight  of security i in the investor’s portfolio at date t 

is: 

 , (1)  

where  is the number of securities i held by k at t,  is the total portfolio value of that 

investor, and  is the price per security. By log-linearizing Eq. (1), net dollar purchases of i by 

k can be decomposed into two parts: 

 ikt it
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where , i.e., the period-ahead change in x. The change in portfolio assets akt  is 

the sum of two effects: net inflows into k's portfolio, and changes in the (dividend-adjusted) 

prices of its constituents: 
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Net inflows fkt  can have several interpretations. They may literally be inflows into a mutual 

fund, hedge fund, or pension plan. Or, more broadly, flows can represent inflows into an 

individual's financial wealth through savings, inheritance, job loss, or shocks to human capital.  

Substituting (3) into (2) and rearranging yields: 

 

Flow-driven trading

Active rebalancing

.

ikt it
it ikt ikt it ikt kt jkt jt
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                



 


 (4) 

where the j subscript denotes other securities held by investor k. The first term in the 

decomposition in Eq. (4) is the contribution of active portfolio rebalancing, i.e., the trading that 

results from a willingness to change the weight of security i beyond the mechanical effect of 

relative price changes and flows. The last term in Eq. (4) is the contribution of flows, holding 

fixed the composition of the portfolio.  

 We assume that there is a stable relationship between aggregate flow-driven buys into 

security i (the sum of all flow-driven buys into i) and its contemporaneous return:  

 

 
1 1,

ikt kt
k

it it
it

w f
r   

   


 (5) 

where rit 1 is the return of security i, taken between t and t+1, and  is a scaling factor (we use 

market capitalization, as is common in the literature). it+1 is an error term with conditional mean 

of zero, which may reflect other sources of variation of returns, and which can be interpreted 

naturally as reflecting news about fundamentals.  

 In writing Eq. (5), we assume that flow-driven trading is not motivated by fundamentals, 

but rather by investors’ demand for liquidity. For instance, a mutual fund experiencing a 10% 

it
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withdrawal may sell 10% of each security it owns. Or, an individual who loses her job may 

liquidate her equity portfolio pro-rata to pay future expenses.  If flow-driven demands do not 

cancel out across owners, this will exert some temporary pressure on prices, as long as there is 

limited market-making capital. Under this interpretation, the  term in (5) measures the price 

impact of liquidity trades: a high value of  means that prices react strongly to uninformed 

demand.3  

Is it reasonable to assume that flows do not predict future fundamentals, i.e., that fikt and 

it are uncorrelated? For example, if investors are informed, then it is possible that a fund’s 

outflows could predict deteriorating fundamentals of the stocks held by that fund. While 

theoretically possible, empirical evidence runs counter to this idea.  Frazzini and Lamont (2008) 

show that mutual fund inflows are “dumb money,” meaning that net inflows tend to forecast low 

long-run returns. Coval and Stafford (2007) study fire sales by mutual funds which experience 

large outflows, and which thus have to sell quickly. Khan, Kogan, and Serafeim (2009) and Lou 

(2010) also study flow-induced trading. These papers all find that the price changes 

accompanying flow-induced trading are temporary, reverting in about a year. In contrast, if flow-

driven trading were driven by information, then contemporaneous price changes would be 

permanent. In summary, consistent with the empirical evidence, we assume that t+1 and ft  are 

conditionally independent.  

To get to the volatility of returns, we need to take the variance of (5). Before doing this, 

we first rewrite the right-hand terms in Eq. (5) using vector notation: 

1 1it it t it
it

r W F
 
    , (6) 

                                                 
3 Hence,  is the price elasticity of demand (Wurgler and Zhuravskaya, 2002; and Chacko, Jurek, and 

Stafford, 2008). We generally assume a constant  across assets, but relax this assumption in Section 6. 
/1


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where  is the vector of weights of each investor in security i and  

 is the vector of net dollar inflows. K denotes the number of investors. 

Given independence between the error term and flow-driven trading, we can compute the 

conditional variance of the t+1 return: 

2

2 2
1

1
vart it it t it it

it

r W W 


 
   

 
, (7) 

where  is the conditional variance-covariance matrix of dollar flows  between t and t+1, 

and it is the conditional volatility of it+1. We define the fragility G as:  

2

1
.it it t it

it

G W W


    (8) 

Fragility measures the effective concentration of ownership of a financial asset, weighted by the 

volatility and correlation of the trading needs of its investors. Eq. (7) tells us that, if we regress 

returns volatility on fragility, the regression coefficient should recover the (squared) price impact 

of flow-driven trading, λ. 

 

2.2 Ownership concentration and non-fundamental risk: An example 

We can illustrate the intuition behind fragility using a simple example. Let θit be the 

market capitalization of security i: θit = nitPit. Suppose that i is held by a small number of 

concentrated investors and a large number of dispersed investors. KC concentrated investors each 

own a fraction x/KC of shares outstanding, thus collectively they own fraction x of the shares 

outstanding. They receive inflows and outflows of identical variance , as well as having 

constant flow covariance across investor pairs of ρσ2. Dispersed investors have infinitely small 

positions and experience independent and identically distributed inflows and outflows, which are 

 1 ,...,it i t iKtW w w 

 1 ,...,t t KtF f f

t tF

2
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also independent from those of the concentrated investors. In this case, we can substitute into Eq. 

(8) to get: 

 Git 
1

KC

2x 2  1
1

KC









2x 2 . (9) 

The first term in brackets comes from the diagonal terms of , while the second term comes 

from ’s off-diagonal elements. Dispersed investors do not contribute to fragility because their 

trades are uncorrelated and their number infinite. 

Suppose that flows between the concentrated investors are perfectly uncorrelated (ρ=0). 

Then, for a given ownership composition, fragility decreases with the number of concentrated 

investors, reflecting a form of ownership diversification. If there are many owners with 

uncorrelated liquidity needs, fragility tends to zero.  In the opposite extreme, if flows are 

perfectly correlated (ρ=1), then the right-hand-side of (9) simplifies to  which is the same 

as if the asset was held by one single owner.   

Eq. (9) also makes clear the role of flow volatility σ. With highly concentrated ownership 

within the group of concentrated investors (low KC), flow volatility has a larger effect on return 

volatility. However, as the number of concentrated investors increases, flow volatility exerts a 

smaller effect on returns. Again, this reflects the benefits of ownership diversification.  

 

2.3  Discussion: empirical vs. theoretical fragility 

In practice, it may be difficult to calculate fragility precisely because of incomplete 

ownership data. In our empirical analysis, for example, we only use mutual fund ownership, 

thereby ignoring the potential contributions of other owners. This section discusses the 

implications of incomplete data on our estimates. 

t

t

2 2x
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We can split the weight vector W from Eq. (8) into two parts: Wo, weights of O observed 

investors and WU, the weights of U unobserved ones. We sort investors by putting observed ones 

in the first O lines and unobserved ones in the last U lines. Similarly, we partition the  matrix 

into four parts:  

'
.OO UO

UO UU

  
     

 (10) 

O is the OxO matrix of variance-covariance of flows into observed investors, U is the UxU 

variance matrix of flows into unobserved investors, and UO is the off-diagonal UxO matrix of 

covariance between flows into observed and unobserved investors. Using this decomposition, we 

can rewrite fragility as: 

2

observed fragility unobserved fragility

1
2 ,O O O U U U U UO O

it

G W W W W W W


 
        
 
 
 

 

 (11) 

which decomposes fragility into three terms: the fragility of observed investors (for which we 

can actually compute the flow variance matrix and holdings), the fragility of unobserved 

investors (whose trading needs may be correlated or volatile), and the holdings-weighted 

covariance between the flows of observed and unobserved investors. 

 Eq. (11) illustrates the biases that may arise when we calculate fragility using the 

available data instead of the whole universe of investors. First, observed fragility may be high 

when unobserved fragility is high too. For instance, suppose that growth stocks are fragile 

because they are held by mutual funds with similar inflow patterns, but also because they are 

owned by retail investors whose stock market investment depends on the economy. Second, 

flows into unobserved and observed investors may be correlated: for instance when speculative 

retail investors become wealthier, they invest more in growth stocks and invest in funds that own 
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growth stocks. For either of these two reasons, regressing volatility on observed fragility may 

lead to an overestimate of the impact of fragility. However, counterbalancing these effects, the 

usual errors-in-variables introduced by unobserved investors works in the opposite direction.  

 Because mutual funds are the only investors for which we have detailed holding and flow 

data, there is no easy way to figure out how much our partial observation may bias our results. 

