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Abstract

The design of the New York City (NYC) High School match involved tradeo¤s between
incentives and e¢ ciency, because some schools are strategic players that rank students in
order of preference, while others order students based on large priority classes. Therefore
it is desirable for a mechanism to produce stable matchings (to avoid giving the strategic
players incentives to circumvent the match), but is also necessary to use tie-breaking for
schools whose capacity is su¢ cient to accommodate some but not all students of a given
priority class. We analyze a model that encompasses one-sided and two-sided matching
models. We �rst observe that breaking indi¤erences the same way at every school is
su¢ cient to produce the set of student optimal stable matchings. Our main theoretical
result is that a student-proposing deferred acceptance mechanism that breaks indi¤erences
the same way at every school is not dominated by any other mechanism that is strategy-
proof for students. Finally, using data from the recent redesign of the NYC High School
match, which places approximately 90,000 students per year, we document that the extent
of potential e¢ ciency loss is substantial. Over 6,800 student applicants in the main round
of assignment could have improved their assignment in a (non strategy-proof) student
optimal mechanism, if the same student preferences would have been revealed.
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1 Introduction
In 2003-04, the authors of this paper assisted the New York City Department of Education
(NYCDOE) in redesigning the student assignment mechanism used to match over 90,000
entering students to public high schools each year (Abdulkadiro¼glu, Pathak and Roth
2005). A largely decentralized and congested assignment process with counterproduc-
tive incentives was replaced with a more centralized, uncongested procedure, with more
straightforward incentives, based on a student-proposing deferred acceptance algorithm
adapted to satisfy various constraints of the NYCDOE.1

School choice in New York, and in other cities including Boston (in which a new design
was implemented in 2006, see Abdulkadiro¼glu, Pathak, Roth, and Sönmez 2005, 2006),
requires extensions of the standard models and results of matching theory found, for
example, in Roth and Sotomayor (1990). Some school choice environments are one-sided
in the sense that only the students are strategic players whose welfare and incentives
need to be considered (while the school places are simply objects to be allocated, cf.
Abdulkadiro¼glu and Sönmez 2003). Other school choice environments are traditional two-
sided matching markets. The situation in New York City is a hybrid: some schools are
active strategic players that rank their students in terms of preferences, others have no
preferences, and others fall in between (see Appendix 1). There are incentive and welfare
considerations that a¤ect schools as well as students.
In particular, student i and school s form a blocking pair if i prefers school s to the

school she is assigned, and school s ranks student i ahead of another student who is
assigned to school s. A matching without blocking pairs is a stable matching. When
schools actively rank students, if there is a blocking pair, the school has an incentive
to circumvent the match to enroll the students it would prefer. This was an important
feature of the old system in NYC, in which some schools concealed capacity in an e¤ort
to be matched later with preferable students.2

Thus when schools actively rank students, it is important to obtain a stable matching,
i.e. a matching such that there are no blocking pairs.3 This was one of two principal
objectives of the NYC school match design. The second was that the school match

1As discussed in our 2005 paper, some of these constraints, like the one limiting each student to apply to no
more than 12 schools, interfered with the dominant strategy properties of the unconstrained mechanism for a
minority of students. In our present theoretical treatment, we will consider the design problem without these
idiosyncratic constraints.

2E.g. the Deputy Chancellor of Schools, quoted in the New York Times (11/19/04): �Before you might have
a situation where a school was going to take 100 new children for 9th grade, they might have declared only 40
seats, and then placed the other 60 outside the process.�

3Stable matchings may be relevant even when all schools are passive. In this case, stable matchings eliminate
�justi�ed envy." See Abdulkadiro¼glu and Sönmez (2003) and Abdulkadiro¼glu, Pathak, Roth and Sönmez (2006)
for discussion in the context of Boston�s new student assignment mechanism.
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process should be strategy-proof for students, i.e. that it should be a dominant strategy
for students to state their true preferences.
In two-sided matching problems with strict preferences, stable matchings are e¢ cient,

and there is a unique stable matching that gives every student the best match she can get
at any stable matching. This stable matching is traditionally called the student-optimal
matching, and is the outcome produced by the student-proposing deferred acceptance
algorithm, which is strategy-proof for students. Thus, if all preferences were strict, there
is an o¤-the-shelf solution (already applied in other matching problems such as for medical
residents) that would achieve both objectives.4

However, a primary feature of school choice problems is that there are indi¤erences�
ties�in how students are ordered by at least some schools. When school preferences involve
indi¤erences, there is a non-empty set of stable matchings that are weakly Pareto optimal
for the students. It will be useful in what follows to call any member of this set a student
optimal stable matching.5

When many students are equivalent from the point of view of a school with limited
space, an assignment mechanism must include a tie-breaking procedure. Random tie
breaking (by assigning each student a lottery number to be compared when students are
otherwise tied) preserves the ex ante equivalence of the students, and also preserves the
strategy-proofness of the student proposing deferred acceptance algorithm. But random
tie breaking introduces arti�cial stability constraints (since, after random tie breaking,
schools appear to have strict preferences between students for whom they are indi¤erent),
and these constraints can harm student welfare.6 In other words, when the deferred
acceptance algorithm is applied to the strict preferences that result from tie breaking,
the outcome it produces may not in fact be a student optimal stable matching in terms
of the original preferences, i.e. there may be other stable matchings that weakly Pareto
dominate this outcome from the point of view of student welfare. That is, there may be
other stable matchings with respect to the original preferences at which some students
are better o¤, and no students are worse o¤.

Nevertheless, some forms of random tie breaking may be preferable to others. One of
the �rst design decisions we were confronted with was whether to assign lottery numbers
to each student at each school (multiple random tie breaking), or to conduct a single

4See Roth and Peranson (1998) on the current design of the medical resident match, and Gale and Shapley
(1962) and Roth (1982, 1985) on the basic optimality and incentive results. The NYCDOE initially contacted
us because they were familiar with the design of the medical match.

5See Milgrom (2006) for a similar new treatment of the core for auctions with non-transferable utility, and
its relation to matching.

6From this point on, we will mostly be concerned with student welfare and incentives, and we will speak
about Pareto e¢ ciency and strategy-proofness with respect to students only. In the conclusion, we will revisit
the larger welfare and incentive issues that are implicitly also included when we deal with stable matchings.
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lottery among all students that would give each student a lottery number to be used for
tie breaking at every school (single random tie breaking). Computations with simulated
and then actual submitted preferences indicated that single tie breaking had superior
welfare properties.7 (The computations based on the revealed preferences will be discussed
in Section 5, and Table 1.) The �rst theorem in this paper provides some theoretical
insight into this di¤erence. We show that for every student optimal stable matching
there exist single-tie-breaking rules from which that matching can be obtained by the
deferred acceptance algorithm, i.e. every student optimal stable matching can be obtained
with single tie breaking. Therefore none of the additional outcomes that are sometimes
produced by the deferred acceptance algorithm with multiple tie breaking (but not by
single tie breaking) are student-optimal.8

However, single tie breaking can also lead to a matching which is not student-optimal.
Thus there will sometimes be a potential opportunity to improve on the outcome of de-
ferred acceptance with single tie breaking. Theorem 2, our main theoretical result, shows
that there exists no strategy-proof mechanism (stable or not) that Pareto improves on the
deferred acceptance algorithm with single tie breaking (even when Pareto improvements
are with respect to students only).
This theorem has as corollaries two known results. The �rst (due to Erdil and Ergin,

forthcoming) is that, contrary to the case when all preferences are strict, no strategy-proof
mechanism exists that always produces a student optimal stable matching. The second
is that neither serial dictatorship nor top trading cycles dominates deferred acceptance
with tie breaking (since they are both strategy-proof), although neither one is dominated
by deferred acceptance, since both are Pareto e¢ cient for students. Thus, there is a
tradeo¤ between strategy-proofness and e¢ ciency, a tradeo¤ that hinges on stability.
Deferred acceptance with tie breaking, a stable mechanism, is on the e¢ cient frontier of
all strategy-proof mechanisms.

This theorem does not speak to the magnitude of the tradeo¤ to expect in real school
choice plans. We take a step towards investigating this question using data on student
preferences from 2003-04 in New York City. Using the algorithm recently developed by
Ergin and Erdil (forthcoming) to �nd student optimal matchings (starting from true pref-
erences and the outcome of the deferred acceptance algorithm with single tie breaking),
we �nd that the apparent e¢ ciency loss is considerable in New York. More than 6,800

7Tayfun Sönmez also played an important role in some of the early discussions of this.
8That the manner of tie breaking has important consequences for the outcome of deferred acceptance algo-

rithms (when stability is an issue) contrasts in a surprising way with the case of one-sided matching. Pathak
(2006) shows the strategy-proof top trading cycles mechanism that produces e¢ cient (but not stable) match-
ings is una¤ected by the choice of multiple versus single tie breaking, when all schools are indi¤erent between
students.
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students could be matched to schools they prefer to their assignment from deferred accep-
tance, without harming any others, if the same preference information could be elicited.
This contrasts with the similar exercise on data from Boston�s new assignment system in
2005-06 (Abdulkadiro¼glu, Pathak, Roth and Sönmez 2006), in which no Pareto improve-
ments at all could be made for students. This raises a number of new questions that we
discuss in the conclusion concerning when potential e¢ ciency gains exist, and whether
they can be realized.
The present paper thus has three goals. It presents some new models and theory,

suitable to the kinds of hybrid matching problems that arise in school choice, in which
indi¤erences are ubiquitous. It presents some new empirical results concerning the mag-
nitudes of the tradeo¤s we discover. And it tells an aspect of a design story that, as
economists gain experience in design, has become increasingly familiar, namely that the
solution to design problems often requires extensions of existing theory (cf Roth 2002).
The next section describes how the design of a school matching mechanism is di¤erent

from closely related matching models and results that have been usefully applied to as-
pects of the design of related matching markets. Section 3 introduces the matching model
with active and passive schools and reviews some basic properties of stable matchings in
this domain. Section 4 presents the two theoretical results. In Section 5 we empirically
compare the outcome from deferred acceptance with single tie breaking to deferred accep-
tance with multiple tie breaking, and to a student optimal matching, using preference data
from New York City�s high school match, and compare this to the similar computation
for Boston.