Keeping in mind these possible biases, when we turn to the data, we implicitly assume that 

unobserved investors are dispersed and have uncorrelated flows, much like in the example in 

Section 2.2. Notwithstanding these concerns, we take some steps to alleviate the omitted variable 

bias by also showing some weighted regressions, in which stocks with high mutual fund 

ownership get larger weight. For these stocks, estimated fragility is a better proxy for the true 

fragility G. And, as we will show, the fit in the weighted regressions tends to be a bit stronger. 

 

3 The fragility of US stocks 1990–2007 

In this section we describe the calculation of fragility for US-listed common stocks using 

quarterly mutual fund ownership data.  

3.1 Constructing fragility 
 

We extract quarterly mutual fund holdings from Thomson Financial between December 

1989 and December 2007. We start in 1989 because data on monthly flows begin for most funds 

in 1990. Every quarter, we obtain the dollar positions of all funds in stocks of NYSE decile 5 or 

greater. We limit the sample to these large stocks to keep the matrix computations manageable, 

but this has the additional advantage of focusing on stocks of greater dollar importance. In 

addition, liquidity-driven trades will be more likely to affect prices when we capture a large 

share of a stock’s ownership, which tends to be the case among larger stocks.  
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We aggregate fund classes to the portfolio level and rely on reported holdings as of the 

filing date (Thomson Financial FDATE).  Early in the sample period, there is some staleness in 

holdings due to infrequent reporting. To get the weight vector  used in Eq. (8), we divide the 

dollar holdings  of each fund j at the end of each quarter by total assets under management 

(AUM) .  We only include mutual funds for which we can also identify total net assets and 

returns. For the median stock in our sample, we are able to match 83% of mutual funds on a 

dollar-weighted basis.  

Monthly mutual fund flows are drawn from the Center for Research in Security Prices 

(CRSP) and are calculated according to standard practice in the literature. For fund j between t 

and t+1, flows are changes in total fund assets adjusted for returns: 

, (12) 

where  is the total net assets of the fund at the end of quarter t, and  is the total return of 

the fund between t-1 and t. We note that upper-case R denotes fund-level returns, while lower-

case r denotes stock returns. 

We then estimate , the conditional variance-covariance matrix of dollar flows. We do 

not compute the covariance directly because of a heteroskedasticity problem: the sample 

covariance of dollar flows overestimates the future variance of flows into funds that have 

declined in size, and underestimates the future variance of flows into funds that have grown. To 

get around this issue, we first compute quarterly percentage flows, by normalizing dollar flows 

by beginning-of-quarter fund assets, i.e., . For each quarter t, we then compute the 

rolling variance-covariance of percentage flows  taking all observations from the last 

itW

ijt itn P

jta

1(1 )jt jt jt jtf TNA TNA R  

jtTNA jtR

t

1/jt jtf TNA 

%
t
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quarter of 1989 to quarter t. To obtain our estimate of , the matrix of dollar flows, we then 

rescale  by fund assets at date t: 

  %ˆ ( ),t t t tdiag TNA diag TNA    (13) 

where diag(TNAt) is the K-by-K diagonal matrix whose kth term is TNAkt. Using  and the 

ownership vector Wit, we calculate stock-level fragility according to Eq. (8).  

 Our remaining data are from CRSP and Compustat. We compute the quarterly variance 

and standard deviation of daily stock returns and excess stock returns for each stock from one-, 

three-, and four-factor models (including the market risk factor, the Fama and French (1993) 

SMB and HML factors, and momentum). We focus primarily on volatilities and covariances 

based on daily stock returns, but also weekly, bi-weekly, and monthly volatilities and 

covariances. 

3.2 Components of fragility 

Before relating fragility to volatility, here we look at fragility’s components and their 

variation in the sample. For the purpose of exposition, we can decompose fragility by breaking 

the Ω matrix in Eq. (8) into its on- and off-diagonal elements:  

2
2 2

Off-diagonal terms On-diagonal terms

1 1
( ) ( ) ( ) ,it t t it it t t it t it it

it it

G W D W W D I W mf H 
 

      
 

   (14) 

where  is the matrix of the diagonal elements of ,  is the mean of these diagonal 

elements, and I is the identity matrix. mfit is the share of stocks held by mutual funds and H the 

sum of the squared shares held by each mutual fund. H is thus a pure measure of ownership 

concentration: it is the equivalent of a Herfindahl index, equal to one if there is just one mutual 

fund owner; and zero if there is a large number of very small ones.  

t

%
t

t̂

tD t t
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The first term on the right-hand-side of (14) is the contribution to fragility coming from 

the off-diagonal terms of : if flows are uncorrelated across funds, this term is equal to zero. 

The next terms comprise the contributions from the on-diagonal terms of the  matrix: it 

contains the effects of both ownership concentration and flow volatility. The effect of ownership 

concentration appears clearly if we further break the diagonal matrix  into  and .  

The last term in Eq. (14) shows that the on-diagonal part is mechanically linked with 

mutual fund ownership mft. We thus include mft as a control in many regressifon specifications.4 

The last term of Eq. (14) also highlights the key role played by ownership concentration.  

 Fig. 1. shows the evolution over time of median fragility, along with changes in mutual 

fund ownership and concentration. Fragility has a clear upward trend over the past two decades, 

which reflects the increasing share of mutual fund ownership. The simultaneous trend toward 

less concentration of ownership suggests that the new, smaller funds, have flows that are 

correlated and variable enough to compensate for the effect of ownership dispersion. 

Table 1 describes the sample variation of two measures of ownership concentration: H, as 

it appears in Eq. (14), and the number of owners. There is significant variation in ownership 

concentration, with the number of owners going from 31 (25th percentile) to 102 (75th percentile). 

The median stock has 53 mutual fund owners and H=0.127.   

 The bottom two panels of Table 1 describe the sample variation of the on- and off- 

diagonal terms of . The table shows that the volatility of flows has been increasing from 

about 10% of AUM per quarter to about 14% of AUM per quarter by 2003. Because  is 

                                                 
4 Another issue in our data is that mutual fund ownership has increased steadily from about 8% in 1989 to 30% 

in late 2007 (see Fig. 1A and Rydqvist, Spizman, and Strebulaev, 2009). This makes fragility increase steadily over 
the 1990s. At the same time, it is well known that stock price volatility has had medium-term fluctuations (Campbell, 
Lettau, Malkiel, and Xu, 2001; Brandt, Brav, Graham, and Kumar, 2010). To avoid spuriousness from common 
trends, we mostly report Fama and MacBeth (1973) estimates.  

t
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estimated on a rolling basis, this understates the growth in flow volatility. We summarize the off-

diagonal terms by showing mean correlation ρ and mean absolute correlation |ρ|. The table shows 

a rich correlation structure: the median correlation term is close to zero, but the 25% to 75% 

range lies between -0.18 and 0.24.5  

3.3 Correlates of fragility 
 

We next provide a descriptive analysis of the main correlates of fragility. Table 2 shows 

stock-level summary statistics sorted by fragility quintiles, based on quarterly breakpoints. As 

can be seen, fragility is quite persistent: this is partly a mechanical outcome from the calculation 

of , which is done on a rolling basis. But ownership structure is highly persistent too: for 

instance, the one-quarter-autocorrelation coefficient of the number of owners is 0.98.  It is 

interesting to note that fragility can be much more persistent than the identity of the owners. This 

is because, if one owner sells, she may well be replaced by another owner with similar flow 

volatility and correlation. 

More surprisingly perhaps, fragility is not monotonically correlated with the number of 

owners. This reflects that fragility depends both on ownership dispersion and the correlation of 

owners’ trading needs. Smaller firms are more fragile, which is not surprising given that smaller 

firms have more concentrated ownership: firms in the sixth decile of market capitalization have 

about 70 owners on average, while firms in the top decile have more than 320. Table 2 also 

shows that firms which have been actively purchased by mutual funds, past winners and growth 

stocks, all have higher fragility.6  

                                                 
5 We have also investigated the factor structure of the Ω% matrix.  Cross flow correlation is complex and cannot 

easily be summarized by a few factors: For the typical fund, aggregate flows explain less than 10% of the total 
variation in percentage flows. Among the 500 largest mutual funds, 47% of the variation in flows can be explained 
by a set of five principal components.  

6 In untabulated results, we have also checked whether fragility correlates with common measures of liquidity. 
Using data from Joel Hasbrouck’s Web site, we find a weak negative correlation between fragility and the Amivest 

t
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3.4 Validating fragility as a measure of non-fundamental risk 
 

For fragility to be a useful instrument for non-fundamental risk, it must be that fragility 

forecasts mutual fund flow-induced trading volatility in the next quarter.7 This is not guaranteed, 

because fragility is based on the past volatility of inflows experienced by a security’s current 

owners. For fragility to be a good forecaster of future volatility in security-level flows, the 

mutual flow variance-covariance matrix needs to be stable over time, and ownership cannot be 

too volatile from one quarter to the next.8 

We estimate a first-stage forecasting regression of the absolute value of flow-induced 

trading on fragility, i.e., 

1 1 .it it it it itW F a bG cZ u     

 

(15) 

We run this regression using the Fama-MacBeth procedure. We find that b is positive and 

statistically significant (b=0.169 with a t-statistic of 4.5, R-squared of 0.17). b is economically 

significant too: a one-standard-deviation increase in fragility predicts an increase of 

approximately 17% of a standard deviation in absolute flow-induced trading.  Both statistical and 

economic significance are robust to inclusion of controls such as size, share of mutual fund 

holdings, and stock and year fixed effects.   

 
4. Fragility and non-fundamental risk 
 

                                                                                                                                                             
liquidity measure. Lou’s (2010) measure of flow-motivated trading takes into account differences in liquidity in the 
first stage of his analysis. 

7 It is interesting to ask under what circumstances would our fragility measure not be a useful instrument for the 
volatility of future flow-driven demand. This might be the case if, for example, the covariance matrix of flows was 
not forecastable using the prior covariance matrix. While it is true that our estimation of the flow covariance matrix 
is subject to considerable noise, the noisiness is attenuated by the aggregation procedure used to compute fragility. 
In any case, to the extent that our right-hand-side variable is noisy, it may cause some attenuation bias in our 
regression results. 

8 Intuitively, we require that if we observe a fund’s ownership of a stock at the end of quarter t, that this stock is 
still in their portfolio (on average) when the fund experiences flows in quarter t+1. 
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We start by looking at the relationship between fragility and return volatility in graphical 

form. For each decile of fragility (breakpoints set quarterly), we draw the average volatility of 

total returns in Fig. 2, Panel A. There is a clear positive correlation between fragility and 

subsequent volatility, although this relationship starts at the second decile of fragility. For the 

first five deciles, daily volatility is about 2%; it then steadily increases to about 3% for the top 

fragility decile. Fig. 2, Panel B repeats the exercise, but here we restrict the sample to stocks for 

which mutual fund ownership is above 20%. For these stocks, the relationship between fragility 

and volatility is more linear and increasing, although its economic significance appears similar to 

Panel A. We obtain very similar results if, instead of restricting ourselves to stocks with more 

than 20% of mutual fund ownership, we shift our focus to the 2000s only—a period during 

which aggregate mutual fund ownership was higher.  Stronger results for these subsamples is 

consistent with less measurement error in our fragility variable when we can observe a greater 

fraction of the stock’s total ownership. 

 
Table 3 shows the corresponding statistical tests. In all regressions, we use one-quarter- 

ahead daily volatility σit+1 as the dependent variable, and regress it on the square root of fragility 

, together with various controls Zit: 

1 1.it it it ita b G Z C u       (16) 

We use the square root of fragility because, as can be seen in Eq. (7), fragility is proportional to 

variance. All regressions are estimated following Fama and MacBeth (1973) to account for 

trends. The exception is column 6, in which we report panel fixed effect estimates. Notice that, if 

Eq. (7) holds, b should in principle be equal to , which measures price impact. 

itG


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In the first column, we predict future volatility using mutual fund ownership and the 

number of owners. As expected, daily volatility is positively correlated with mutual fund 

ownership:  an increase in mutual fund ownership by 10% leads to an increase in daily volatility 

of about 0.2 %, which is approximately 10% of the sample mean. This finding is reminiscent of 

Sias (1996) and Bushee and Noe (2000) who find that increases in institutional ownership are 

accompanied by a rise in stock volatility. Controlling for mutual fund ownership, the coefficient 

on the number of mutual funds is negative, however. This suggests that ownership dispersion is 

accompanied by a reduction in volatility: if, for a given mutual fund ownership, the number of 

funds goes up from 100 (first quartile) to 300 (third quartile), daily volatility is reduced by about 

0.1%. In summary, not only total fund ownership, but also ownership concentration, seems to 

matter for forecasting volatility. 

Starting in the second column, we replace mutual fund ownership and the number of 

owners with fragility. Fragility captures some of the effects of the mutual fund share and the 

number of owners, but is theoretically a better predictor of volatility because it looks at actual 

dispersion (i.e., whether we have one large owner and 199 tiny ones; or 200 equal-sized owners), 

as well as taking into account the correlation of trading needs of the different owners. As shown 

in column 2, fragility is a strong predictor of future volatility. A 0.008 increase in fragility (from 

the 25th to the 75th percentile) leads to an increase in daily volatility by 0.5%, about one-quarter 

of the mean volatility. In this specification, b is 0.70, and the t-statistic is approximately 15.9 We 

can compare this coefficient to estimates of price impact from other papers. For instance, 

Wurgler and Zhuravskaya (2002) use index addition to estimate the demand to price elasticity: 

                                                 
9 We follow standard practice and report t-statistics based on Fama MacBeth standard errors. One can do a 

further correction for the persistence of coefficient estimates between subsequent cross-sections, by calculating 
Newey- West (1987) standard errors on the time-series of slope coefficients. Applying this adjustment to the 
baseline estimates in column 2, the t-statistic on fragility drops to 8.39.   
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they themselves obtain a price impact coefficient between 0.1 and 0.2, and do not report any 

study with an impact above 10.. In a more comparable setting, Lou (2010) has a price impact 

coefficient of about 0.2.10 To recover a comparable elasticity, we need to adjust for the fact that 

our volatility variable is based on daily returns—this yields 0.70×√63=5.5. Thus, the results from 

the univariate estimation suggests that price impact is quite high compared to previous research, 

possibly due to omitted variable bias.11  

In column 3 we repeat the regression from column 2, except that we weight observations 

in each cross-section by their mutual fund ownership share. Weighting by mutual fund 

ownership is essentially equivalent to downweighting observations with high measurement error. 

As can be seen, and consistent with graphical evidence shown in Figs. 2A and 2B, this 

strengthens the results slightly. As it turns out, all other estimates are much stronger under the 

weighted regression approach: for instance, the fixed effect estimate in column 7 more than 

doubles if one weights observation by mutual fund ownership (not reported).  

In column 4 we break fragility into two parts: the first component (√G (Diag)) 

corresponds to the (square root of the) on-diagonal terms in Eq. (14). It uses only diagonal terms 

of the flow covariance matrix . The second component (√G (Diag)), corresponds to the 

(square root of the) off-diagonal terms in Eq. (14)). Recall that the first component measures the 

conditional volatility of flow-driven trading, under the assumption that fund flows are 

uncorrelated. On-diagonal fragility should still generate volatility if ownership is not dispersed 

enough, or if fund flows are very volatile. Off-diagonal fragility measures the extent to which 

                                                 
10 In Table III, Lou sorts stocks by decile of flow-induced trading. The difference in flow trading between 

stocks in the top and bottom deciles is 22.27% of shares outstanding. Differences in contemporary return is 1.73% 
monthly, hence, 5.2% quarterly. This leads to a price impact of 5.2/22.27=0.23.  

11 Once we include past volatility and other controls, the price impact estimates are more in line with existing 
research. 

t
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funds have correlated flows: if their flows are perfectly uncorrelated, it is equal to zero. The 

results in column 4 show that both parts of fragility contribute equally to volatility.  

Column 5 checks that fragility has explanatory power beyond pure ownership 

concentration. To test this, we include the ownership Herfindahl index H as a control, as well as 

the fraction of shares held by mutual funds. Compared to the univariate estimates in column 2, 

the coefficient on fragility is unaffected by the two controls, increasing only slightly. This 

suggests that fragility contains more information (mutual fund flow volatility as well as 

correlation) than simply ownership concentration and mutual fund holdings. 12  Interestingly, 

compared to column 1, the sign of mutual fund ownership is reversed and becomes economically 

less significant. One plausible interpretation is that the direct effect of mutual fund ownership on 

volatility found in earlier work is channelled through fragility: what matters is not mutual fund 

ownership per se, but the volatility and correlation of mutual funds’ inflows and outflows.  