2 Related literature
The school choice problem, studied as a mechanism design problem by Abdulkadiro¼glu
and Sönmez (2003), is closely related to two-sided matching and one-sided matching. In
the models we will consider, matching is many-to-one, since schools match with many
students, but students only match with one school.
In two-sided matching models (Gale and Shapley 1962), there are two disjoint sets of

agents, and every agent is an active strategic player with preferences over the agents in
the other set.9 A matching of agents on one side to agents on the other (that respects the
relevant capacity constraints) is stable if it is individually rational and there is no pair
of agents who each prefer to be assigned to one another than to their allocation in the

9Gale and Shapley (1962) phrased their discussion in a school choice context as a �college admissions�
problem and studied the set of stable matchings. Balinski and Sönmez (1999) developed the theory of two-
sided matching in relation to college admissions where ordering of students at colleges are determined via
students�scores at an entrance exam.
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matching. Stable matchings are Pareto optimal with respect to the set of all agents, and
in the core of the market whose rules are that any pair of agents on opposite sides of the
market may be matched (subject to capacity constraints) if and only if they both agree
(Roth and Sotomayor 1990). Empirical observation suggests that centralized matching
mechanisms in labor markets are most often successful if they produce stable matchings
(Roth 1984, 1990, 1991; Roth and Xing 1994; Roth and Rothblum 1999).
When preferences are strict, Gale and Shapley (1962) showed that a class of deferred

acceptance algorithms identify a stable match that is optimal for one or the other sides of
the market, in the sense that every agent on one side of the market does at least as well at
their optimal stable matching as at any other stable matching. Roth (1982a, 1985) showed
that there does not exist any stable mechanisms that are strategy-proof for all agents (and
in particular, none are strategy-proof for schools matched to more than one student), but
the mechanism that produces the student optimal stable matching is strategy-proof for
the students, in the sense that it is a dominant strategy for each student to state his
true preferences. When preferences are not strict, there will not in general exist a unique
stable match that is weakly Pareto optimal for each side of the market, rather there will
a non-empty set of stable matches that are weakly Pareto optimal for agents on that side
of the market.
In contrast, one-sided matching problems consist of a set of agents and a set of objects

to be matched with agents (Shapley and Scarf 1974, Hylland and Zeckhauser 1979). Pareto
e¢ cient mechanisms have been developed and analyzed by numerous authors (Roth and
Postlewaite 1977, Roth 1982b, Ma 1994, Abdulkadiro¼glu and Sönmez 1999, Papai 2000).
For these kinds of problems, the top trading cycles mechanism introduced in Shapley and
Scarf (1974, and attributed to David Gale) is strategy-proof as a direct mechanism (Roth
1982b).10

As in other areas of practical market design (cf. Roth 2002) the design of actual
school choice systems raises new theoretical questions. Several papers have been written
about Boston�s school choice system in which all schools are passive: see Abdulkadiro¼glu,
Pathak, Roth and Sönmez (2005, 2006), Abdulkadiro¼glu and Yasuda (2006), Chen and
Sönmez (2006), Ergin and Sönmez (2006) and Pathak and Sönmez (2006). New York City
motivates the study of a di¤erent set of issues related to the fact that some schools are
active strategic agents, and some are passive.
This paper is most closely related to Erdil and Ergin (forthcoming), who, in an im-

portant contribution that is complementary and contemporaneous to ours, also analyze
indi¤erences in school choice problems.11 They present a polynomial-time algorithm,

10Top trading cycles played a prominent initial role in the proposal for designing clearinghouses for kidney
exchange, see Roth, Sönmez and Ünver (2004). Subsequent theoretical developments were necessitated by some
of the practical constraints of kidney exchange, see Roth, Sönmez and Ünver (2005a, 2005b, forthcoming).
11Much of the attention in the prior literature to indi¤erences has been in the computer science literature, with
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stable-improvement cycles, for the computation of a student-optimal matching when pri-
orities are weak orders. The idea is, starting from a stable matching, to improve it through
a sequence of trades among students and schools such that after each trade in the sequence,
the resulting matching is still stable. We will revisit their proposal in section 5. They also
present an impossibility theorem which demonstrates in an economy with four or more
students and at least three schools, there is no strategy-proof mechanism which always
selects a student optimal stable matching. In this context, our main theoretical result
implies that student proposing deferred acceptance with tie breaking is optimal within
the class of stable and strategy-proof mechanisms. Finally, Erdil and Ergin (2006) analyze
a two-sided matching model with indi¤erences on both sides of the market and extend the
algorithm in Erdil and Ergin (forthcoming) to construct Pareto e¢ cient matchings with
respect to both sides.