In the next three columns, we check that the predictive power of fragility is robust to 

various controls and specification adjustments. In column 6, we control for log share price, the 

book-to-market ratio, the stock return during the past year, age, lagged skewness, and lagged 

turnover. All these variables have been found to be correlated with volatility in previous 

literature.13 With the full suite of controls, the coefficient on fragility drops by about two thirds 

to 0.23 (t-stat of 6.27). In column 7, we estimate a fixed effect panel regression with a firm fixed 

effect. The fragility coefficient returns to its initial estimated value of 0.70 and is highly 

                                                 
12 Eq. (14) makes clear that ownership concentration H in isolation may not have much ability to forecast 

volatility: what is relevant is ownership concentration scaled by total mutual fund ownership mf. In untabulated 
regressions, we have used the interaction of H and mf to forecast volatility. This interaction term attracts a 
coefficient of 0.3 (t-stat =12.6). Once we introduce fragility, however, this variable is wiped out. 

13  Brandt, Brav, Graham, and Kumar (2010) show that low-priced stocks attract retail investors, causing 
volatility. Stocks with high past returns may be attention grabbing (Barber and Odean, 2008). Volume may signal 
the presence of retail traders which in turn may lead to volatility (Odean, 1998). The book-to-market ratio proxies 
for distance to default, which is accompanied with more equity volatility (Merton, 1974). Younger firms may be 
more volatile because of a poor information environment. Stock skewness may attract gamblers which in turn cause 
further volatility (Bali, Cakici, and Whitelaw, 2011). 
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significant.14 However, this estimate is not directly comparable with column 6 since the panel 

estimation does not remove common trends in volatility and fragility. Column 7 does suggest, 

however, that stocks which have experienced the biggest increase in fragility are also the ones 

which have experienced the largest increase in volatility.  

In column 8, we include the lagged volatility as a control, since volatility is highly 

persistent over time. Compared to column 6 estimates, the fragility coefficient decreases slightly 

from 0.23 to 0.15 but remains highly significant (t-stat of 4.81). Including a full set of controls as 

we do in column 8 brings our estimate of price impact more in line with existing studies. 

Adjusting for daily returns, the price impact estimate from column 8 is 0.152×√63=1.2, which is 

in the upper range of the comparable estimates reported by Wurgler and Zhuravskaya (2002, p. 

603).  

The results in columns 7 and 8 help alleviate concerns about the endogeneity of 

ownership. The general concern here is whether fragility causes volatility, or whether the 

relationship runs in the other direction. For example, young funds with volatile inflows might 

herd into volatile stocks, while more established funds with stable assets under management may 

prefer less volatile stocks. There is no panacea for ownership endogeneity in our tests, because 

we cannot identify exogenous changes in ownership.15 However, our results hold with both firm 

fixed effects, and controls for lagged volatility. These results provide some comfort, because it 

seems unlikely that owners select particular stocks because they forecast changes in future 

volatility. 

                                                 
14 For the panel regression in column 6, we have also computed Thompson (2011) standard errors. The t-

statistic is barely affected: it goes down from 7.4 to 6.9. This is not surprising as our data set features many more 
firms than time periods. See Petersen (2009) for a discussion. 

15 A large literature uses inclusion in the S&P 500 stock index as an exogenous change in ownership (e.g., 
Shleifer, 1986, Harris and Gurel, 1986). We have considered this, but in the data we do not find any systematic 
change in fragility surrounding index additions. We suspect that this is because fragility is based not only on total 
mutual fund ownership—which increases following inclusion—but also on the correlation structure of inflows and 
outflows. 
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In the last three columns of Table 3, we replace the dependent variable with the volatility 

of returns in excess of a one-, three-, and four-factor model and re-estimate our baseline 

specification.16 A priori, we expect to get somewhat weaker results when forecasting excess 

volatility, since aggregated versions of fragility may predict the volatility of risk factors 

themselves. For example, if funds holding smaller stocks experience higher flow volatility than 

funds holding larger stocks, we would expect the volatility of the Fama and French (1993) SMB 

factor to be high. As can be seen, the coefficients on fragility fall slightly when we adjust for 

factor exposure. 

  

5. Co-fragility and comovement 

We now explore a straightforward extension of our approach to the prediction of asset 

return comovement. We first show how the approach followed in Section 2 can be extended to a 

multi-asset context: this leads us to define two measures: co-fragility and fragility-beta. We then 

explain how these measures can be computed using our data and provide evidence of their 

predictive power for returns correlation and factor loadings.   

5.1 Defining co-fragility and fragility beta  

From Eq. (6), we can write the covariance of returns between assets i and j: 

2

1 1 1 1cov ( , ) cov( , ).t it jt it t jt it jt
it jt

r r W W
  
        (17) 

If owners have correlated trading needs or if large owners of the two assets are the same, as in 

Anton and Polk (2010), then returns will comove. We define the co-fragility of assets i and j as:  

                                                 
16 In the case of the single-factor model, the dependent variable is the volatility of market-adjusted returns, 

where market beta is allowed to vary by stock and by quarter. The three-factor model includes the HML and SMB 
factors, and the four-factor model adds momentum as well. 
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Given Eq. (17), co-fragility should predict covariance of returns. To predict correlations of 

returns instead, we normalize co-fragility by the square roots of fragilities of assets i and j and 

compute Gijt / GitG jt .  

 There is no reason to limit the exercise to pairwise correlations: we can use co-fragility to 

investigate the sources of a stock’s comovement with a given portfolio (value firms, small firms 

etc.). Specifically, consider a portfolio p, defined by the weights sp
jt  for each asset j.17 The 

conditional return beta of stock i with respect to portfolio p is: 
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Given the relationship between flow trading and returns (5), it is therefore natural to define the 

fragility beta of asset i with respect to portfolio p: 
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17 To avoid confusion, recall that p

jts  denotes the weights of the portfolio in question, while wjkt denotes the 

weight of security j in investor k's portfolio. 
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Eq. (20) is the regression coefficient of flow-driven net buys of asset i onto flow-driven buys into 

portfolio p. We call this term the “fragility beta.” The fragility beta should be positively related 

to the returns beta.  

Eq. (20) captures the idea that, for instance, a stock will comove with growth stocks when 

its owners have the same liquidity needs as growth stock-investors. As shown above, the fragility 

beta can be written as a weighted average of co-fragilities. If an asset has positive co-fragilities 

with other assets in portfolio p, its fragility beta with respect to p will be high.18  

Fragility beta is related to, but slightly different from, the concept of investor habitat 

described in Barberis, Shleifer, and Wurgler (2005). Barberis, Shleifer, and Wurgler suggest that 

a stock may comove with other securities in a portfolio because investors who own the stock also 

own the other securities in the portfolio. The difference between this and our notion of fragility 

beta is subtle: stocks comove even when they are not traded by the same investors. We only 

require that stocks are traded by investors who experience correlated liquidity needs. For 

example, a stock could have a high growth-stock beta if its owners experience flows which 

correlate with those of growth-stock owners. Yet, this stock might not be a growth stock in the 

usual sense of having growth-related characteristics such as high sales growth or a low book-to-

market ratio.     

 To implement Eqs. (18) and (20) empirically, we substitute the same inputs as before into 

(18) to calculate co-fragility between any pair of stocks. Because the number of co-fragility 

observations grows with the square of the number of stocks, we limit our sample here to the 

largest 500 stocks with positive mutual fund ownership in each quarter (thus, yielding 500x500/2 

= 125,000 unique stock pairs each quarter, although our regressions have fewer observations 

                                                 
18 This approach differs from Kumar, Page, and Spalt (2009), who compute similar betas but use historical 

trades, instead of looking at historical liquidity needs of individual owners. 



26 
 

because of missing control variables). Thus, compared to our fragility-volatility estimates, our 

co-fragility results draw more heavily on larger stocks.  

5.2 Explaining correlations 

Fig. 3 provides graphical evidence on the relationship between co-fragility and return 

comovement. In Panel A, we sort all stock pairs into co-fragility deciles, and then compute for 

each decile the mean covariance of daily returns across stock pairs in the next quarter. The figure 

suggests that there is a monotonic relationship between co-fragility and covariance. Mean 

covariance goes up from 0.004% to 0.016%—a fourfold increase—from the bottom to the top 

decile. Similar conclusions can be drawn from Panel B, where we look at the relationship 

between co-fragility and correlation. From the second to the ninth decile of co-fragility, the 

correlation of daily returns increases from 16% to 23%.  

In Table 4 we estimate the relationship between the co-fragility of two stocks and the 

comovement of their daily returns computed over the following quarter. Including each pair of 

stock pairs (i,j) in quarter t, we run the following cross-sectional forecasting regressions: 

1 1,ijt ijt ijt ijta bG Z C u       (21) 

and 
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where the dependent variable is the covariance or correlation of i and j computed on daily returns 

over all trading days in quarter t+1. Gijt is the co-fragility of i and j computed at the end-of-

quarter t. In (22), we rescale co-fragility by the product of the stock-level fragilities.   stands 

for the suite of stock-pair-level fundamental controls, as follows: Pindyck and Rotemberg (1993), 

Chen, Chen, and Li (2010), and Anton and Polk (2010) show that firms in the same industries 

ijtZ
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have correlated earnings and therefore returns. We define industry similarity dummy variables as 

equal to one when both stocks belong to the same two-, three-, or four-digit industry. We also 

expect firms with similar size or book-to-market ratios to potentially share exposure to the same 

fundamental shocks. Hence, we include a variable that measures the difference in NYSE size 

deciles between i and j, and a variable measuring the difference in book-to-market (BE/ME) 

deciles. Last, we also introduce the (log of one plus the) number of common owners as a control, 

as Anton and Polk (2010) show that stocks with many common owners co-move.19  

In the first panel of Table 4, the dependent variable is the covariance of returns; in the 

second panel, the dependent variable is the correlation. We first show the results from a 

regression which uses only the control variables. In both panels, the signs of the coefficients on 

the control variables go in the expected direction: stocks belonging to the same industry or 

having similar book-to-market ratios have higher comovement. The number of common owners 

is significant only in the correlation regression: when the stock pair moves from one to two 

common owners, the return correlation increases by 3%. 

The second column in each panel shows the univariate relationship between comovement 

and co-fragility. Co-fragility is a statistically strong and economically sizeable determinant of 

covariance. A two-standard-deviation increase in co-fragility (i.e., an increase by 0.006%) leads 

to an increase by 0.005% of future returns covariance, which is about one-third of the sample 

standard deviation. A two-standard deviation increase in co-fragility (scaled by single-stock 

fragilities) forecasts a 5% increase in correlation, about one-third of its standard deviation. 

                                                 
19While common ownership certainly explains part of comovement, our fragility measure captures at least two 

additional dimensions of returns comovement: (1) the volatility of the outflows/inflows these owners are expected to 
face, and (2) owners can be different, but have highly correlated flows—this should  in principle have exactly the 
same effect as having common owners.   
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The last two columns in each panel test the robustness of the univariate results by adding 

controls. As can be seen from columns 3 and 7, the relationship between covariance and co-

fragility is almost unchanged. The relationship between correlation and scaled co-fragility is 

more attenuated. In this case, the regression coefficient is still highly statistically significant, but 

reduced by about 40% in magnitude. In columns 4 and 8, we additionally control for current 

quarter covariance/correlation; these controls make the coefficients slightly smaller, but are still 

highly significant. 

In untabulated robustness tests, we have checked whether the relationship between co-

fragility and comovement still holds after purging returns of their market, SMB, and HML 

exposures. To do this, we compute pairwise correlations and covariance of three-factor excess 

returns. The coefficient on co-fragility falls to 0.29 (t-stat of 4.82) in the covariance regressions, 

and to 0.11 in the correlation regressions (t-stat of 20.88). The weaker results here are driven by 

the fact that co-fragility explains a good deal of the variation in the factor loadings themselves, 

which we address in Section 5.4. 

5.3 Explaining longer-horizon volatilities and comovement 

In our analysis so far, we have used fragility and co-fragility to forecast the volatility and 

comovement of daily stock returns. But, if the price pressure posited in Eq. (5) is temporary—i.e., 

if flow-driven trades exert only a temporary effect on prices—then our results should be 

attenuated when returns are measured at longer horizons. This is because we can expect 

fundamentals to dominate in the long run. Consistent with this, papers on excess comovement 

such as Barberis, Shleifer, and Wurgler (2005) have shown stronger results when returns are 

measured at higher frequencies (i.e., daily betas vs. weekly or monthly betas). 
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Pointing in the other direction, however, flows into mutual funds are persistent, leading to 

potentially stronger effects at longer horizons. For example, Frazzini and Lamont (2008) show 

that when sorting stocks based on their inflow in quarter t, the high inflow stocks continue to 

receive flows several years later.  And the price effects of mutual fund “fire sales” found by 

Coval and Stafford (2007) take a few months to revert, perhaps because mutual funds try to 

smooth their liquidity trades out over time. If flows are sufficiently persistent, then even with 

temporary price impact, the effect of fragility on volatility may strengthen as volatility is 

measured using longer-horizon returns. 

Which of these effects dominates is an empirical question addressed in Table 5. Here we 

repeat the main specifications from Table 3 and Table 4, but instead measure volatility and 

comovements using weekly, bi-weekly (10-day), and monthly returns. Panel A of the table 

repeats the baseline regression from Table 3. As can be seen, the coefficient on fragility does not 

change much when we measure returns weekly, but drops more noticeably as we move to bi-

weekly or monthly returns. The drop in R2s is more impressive: from an average of 0.08 in the 

case of daily returns to 0.04 in the case of monthly returns. The remaining panels of the table 

repeat the general pattern from Panel A for predicting covariances and correlations. To 

summarize, there is some evidence that the effects of fragility dampen at longer horizons, but 

they continue to be statistically and economically significant even when returns are measured 

monthly. 

 

5.4 Explaining factor comovements with fragility betas 

Fig. 4 suggests that fragility betas are related to returns-based betas. Each quarter, we sort 

stocks by their fragility betas, and then compute the mean return beta in each decile with respect 
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to various portfolios (market, SMB, and HML). In Panel A, we compute fragility betas with 

respect to the equal-weighted market portfolio. Leaving aside the first decile, the figure shows 

that stocks held by owners whose net inflows are correlated with all inflows tend to have a 

higher market beta. Stocks in the second decile of fragility beta have a market beta of 

approximately 0.8, while firms in the tenth decile have a market beta of 1.2.  

Panel B shows fragility betas with respect to the HML portfolio. For instance, stocks in 

the top decile are stocks which receive inflows when owners of high book-to-market (value) 

stocks receive inflows, or when owners of low book-to-market (growth) stocks face outflows. As 

can be seen, the univariate relationship between HML fragility and return betas is very strong: 

moving from the first to the tenth decile of HML fragility beta, HML return beta increases from-

.60 to +0.60.  

Panel C shows fragility betas with respect to SMB.  The relationship is not monotonic: 

univariate SMB returns beta is decreasing for the first two deciles of SMB fragility beta, and 

then increasing. One possible reason for the weaker relation is that our SMB fragility beta is 

imperfect: we restrict ourselves to stocks in the NYSE size decile 6 or above. The fragility beta 

thus classifies stocks in decile 6 of stock market capitalization as “small stocks,” which differs 

from the definition Fama and French (1993) use in calculating SMB.20  

Table 6 shows the statistical tests corresponding to Fig. 4. We estimate: 

1 1.
p p

it it it ita bG Z C u     

 

 (23)
 

                                                 
20 This is because smaller stocks are left out of the study. As a result, high SMB fragility beta stocks are stocks 

whose owners receive inflows when owners of stocks in size decile number 6 receive inflows, while high SMB 
returns beta stocks correspond to firms whose returns comove with stocks in the first, second, and third deciles of 
stock market capitalizations. Our sample selection procedure therefore creates a mechanical discrepancy between 
the two variables. 
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The dependent variable is the one-quarter-ahead beta of stock i’s daily returns with respect to the 

returns of any portfolio p (here: the market portfolio, HML, or SMB). p
itG  is stock i’s fragility 

beta with respect to portfolio p, and Zit denotes controls. If mutual fund flow-driven trading were 

the only source of volatility, then b should equal one. 

The first two columns of Table 6 look at the determinants of the market beta. As can be 

seen, fragility market beta is strongly related to the market beta. A two-standard-deviation 

increase in the fragility beta (i.e., an increase of 1.5) leads to an increase of 0.40 standard 

deviations of market beta. In column 2, we introduce several controls: betas are higher for 

growth firms (Franzoni, 2002; Campbell and Vuolteenaho, 2004; Campbell, Polk, and 

Vuolteenaho, 2010), but betas are unrelated to size. The other two controls are the share of 

stocks held by mutual funds and the (log) number of mutual funds owning the stock. Including 

these controls reduces the effect of fragility beta by about 40%, but the coefficient remains 

highly statistically significant. In summary, a significant part of observed market betas could be 

explained by stocks’ exposures to common fund flows. 