3 Model
We consider a model in which a school may have a strict order of students, be indi¤erent
among all students, or partition students into indi¤erence classes, with each class holding
one or more students. Stability continues to be a key notion, with blocking pairs always
involving strict preferences for both parties.
A matching problem consists of a �nite set of students (individuals) I and a �nite

set of schools S: The number of available seats, i.e. the capacity at s 2 S is qs and
q = (qs)s2S is the list of capacities. Every student i 2 I has a strict preference relation
Pi over S [ fig: Let sRis0 if sPis0 or s = s0: Every school s has a weak preference relation
Rs over I [ fsg. Let �s and �s represent the asymmetric and symmetric parts of Rs;
respectively. To simplify the analysis, we assume that either i �s s or s �s i but not
i �s s: The preference relation of a school s over subsets of students is responsive to Rs,
i.e. a school�s preferences over groups of students is such that, for any group of students
T with jT j < qs, the school prefers T [ i to T [ j if and only if i �s j, and prefers T [ i to
T if and only if i �s s (Roth 1985). Let PI0 = (Pi)i2I0�I and P�I0 = (Pi)i2I�I0 :We de�ne
RS0 and R�S0 similarly. We �x I; S and q throughout the paper. Therefore a problem or
preference pro�le is given by (PI ; RS):
When school preferences are strict, this model reduces to the college admissions model

(Gale and Shapley 1962, Roth 1985); when every school is indi¤erent among all students,
it reduces to the house allocation model where there are potentially multiple places in
each house (Hylland and Zeckhauser 1979). More importantly, the model allows both
types of schools, as well as schools with several indi¤erence classes simultaneously.

the conclusion that many issues that are computationally simple with strict preferences become computationally
complex in the presence of indi¤erences (see, for instance, Irving (1994)).
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We say s 2 S is acceptable for i 2 I if sPii: Remaining unmatched is also acceptable
for i. Similarly i 2 I is acceptable for s 2 S if i �s s: If x is not acceptable for y; then
x is unacceptable for y:
A matching is a correspondence � : S [ I ! S [ I such that

i) j�(i)j = 1 and �(i) � S [ fig for each i 2 I;

ii) j�(s)j � qs and �(s) � I for each s 2 S;

iii) �(i) = s if and only if i 2 �(s).

If �(i) = i; i remains unmatched. If j�(s)j < qs; some seats at s remain un�lled. For
some X � I, let �(X) = fs 2 Sj�(s) 2 Xg.
A matching � is individually rational if it matches every x 2 I [ S with agent(s)

that is(are) acceptable for x: A matching � is blocked by (i; s) if i and s are not matched
to each other by �; but both prefer to be, that is �(i) 6= s; sPi�(i); and either (j�(s)j < qs
and i �s s) or (i �s i0 for some i0 2 �(s)). � is stable if � is individually rational and
not blocked by any student-school pair (i; s).
A stable matching � is student-optimal if there is no other stable matching � such

that �(i)Ri�(i) for all i 2 I and �(i)Pi�(i) for some i 2 I:12
A strict preference relation Ps (resulting from tie breaking) is consistent with a weak

preference relation Rs if iPsj implies iRsj; iPss implies i �s s and sPsi implies s �s i:
A pro�le of strict preferences PS is consistent with a pro�le of weak preferences RS if Ps
is consistent with Rs for every s 2 S: A tie-breaking rule � breaks indi¤erences/ties at
schools for each problem (PI ; RS) and produces PS that is consistent with RS : We use
the terms indi¤erence and ties interchangeably throughout the paper.

For a given pro�le of strict preferences, the unique student-optimal stable matching
is obtained by the following student-proposing deferred acceptance algorithm (Gale
and Shapley 1962):

Step 1: Each student proposes to her most preferred school. Each school tentatively
assigns its seats to its proposers one at a time in the order of its preference. When all of
its seats are tentatively assigned, it rejects all the proposers who remain unassigned.

In general, at

Step k : Each student who was rejected in the previous step proposes to her next preferred
school. Each school considers the set of students it has been holding and its new proposers.
It tentatively assigns its seats to these students one at a time in the order of its preference.

12Recall from the introduction that in the model we develop here, with indi¤erences, the student-optimal
stable matchings de�ned in this way are not unique, but that the set of stable matchings, and hence the set of
student optimal stable matchings, is non-empty.
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When all of its seats are tentatively assigned, it rejects all the proposers who remain
unassigned.

The algorithm terminates when no student proposal is rejected. Then each student
is assigned to the school she proposed to last and has not been rejected. This matching
is stable (since any student who prefers to be matched to a di¤erent school has already
proposed to and been rejected by that school).