The next two columns show regressions forecasting HML beta. Consistent with the 

graphical evidence from Fig. 4, this is where our methodology proves the most successful. Using 

the HML fragility beta as the sole explanatory variable, the mean R² is as high as 25%. Including 

additional controls increases the R² only marginally. The regression coefficient is economically 

significant: a two-standard-deviation increase in fragility beta leads to an increase equal to 80% 

of one sample standard deviation of the returns HML beta. The estimate of this coefficient is 

equal to 0.47, while its “theoretical value” (i.e., assuming flow-driven mutual fund trades are the 

only source of price variation) should equal one.  
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Columns 5 and 6 study determinants of SMB beta. The SMB fragility beta explains about 

13% of the variance of the univariate SMB return betas. Including controls nearly doubles the 

explanatory power of our regression, but leaves the coefficient virtually unchanged. A two-

standard-deviation increase in SMB fragility beta increases SMB return betas by about 0.70 

standard deviations. The size of the coefficient is, however, smaller than for HML betas: 0.04 

compared to 0.5.  

 

6. Fragility and arbitrage  

This section exploits the relationship between fragility and volatility found in Section 4, 

in order to shed some light on the impact of speculative trading and arbitrage capital on stock 

volatility. The idea is that the impact of fragility on non-fundamental volatility will be muted if 

there are many arbitrageurs who accommodate mutual funds’ liquidity shocks. 

We slightly amend the equation framework of Section 2.1 by taking the trading of some 

investors as being determined by factors other than net inflows from mutual funds. We adjust Eq. 

(6) to become: 

rit1    DMF
it  DX

it  it1  (24) 

where, as in Eq. (6), /MF
it it t itD W F 

 

measures flow-induced trading by mutual funds between t 

and t+1. X
itD  is a new term representing the order imbalance (as a percentage of market 

capitalization) from other groups of investors such as hedge funds. X
itD  could also represent 
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imbalances driven by the active trades of mutual funds.21 X
itD  may accommodate, or exacerbate, 

flow-driven demand shocks by mutual funds.  

We estimate the correlation between X
itD  and MF

itD  by running the following regression 

for each stock: 

X MF
it it it it itD D      . (25) 

The extent to which other trades accommodate or exacerbate flow-induced trading is captured by 

the stock-level parameter γit. For instance, if 0it  then other trades tend to dampen the price 

movements induced by flow-induced trading. Alternatively, if 0i  , other trades tend to 

amplify flow-induced trading, as in Brunnermeier and Nagel (2004), Griffin, Harris, Shu, and 

Topaloglu (forthcoming), or Chen, Hanson, Hong, and Stein (2008). Why would γ vary across 

stocks? One simple reason is that the cost of supplying liquidity varies from stock to stock. 

Another one is specialization: Merton (1987) proposes that financial assets are often specialized 

and thus may have asset-specific amounts of arbitrage capital associated with them (see also 

Duffie and Strulovici, 2009). 

Substituting (25) into (24) leads to: 

2 2 2
1 1var (1 ) var .t it i it t it it

it

r G
   
 

 
    

 
 (26) 

From (26) we can see that the sensitivity of volatility to fragility depends on 1 it . To the extent 

that other trades accommodate flow-driven trading, then 1 it  will be small and fragility can be 

expected to have a smaller impact on volatility.  

                                                 
21 Fragility captures only the correlation structure of mutual funds’ forced trades, but mutual funds also do 

considerable active trading. It is conceivable that mutual funds trade actively to counteract part of the flow-driven 
trades, and we do find this for some stocks. 
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As mentioned above, we consider two types of “other trades.” First, we look at hedge 

fund order imbalances, i.e., quarter-to-quarter changes in aggregate hedge fund holdings using 

13F data. Second, we look at active buys by mutual funds. Active buys are equal to total mutual 

funds imbalances (computed, like for hedge funds, as the change in total mutual funds holdings 

as available from their reported holdings) net of flow-induced trading, and correspond to the first 

term on the right-hand-side of Eq. (4).  We also consider specifications which sum together 

hedge fund trades with the active trades of mutual funds. 

Our analysis is done in two stages. First, for each stock-quarter, we estimate  from Eq. 

(25) over the past 24 quarters, by regressing past X
itD  on past flow-induced trading. We thus 

have a stock-level time-varying measure of the extent to which other trades provide liquidity to 

flow-motivated traders. The median regression coefficient of hedge fund buys on FIT is 

approximately zero, meaning that hedge funds do not amplify or dampen mutual fund flow 

trading-induced volatility for the typical stock. There is, however, considerable heterogeneity 

across stocks: the 25th and 75th percentiles of the distribution are -0.35 and 0.33, respectively. 

The data also show that, on average, mutual funds accommodate their own flow-driven trades 

through active rebalancing. The median coefficient is equal to -0.6. As with the behavior of 

hedge fund trading, however, there is heterogeneity across stocks: the 25th and 75th percentiles of 

the distribution are equal to -1.12 and -0.06.  

The second step of the analysis is to use the estimated γit terms as an input into the 

following cross-sectional regression: 

1 1
ˆ ˆ1 1 .it it it it it ita b c G d G u          

 

(27) 

Based on our discussion, d should be positive, i.e., stocks for which “other trades” go in the same 

direction as mutual fund liquidity trades should have a stronger volatility-fragility relationship.  

it
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Estimates of Eq. (27) are reported Table 7.  The interaction coefficient d is positive and 

significant for hedge fund imbalances only, but not for active mutual fund buys. This means that, 

across stocks, the difference between hedge fund strategies (accommodate, or exacerbate) 

explains some of the effect of fragility on volatility. All in all, the data support the view that, 

while hedge funds do not front-run mutual fund trading on average, they consistently do so for 

some stocks, and this front-running exacerbates the impact of fragility on non-fundamental risk. 

Alternatively, for other stocks, hedge funds seem to act as providers of liquidity, by trading in 

the opposite direction to mutual fund flow-driven trades. In the latter case, when the correlation 

of trading patterns is negative, the results in Table 7 suggest that the effect of fragility on 

volatility is smaller.  

 
7.  Conclusions 

 
This paper develops a simple definition of financial fragility which is based on an asset’s 

ownership structure. An asset is fragile if it is exposed to high non-fundamental risk. We show 

that assets are fragile when ownership is concentrated, but also when ownership is dispersed but 

the owners experience correlated liquidity shocks. We implement measures of fragility on US 

stocks between 1990 and 2007, drawing on quarterly mutual fund ownership data.  

The main attraction of our fragility variable is its empirical tractability. As we show, our 

measure of fragility is useful for forecasting volatility. Partly, this empirical success is driven by 

the fact that forecasting the volatility and comovement of investors’ flows is much easier than 

predicting how any individual investor will trade in any given period. A simple extension of 

fragility to “co-fragility” is also useful for forecasting cross-stock return comovements and factor 

betas. 



36 
 

Although data availability constrains our analysis to the ownership of common stocks, we 

expect our fragility measure to be conceptually more useful among specialized assets for which 

ownership is more concentrated, or trading needs of its owners more correlated.  

Our framework may be extended to consider circumstances in which the correlation 

structure of investors’ liquidity trades is endogenous. In a richer model, it is not hard to see how 

the flow-driven trades by one investor may cause contagion: because flows result in price 

pressure, they affect the value of other investors’ portfolios. These investors may subsequently 

experience inflows and outflows as a direct result. In this case, our measures of fragility may also 

be useful for forecasting the possibility of a crash.  
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Panel A. Mutual fund ownership as a fraction of shares outstanding 

 
Panel B. The number of mutual fund owners 

 
Panel C. Ownership concentration 

 
Panel D. Fragility 

 
 
Fig. 1. Mutual fund ownership, concentration and fragility. For each characteristic, we plot the time-series of values 
for the median firm in each cross-section, drawn quarterly. The sample includes all stocks with market capitalization 
greater than the NYSE median between December 1989 and December 2007. Mutual fund ownership (Panel A) is 
the sum of shares owned by mutual funds, divided by shares outstanding. The number of mutual funds (Panel B) is 
the number of CRSP-listed funds owning a given stock. Ownership concentration (Panel C) is the sum of the 
squared shares held by mutual funds. Fragility (Panel D) is defined as the conditional expected variance of flow-
driven net buys into a stock, and calculated according to Eq. (8) in the text. It is high when ownership is 
concentrated, or when mutual fund owners have volatile or correlated flows. 
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Table 1 
Constructing fragility. 
 

The fragility of stock i in period t is given by: 

2

1
,it it t it

it

G W W


   

where Wit is the K×1vector of mutual fund ownership of stock i; Ωt is the K×K variance-covariance matrix of fund 
flows; it is stock i's stock market capitalization. K denotes the number of funds. The table reports summary statistics 
for the components of fragility. Hit is the sum of the squared fund positions, scaled by total mutual fund ownership 
of stock i at date t (for instance, Hit=1 if only one mutual fund owns the stock). The next rows show the number of 
mutual funds that hold a position in that stock for which we also have flow information. The bottom panels 
summarize the elements of the Ωt matrix. For the standard deviation of fund flows kt, the unit of observation is at 
the fund k level, each quarter. For the correlation between flows ρkk't and its absolute value |ρkk't|, the unit of 
observation is at the fund pair (k,k') level, each quarter. Summary statistics are shown in 1995Q4, 1999Q4, and 
2003Q4. Variances and covariances in t are computed using all observations from 1989Q4 to t. Fragility is 
winsorized at 0.5% and 99.5% levels. 
 
 Mean Min 25% Median 75% Max 
Ownership:       

Concentration Hit:       
Dec-1995 0.173 0.017 0.078 0.127 0.203 1.000 
Dec-1999 0.132 0.015 0.059 0.092 0.153 1.000 
Dec-2003 0.110 0.012 0.042 0.063 0.106 1.000 

Number of Owners:       
Dec-1995 78.716 1.000 31.000 53.000 102.000 571.000 
Dec-1999 109.456 1.000 40.000 72.000 134.000 1001.000 
Dec-2003 186.366 1.000 89.000 138.000 241.000 1278.000 

Fund flows:       
Flow volatility σkt:       

Dec-1995 0.103 0.000 0.042 0.094 0.158 0.337 
Dec-1999 0.121 0.000 0.061 0.126 0.174 0.375 
Dec-2003 0.140 0.000 0.088 0.145 0.186 0.375 

Flow correlation ρkk't:       
Dec-1995 0.026 -0.990 -0.183 0.022 0.236 0.990 
Dec-1999 0.037 -0.990 -0.130 0.026 0.205 0.990 
Dec-2003 0.041 -0.990 -0.112 0.030 0.196 0.990 

Flow correlation |ρkk't|:       
Dec-1995 0.265 0.000 0.094 0.210 0.386 0.990 
Dec-1999 0.229 0.000 0.071 0.168 0.329 0.990 
Dec-2003 0.214 0.000 0.065 0.155 0.306 0.990 

Fragility:        
Fragility Git: (x10e-4)       

Dec-1995 0.651 0.000 0.075 0.270 0.761 6.865 
Dec-1999 1.061 0.000 0.157 0.505 1.368 6.865 
Dec-2003 1.274 0.000 0.324 0.813 1.811 6.875 
 



 

Table 2 
Characteristics of fragile stocks.  
 

The sample includes all stocks that are owned by one or more mutual funds and which have end-of-quarter 
market capitalization above the NYSE median. The sample period is from December 1989 to December 2007. The 
table shows summary statistics for fragility-sorted portfolios, where fragility is the conditional expected variance of 
flow-driven net buys and computed according to Eq. (8) in the text. Stocks are sorted into portfolios based on end-
of-quarter fragility. Active weight is the sum of the changes in weights adjusted for portfolio growth and adjusted 
for stock price appreciation; active weights are aggregated across funds to the individual stock level. BE/ME denotes 
the book-to-market ratio. The bottom rows of the table report statistics on the number of stocks in the portfolio at 
different points in time. 
 
 Fragility Quintile: 
 Low 2nd Quintile Middle 4th Quintile High 

Fragility G % 0.210 0.460 0.675 0.959 1.562 
Fragility G (t-1) % 0.227 0.471 0.681 0.951 1.496 
N Owners 92 168 150 132 118 
MF Ownership % 5.331 12.349 16.767 21.074 28.657 
Active weight % 0.026 0.028 0.064 0.148 0.445 
NYSE decile 7.915 8.234 7.960 7.630 7.228 
BE/ME 0.512 0.515 0.521 0.483 0.405 
MOM decile 5.320 5.376 5.483 5.628 5.675 
Returns: (%)      

Past quarter 3.325 3.431 3.672 4.446 4.394 
Past 2 quarters 6.406 6.687 7.537 9.101 9.628 
      

T (in quarters) 73 73 73 73 73 
N (Dec 1989) 120 120 120 120 119 
N (Dec 1995) 217 217 217 217 216 
N (Dec 2000) 281 281 280 281 280 
N (Dec 2005) 256 256 256 256 255 
N (All) 16,423 16,386 16,387 16,387 16,360 
 



Table 3 
Fragility and stock return volatility. 

 
The dependent variable is the one-quarter-ahead standard deviation of daily stock returns or excess returns in that quarter: 

1 1.it it it ita b G Z C u       

Git denotes fragility, and Zit is a list of control variables. The sample period is 1990-2007. Except for columns 3 and 7, we report Fama-MacBeth estimates, which 
are equal-weighted quarter-by-quarter, and t-statistics in brackets. In column 3, observations are weighted by mutual fund ownership at the end of the quarter. 
Column 7 shows a panel regression which includes a stock-level fixed effect, with standard errors clustered by period. The regressions in columns 5-7 further 
include a set of unreported controls: the log of unadjusted stock price, the log of market capitalization, the ratio of book equity to market equity, the past 12 
month stock return, lagged skewness of stock returns, the log of age and share turnover. The remaining independent variables, whose coefficients are reported in 
the table, are: fragility, fragility calculated as if liquidity shocks of the different owners were uncorrelated (i.e. setting all off-diagonal terms of t to 0 in Eq. (8)), 
fragility calculated using only the correlation terms of liquidity shocks (i.e. setting all on-diagonal terms of t to 0 in Eq. (8)), the log of the number of mutual 
funds owning the stock, the fraction of stocks held by mutual funds, the ownership Herfindahl index H, the log of firm size, and the quarter-t volatility of returns. 
In the last three columns, the dependent variable is the standard deviation of excess returns, where excess returns are alternately based on the single-factor market 
model, the three-factor Fama and French (1993) model, or the three-factor Fama and French model plus momentum. FM denotes Fama-MacBeth estimation. 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

  Excess return volatility : 

 Total return volatility σ: 1-Factor σ 3-Factor σ 4-Factor σ

√G  0.696 0.711 0.793 0.226 0.699 0.152 0.583 0.564 0.556

  [15.17] [16.67] [12.60] [6.27] [7.43] [4.81] [16.97] [17.27] [17.29]

√G (Diag)  0.489  
  [11.75]  
√G (Off-diagonal)  0.524  
  [9.46]  
Log (# owners) -0.001  
 [-6.57]  
MF share 0.022 -0.006 0.000 -0.030 0.000
 [18.12] [-3.89] [0.03] [-5.57] [0.16]
Ownership Herfindahl  -0.002 -0.001 -0.004 -0.002
  [-2.86] [-1.16] [-1.41] [-1.88]
σ(t)   0.524
   [36.38]
Constant 0.024 0.018 0.018 0.018 0.019 0.029 -0.020 0.014 0.016 .016 .016

  [15.80] [23.68] [26.74] [23.88] [21.94] [20.07] [-1.21] [9.05] 24.07 24.89 24.86

Observations 81,962 81,962 81,962 81,962 81,962 48,906 48,906 48,906 75,495 75,495 75,495

R-squared 0.06 0.08 0.11 0.09 0.09 0.48 0.57 0.58 0.08 0.08 0.08

Additional controls No No No No No Yes Yes Yes No No No

Estimation FM FM FM FM FM FM Panel+FE FM FM FM FM

Weighting EW EW MF-weight EW EW EW EW EW EW EW EW



Table 4 
Co-fragility, covariance, and correlation. 
 