Note that the deferred acceptance algorithm can be adapted to our economy with
indi¤erences, by using any �xed tie breaking procedure to convert the preferences into
strict preferences, and then applying the algorithm above. Of course the particular tie
breaking rules will a¤ect the outcome of the algorithm, which we will refer to as the
deferred acceptance algorithm with a tie breaking rule.
When preferences are strict, there exists a unique student-optimal stable matching

that every student likes as well as any other stable matching, and a school-optimal stable
matching that every school likes as well as any other matching (Roth 1985). However,
as the example below demonstrates, when there are indi¤erences, there may be multiple
student-optimal stable matchings.

Example 1 (There can be multiple student-optimal stable matchings) There is one school
s with one seat and two students fi; jg: Both i and j are acceptable for s; and s is indif-
ferent between i and j: Both i and j prefer s to being unmatched. There are two stable
matchings, �1(i) = s; �1(j) = j and �2(i) = i; �2(j) = s: Neither stable matching is
dominated by the other.

When preferences are strict, there is no individually rational matching (stable or not)
that is preferred to the unique student-optimal stable matching by every student, but even
when preferences are strict, there may be unstable matchings at which some students do
better than the student-optimal stable match and no student does worse (Roth 1982). In
our model, as Example 1 demonstrates, there may be multiple student-optimal matchings.
This weak Pareto optimality result generalizes for every student-optimal matching.

Proposition 1 If � is a student-optimal matching, there is no individually rational
matching � (stable or not) such that �(i)Pi�(i) for all i 2 I:

Proof. Suppose that � is a student-optimal matching for the pro�le (PI ; RS): Then
construct PS that is consistent with RS as follows: For every i; j such that �(i) 6= �(j) and
i ��(i) j; let iP�(i)j: The tie breaking among other students can be done arbitrarily. Then
the student proposing deferred acceptance algorithm produces � for (PI ; PS): That is, �
is the unique student-optimal matching for some (PI ; PS) such that PS is consistent with
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RS : Then, from Roth (1982), there is no matching � (stable or not) that is individually
rational under (PI ; PS) and �(i)Pi�(i) for all i 2 I.
To the contrary, suppose that there is a matching � that is individually rational under

(PI ; RS) and �(i)Pi�(i) for all i 2 I: Since PS is consistent with RS ; � is individually
rational under (PI ; PS) as well. Then �(i)Pi�(i) for all i 2 I contradicts with � being the
student-optimal matching for (PI ; PS): �

4 Incentives and Optimality

4.1 Preliminaries

A directmechanism ' is a function that maps every (PI ; RS) to a matching. For x 2 I[S;
let 'x(PI ;RS) denote x�s match under ', given (PI ; RS):
A mechanism ' is dominant strategy incentive compatible (DSIC) for i 2 I if

for every (PI ; RS) and every P 0i ;

'i(PI ;RS)Ri'i(P
0
i ; P�i;RS):

Similarly, ' is DSIC for s 2 S if for every (PI ; RS) and every R0s;

's(PI ;RS)Rs's(PI ;R�s; R
0
s):

A mechanism is DSIC for A � I [ S if it is dominant strategy incentive compatible for
every agent in A: A mechanism is DSIC if it is DSIC for all a 2 I [ S: We will use the
term strategy-proof and DSIC for all students interchangeably.
When preferences are strict, there is no DSIC mechanism (Roth 1982), and there is

no mechanism that is DSIC for schools (Roth 1985).13 These negative results generalize
directly to our model.
When preferences are strict, the student proposing deferred acceptance algorithm is

DSIC for every student (Dubins and Freedman (1981), Roth (1982)). It is straightfor-
ward to see how this result extends to our model. In particular, consider an arbitrary
tie-breaking rule � = (�s)s2S which is a collection of jSj functions which map each
school�s preference ordering Rs to a strict preference ordering Ps that is consistent with
Rs: �s(Rs) = Ps.14 For a �xed tie-breaking rule � , let the mechanism DA� be the student-
proposing deferred acceptance algorithm acting on the preferences (PI ; PS) to produce the

13Kojima and Pathak (2006) show that, as markets get large with bounded preference lists, the ability of
schools to manipulate either through misstating their preferences or their capacities gets small. (See also
Immorlica and Mahdian (2005) for the case of one-to-one matching in large markets, and the empirical results
of Roth and Peranson (1999) for the medical labor matching market.)
14It is possible to de�ne a tie-breaking rule more generally to allow how ties are broken at a school to depend

on the pro�le of school preferences at every school.
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unique student-optimal matching with respect to (PI ; PS). Then dominant strategy in-
centive compatibility of the student proposing deferred acceptance mechanism for every
student implies that DA� is strategy-proof.
For the rest of the paper we will �x RS , and refer to a problem as PI . We de�ne the

following notion of optimality: ' dominates  if

for all PI : 'i(PI ;RS)Ri i(PI ;RS) for all i 2 I; and
for some PI :'i(PI ;RS)Pi i(PI ;RS) for some i 2 I:

A mechanism is optimal if there is no other mechanism that dominates it.
We focus on single tie-breaking (STB) rules: Let r : I ! N be an ordering of

students such that r(i) = r(j) ) i = j: For every s 2 S; associate with Rs a strict
preference relation Ps as follows: iPsj , [(i �s j) or (i �s j and r(i) < r(j))]:

4.2 Motivating Examples

In this section, we develop the main ideas via several examples.