In panel A, the dependent variable is alternately the one-quarter-ahead covariance between daily returns of pairs of stocks i and j: 

     1 1,ijt ijt ijt ijta bG Z C u     
 

where Gijt denotes co-fragility of stocks i and j, and Z is a list of pair-level control variables. In Panel B, the dependent variable is the one-quarter-ahead 
correlation between daily returns of stocks i and j: 

     
1 1.

ijt
ijt ijt ijt

it jt

G
a b Z C u

G G
     

 
In Panel B, we rescale co-fragility Gijt between stocks i and j by the square root of the product of their individual fragilities Git and Gjt. The control variables 
include dummy variables for whether stocks i and j are in the same two-digit, three-digit, or four-digit SIC code, the absolute difference in log size between i and 
j, the absolute difference in log BE/ME between i and j, and one-quarter lagged correlation and covariance of stock returns between i and j. Regressions are 
estimated quarterly between December 1989 and December 2007 and include all stock pairs drawn from the largest 500 stocks each quarter. The table reports 
average regression coefficients and the associated Fama and MacBeth t-statistics.  
 Panel A: Dependent variable = σijt+1 Panel B: Dependent variable = ρijt+1  

 (1) (2) (3) (4) (5) (6) (7) (8)
Gijt 1.690 1.497 1.135
 [4.06] [4.10] [3.94]
Gijt/ √Git√Gjt 0.088 0.057 0.047
 [17.38] [8.32] [7.48]
SIC2it=SIC2jt 0.344 0.329 0.243 0.057 0.055 0.048
 [4.94] [4.90] [5.68] [9.65] [9.70] [9.39]
SIC3it=SIC3jt 0.386 0.348 0.272 0.045 0.047 0.039
 [3.20] [3.06] [3.62] [4.88] [5.29] [4.66]
SIC4it=SIC4jt 0.113 0.141 0.125 0.055 0.053 0.048
 [1.45] [1.88] [2.20] [7.90] [7.87] [7.33]
Common owners (log) 0.027 0.012 0.012 0.028 0.021 0.018
 [0.95] [0.39] [0.47] [11.50] [10.58] [9.45]
Similar size -0.011 -0.014 -0.010 -0.003 -0.004 -0.003
 [-1.21] [-1.53] [-1.60] [-3.32] [-4.24] [-3.61]
Similar BE/ME -0.021 -0.016 -0.013 -0.004 -0.003 -0.003
 [-5.44] [-4.64] [-4.41] [-10.07] [-8.39] [-7.85]
σijt 0.295
 [13.36]
ρijt 0.194
 [17.22]
Observations 2,916,545 3,911,280 2,916,545 2,796,062 2,916,545 3,907,003 2,913,266 2,792,768
R-squared 0.04 0.04 0.08 0.17 0.06 0.02 0.07 0.11

 



Table 5 
Forecasting volatility and comovement at longer horizons. 
 

Univariate regressions forecasting the standard deviation of returns in the next quarter, the covariance of returns in the next quarter, or the correlation of 
returns in the next quarter, based on daily, weekly, bi-weekly, and monthly returns. Git denotes fragility of stock i, and Gijt denotes the cross-fragility between 
stocks i and j. The first column of each panel repeats the results from Table 3 and Table 4. The remaining columns re-estimate the regressions, with volatility and 
comovements based on weekly, bi-weekly, and monthly sampling of returns. In Panel A and Panel B, the regression coefficients are adjusted so that long-horizon 
results are directly comparable with the results from the daily regressions. Regressions are estimated quarterly between December 1989 and December 2007; the 
table reports average coefficients from the 73 quarterly regressions and the associated Fama and Macbeth t-statistics. The constant term is omitted. 
 

 Panel A : Total return volatility it1
 Panel B : Covariance  = σijt+1 Panel C: Correlation = ρijt+1 

Measurement interval : Daily Weekly Bi-weekly Monthly Daily Weekly Bi-weekly Monthly Daily Weekly Bi-weekly Monthly

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

  

√Git 0.696 0.715 0.657 0.569

 [15.17] [14.13] [14.40] [13.90]

Gijt  1.690 2.134 1.814 1.141

  [4.06] [3.92] [3.85] [2.52]

Gijt/ √Git√Gjt  0.088 0.085 0.073 0.070

  [17.38] [10.23] [7.70] [5.57]

Observations 81,962 81,962 81,962 81,962 3.9M 3.9M 3.9M 3.9M 3.9M 3.9M 3.9M 3.9M

R-squared 0.08 0.08 0.06 0.04 0.04 0.02 0.01 0.01 0.02 0.01 0.00 0.00

 



Table 6 
Co-fragility and three-factor comovement.  
 

Regressions of return betas with respect to portfolio p on fragility betas with respect to the same portfolio p: 

1 1 1.
p p

it it it ita bG Z C u        

In columns 1-2, p is the market portfolio. In columns 3-4, p is the Fama and French (1993) HML portfolio. In 

columns 5-6, p is the Fama and French (1993) SMB portfolio. Return beta 1
p

it   is the regression coefficient of 

stock i's return on the return of portfolio p. Fragility beta 1
p

itG  is the regression coefficient of flow-driven trades into 

stock i on flow driven trades into portfolio p. For example, GHML is the regression coefficient of mutual fund flows 
into stock i on the flows into the portfolio that buys high BE/ME stocks and sells low BE/ME stocks, with similar 
constructions used for the market and SMB portfolios. The control variables include the fraction of shares 
outstanding held by mutual funds (MF Share), the number of mutual fund owners, the log of firm size, and the most 
recently recorded BE/ME ratio. Regressions are estimated quarterly between December 1989 and December 2007; 
the table reports average coefficients from the 73 quarterly regressions and the associated Fama and Macbeth t-
statistics. 
 

 β βHML βSMB 

 (1) (2) (3) (4) (5) (6) 

Gβ 0.194 0.125     
 [11.78] [7.40]     
GHML   0.482 0.471   
   [21.15] [18.52]   
GSMB     0.043 0.042 
     [9.17] [9.61] 
MF Share  0.880  1.451  -0.551 
  [3.31]  [6.28]  [-3.36] 
N Owners (log)  0.094  -0.106  -0.016 
  [1.39]  [-1.85]  [-0.30] 
Size (log)  -1.010  131.210  250.160 
  [-0.02]  [4.07]  [9.03] 
BE/ME  -0.243  0.289  0.313 
  [-6.97]  [6.99]  [8.44] 
Constant 0.778 0.369 -0.205 -3.001 -0.659 -6.085 
 [34.62] [0.59] [-5.26] [-6.09] [-14.49] [-15.52] 

Observations 41,759 30,877 41,155 30,519 41,155 30,519 
R-squared 0.06 0.15 0.25 0.29 0.13 0.25 
Fama MacBeth Yes Yes Yes Yes Yes Yes 

 
  



 
 

Table 7 
Liquidity providers and the impact of fragility on volatility: two-stage regressions.  
 

For each stock in each quarter, we first estimate the sensitivity of demand X

itD of type X on total flow-driven 

buys from mutual funds MF

itD : 

DX
it  Dit

MF it  
We consider active net buys by mutual funds (X=mutual funds’ active purchases), net buys by hedge funds 
(X=hedge funds), and the sum of these (X=mutual funds active purchases + hedge funds). We estimate these 
regressions on a rolling basis, so that the estimate of γit is based on flows during the past 24 quarters. |1+ γit | serves 
as an estimate of the extent to which demand of type X accommodates flow-driven trades by mutual funds. When |1+ 
γit | is large, demand of type X acts as a destabilizing force. The table below reports results from second-stage 
regressions of one-quarter-ahead volatility of daily returns it+1 on fragility √Git, |1+ γit |, and the interaction of |1+ γit 
| and fragility √Git. 

1 1
ˆ ˆ1 1 .it it it it it ita b c G d G u            

Regressions are estimated quarterly between December 1989 and December 2007; the table reports average 
coefficients from the 73 quarterly regressions and the associated Fama and Macbeth t-statistics. 
 

 Dependent variable = σijt+1 

 (1) (2) (3)

|1+γ1|·√G     (Active MF buys + HF buys) 0.060  
 [2.95]  
|1+γ2|·√G     (HF buys) 0.138 
 [3.89] 
|1+γ3|·√G      (Active MF buys)  0.047
  [1.79]
|1+γ1|     (Active MF buys + HF buys) 0.000  
 [2.71]  
|1+γ2|      (HF buys) -0.000 
 [-0.49] 
|1+γ3|      (Active MF buys)  0.001
  [3.57]
√G  0.438 0.432 0.507
 [10.13] [10.61] [12.95]
Constant 0.016 0.017 0.016
 [25.79] [26.18] [28.80]
  
Mean estimates: Mean(1+γ) = Mean(1+γ) = Mean(1+γ) =
 1.033 1.245 0.781
Observations 32,046 48,143 43,534
R-squared 0.07 0.09 0.08

 
 

  