Example 2 (Tie-breaking is consequential.) Consider an economy with three students
i1; i2; i3 and three schools s1; s2; s3; each with one seat. Student preferences, P , are as
follows:

i1 : s2 � s1 � s3
i2 : s1 � s2 � s3
i3 : s1 � s2 � s3:

If schools are indi¤erent among students, the student-optimal matchings are the following: 
i1 i2 i3
s2 s1 s3

!
;

 
i1 i2 i3
s2 s3 s1

!
 

i1 i2 i3
s3 s1 s2

!
;

 
i1 i2 i3
s3 s2 s1

!
:

These matching are produced when the ties are broken as i1 � i2 � i3 or i2 � i1 � i3,
i1 � i3 � i2 or i3 � i1 � i2, i2 � i3 � i1 and i3 � i2 � i1; respectively. Indeed, when the
ties at every school are broken the same way, DA reduces to a serial dictatorship, which
is Pareto optimal.

Example 3 (Multiple tie breaking can be ine¢ cient) Breaking ties at every school in the
same way is not required for optimality. For example, when schools are indi¤erent as
above, if the ties are broken as follows

s1 : i2 � i3 � i1
s2 : i2 � i1 � i3
s3 : i3 � i1 � i2;
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then DA produces the �rst matching in Example 2. Yet, arbitrary tie breaking may cause
ine¢ ciency due to arti�cial stability constraints that result.15 For example, consider the
following tie-breaking

s1 : i1 � i3 � i2
s2 : i2 � i1 � i3
s3 : i3 � i1 � i2:

DA produces the following matching

�1 =

 
i1 i2 i3
s1 s2 s3

!
;

which is dominated by

�2 =

 
i1 i2 i3
s2 s1 s3

!
:

However, for every student optimal matching, we can �nd a way of breaking ties such that
DA results in that matching.

Example 4 (Single tie-breaking does not always yield student-optimal stable matchings.)
As Example 3 demonstrates, tie-breaking has important welfare consequences. These wel-
fare consequences are present even with single tie-breaking. Suppose schools s2 and s3
have the following strict preferences:

s2 : i2 � i1 � i3
s3 : i3 � i1 � i2:

School s1 does not rank students, i.e. s1 is indi¤erent among students. The stable match-
ings are the following:

�1 =

 
i1 i2 i3
s1 s2 s3

!
; �2 =

 
i1 i2 i3
s2 s1 s3

!
; �3 =

 
i1 i2 i3
s3 s2 s1

!
:

Note that �1; �2 and �3 are produced by the student proposing deferred acceptance
algorithm when the indi¤ence in s1�s preferences is broken as s1 : i1�i3�i2; s1 : i2�ix�iy
and s1 : i3� ix� iy; respectively. However, �2 dominates �1 despite �1 being stable. That
is, DA need not produce a student-optimal stable matching even if ties at schools are
broken the same way.

15This point was �rst suggested in footnote 13 by Abdulkadiro¼glu and Sönmez (2003).
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Example 5 (Welfare enhancement involves losing strategy-proofness.) Consider Exam-
ple 4 and the student proposing deferred acceptance mechanism when the ties at s1 are
broken as s1 : i1 � i3 � i2. We will refer to that mechanism as DA. When the students�
preference pro�le is P; DA produces �1: Suppose that there is a strategy proof mechanism
' that dominates DA, and in particular produces �2 under P . Now consider the following
preference pro�le P 0, which we obtain by changing i1�s preferences in P :

i1 : s2
i2 : s1 � s2 � s3
i3 : s1 � s2 � s3:

Under P 0; DA produces

�0 =

 
i1 i2 i3
i1 s2 s1

!
:

Since ' dominates DA, ' must also produce �0 under (P 0;RS). Note that i1 remains
unmatched at �0: But then i1 can manipulate ' under P 0 by misrepresenting her prefer-
ences as Pi1 ; because then she is matched with s2P

0
i1
i1: Therefore no such strategy-proof

mechanism exists for this problem which dominates DA.

4.3 Theoretical Results

We assume throughout this section that qs = 1 for each s 2 S without loss of generality.16
When a single tie breaking rule is applied at the beginning of a student proposing deferred
acceptance algorithm, we will refer to the resulting algorithm as a DA-STB. A deferred
acceptance algorithm with multiple tie breaking rules, e.g. one for each school, will be
called a DA-MTB. We now focus on comparing DA-STB and DA-MTB and investigating
whether it is possible to improve on DA-STB without sacri�cing strategy proofness.
Our �rst result states that every student-optimal stable matching can be produced by

some DA-STB.

Theorem 1 For every preference pro�le (PI ; RS) and every student-optimal matching �
for that preference pro�le, there is a single ordering of students r such that DAr(PI ; RS) =
�.

Proof. Suppose that � is a student-optimal stable matching at some (PI ; RS). For each
school s, consider the students who prefer s to their assignment in � and are ranked

16For the many-to-one problem, we can construct a related problem where each school seat is a separate
object to be assigned, as in the construction used in Section 5.3 of Roth and Sotomayor (1990). Since we will
be considering incentives and welfare from the point of view of students (who each are matched to at most one
school in any case), our conclusions will carry over to the many-to-one model also.
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highest in Rs among such students,

B(s) = fi : sPi�(i) and iRsj for every j such that sPj�(j)g:

Let B(S) = [sB(s):
Let A be the set of students in B(S) who are assigned to a school under �: A = fi 2

B(S) : �(i) 2 Sg. A stable improvement cycle consists of students fi1; :::; ing � A; n � 2;
such that il 2 B(�(il+1)) and �(il+1)Pil�(il) for l = 1; :::; n where l + 1 is replaced by 1
when l = n (Erdil and Ergin, forthcoming). Since � is student-optimal, there does not
exist any stable improvement cycle (Corollary 1, Erdil and Ergin, forthcoming).
Construct a directed graph with vertices (nodes) A and a directed edge from node i

to node j if �(j)Pi�(i) and jR�(j)i; that is, i envies j�s school place and the school j is
assigned to is indi¤erent between i and j. Since there is no stable improvement cycle, the
directed graph must be acyclic.
We will construct an ordering based on this directed graph utilizing two properties

of the graph. First, there is a node with no incoming edges. To see this, suppose that
every node has at least one incoming edge. Then since there are a �nite number of nodes,
starting from any node we can always leave a node by an incoming edge until we return
to a visited node, which leads to a cycle, and a contradiction. Second, after removing a
node, we still have a directed acyclic graph, since if there is a cycle after removing a node,
then there must be a cycle in the original graph.
Construct an ordering � : A ! f1; :::; jAjg as follows: �nd a node with no incoming

edges. Remove this node and all its outgoing edges. Set the value of � of this node to jAj.
By the two properties above, when we remove this node we still have a directed acyclic
graph and there will be a node with no incoming edges. From this graph, we iterate the
process and set the value of � of the next node to jAj � 1, and so on.17
Next, construct an ordering r : I ! N of students as follows:18 For every j; k 2 A, set

r(j) < r(k) if �(j) < �(k). For every i 2 I �B(S) and j 2 A, set r(i) < r(j). Finally, for
every student l 2 B(S)�A, set r(j) < r(l) for all j 2 A.

Let � = DAr(PI ; RS). We will show that � = �. Suppose to the contrary that there
exists j 2 I such that �(j) 6= �(j). Since � is student-optimal (and since students�pref-
erences are strict), there exists some i 2 I such that �(i)Pi�(i). Let C = fi : �(i)Pi�(i)g
be the set of students who prefer � to �. For any ik 2 C, let ik+1 = �(�(ik)), or
�(ik+1) = �(ik). Since � is stable, there is no blocking pair, so ik+1R�(ik)ik.

17Erdil and Ergin (2006) prove a closely related theorem (Theorem 4) in a two-sided matching model where
e¢ ciency is de�ned relative to both sides of the market, and each school has one position. Since we are concerned
only with the welfare of students, we obtain a result that generalizes to a model in which schools have multiple
seats.
18Recall that lower numbers means a student is more preferred, i.e. r(i) = 1 means that student i is the most

preferred student.
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The proof by contradiction has three steps. First, we will show that for any ik 2 C,
the student who is matched to �(ik) under �, ik+1, also prefers her assignment under �
to � and so is in C. Next, we will show that in the course of DAr(PI ; RS), student i 2 C
can only be displaced by some other student in C. Finally, we argue that ik could have
displaced ik+1, only if ik+1 were displaced herself. Therefore, no member of C can be
rejected �rst, and so C must be empty.
To show the �rst step, note that �(ik+1) 6= �(ik+1): Suppose that �(ik+1) =

�(ik)Pik+1�(ik+1): Then ikR�(ik)ik+1 by stability of � so that by construction ik+1 ��(ik)
ik: But then ik+1 2 B(�(ik)) so that r(ik) < r(ik+1): Then since ik 2 C, �(ik) =
�(ik+1)Pik�(ik), which contradicts with stability of DAr(PI ; RS) = �: Therefore
�(ik+1)Pik+1�(ik+1); so ik+1 2 C:
We prove the second step by contradiction. Suppose that there is some i 2 C and

j 2 I�C such that �(i)Pj�(j) and jR�(i)i: Since j 2 I�C; we have �(j)Rj�(j) therefore
�(i)Pj�(j): Then stability of � implies that j ��(i) i; which in turn implies that j 2
B(�(i)) so that r(i) < r(j): Therefore, no i 2 C is rejected by �(i) in DAr(PI ; RS) in
favor of any j 2 I � C such that �(i)Pj�(j). This implies that every i 2 C is rejected by
�(i) in DAr(PI ; RS) in favor of some i0 2 C � fig:
Finally, in the process of DAr(PI ; RS); no ik 2 C will be rejected by �(ik) before

ik+1 = �(�(ik)) is rejected by �(ik+1): Therefore, no i 2 C will be rejected by �(i) in
DAr(PI ; RS); so that C = ?; i.e. �(i)Ri�(i): Then optimality of � implies �(i) = �(i) for
all i 2 I: �

Corollary 1 For any (PI ; RS); any matching that can be produced by some DA-MTB but
that cannot be produced by any DA-STB involves ine¢ ciency.

This theorem provides some support for a single tie breaking rule, because any match-
ing produced by some DA-MTB that is not produced by some DA-STB cannot be student-
optimal. The result, however, only speaks on the size of the set of matchings, and says
nothing about the frequency of matchings.
For any student optimal matching, there exists a single tie-breaking rule r for which

DAr yields that matching. A natural question is if there is a smaller set of tie-breaking
rules that will yield any student-optimal matching.19 To see that there is not, consider a
problem in which all n students have the same set of preferences over all schools and all
schools are indi¤erent between students. There are n! student-optimal matchings, which
correspond exactly to the n! single tie-breaking rules. This shows that the set of single
tie breaking rules is the smallest such set.

19A special thanks to Fuhito Kojima for asking us this question.
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Corollary 2 The set of single tie breaking rules is a minimal set of tie breaking rules
which under DA yields a set of matchings that contains the set of student-optimal match-
ings.

Even though every student-optimal stable matching can be generated by some single
tie-breaking rule, every single tie-breaking rule can produce a stable matching which is
not student-optimal for some (PI ; RS); which follows from example 4.
In case of a matching which is not student-optimal, one can easily imagine Pareto

improving the matching. Our next result states that such improvements harm incentives.
Therefore one can interpret the ine¢ ciency associated with a single tie breaking rule as
the cost of providing straightforward incentives to students. The next theorem generalizes
the observation of example 5 and establishes that DA with some tie-breaking rule is not
dominated by any other strategy-proof mechanism.

Theorem 2 For any tie-breaking rule �; there is no mechanism that is DSIC for every
student and that dominates DA� :

Proof. We begin by establishing the following property of a matching that dominates a
stable matching.

Claim 1: Suppose that � dominates � = DA� (PI ;RS) for a given tie-breaking rule � .
Then the same set of students are matched in both � and �.

If there exists a student who is assigned under � and unassigned under �; then �(i) =
iPi�(i); which implies that � is not individually rational, a contradiction. So every student
assigned under � is also assigned under �: Therefore j�(S)j � j�(S)j: If j�(S)j > j�(S)j
then there exists some s 2 S and i 2 I such that j�(s)j > j�(s)j and �(i) = s 6= �(i).
This implies that there is a vacancy at s under � and i is acceptable for s: Furthermore,
sPi�(i) since � dominates �: These together imply that � is not stable, a contradiction.
So j�(S)j = j�(S)j: Then the same set of students are matched in both � and � since
j�(S)j = j�(S)j and every student assigned under � is also assigned under � : �

Fix RS . Suppose that there exists a strategy-proof mechanism ' and tie-breaking rule
r such that ' dominates DA� . There exists a pro�le PI such that

'i(PI ;RS)RiDA
�
i (PI ;RS) for all i 2 I; and

'i(PI ;RS)PiDA
�
i (PI ;RS) for some i 2 I:

We will say that the matching '(PI ;RS) dominates the matching DA� (PI ;RS), where
DA� (PI ;RS) denotes the student optimal stable matching for (PI ;P �S ).
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Let si = DA�i (PI ;RS) and ŝi = 'i(PI ;RS) denote i�s assignment under DA� (PI ;RS)
and '(PI ;RS); respectively. Let C be the set of students i 2 I for whom ŝiPisi. For each
i 2 C; de�ne preference compression P̂i as the preference list: ŝiP̂isiP̂ii so that ŝi and si
are acceptable and all other schools are unacceptable for i under P̂i: For any set of agents
J , let P̂J = (P̂j)j2J :

Claim 2: DA�i (P̂C ; PI�C ;RS) = DA�i (PI ;RS) for all i 2 C:

Proof of Claim 2:
Since the matching DA� (PI ;RS) is stable in (P̂C ; PI�C), it follows that no stu-

dent in C does worse under DA� when preferences are (P̂C ; PI�C), we know that (i)
DA(P̂C ; PI�C ;RS) 2 fŝi; sig for all i 2 C: Since DA� is coalitionally strategy-proof (The-
orem 4.10, Roth and Sotomayor 1990, Dubins and Freedman 1981), (ii) there is some
i 2 C such that DA�i (P̂C ; PI�C ;RS) = DA�i (PI ;RS) = si: By assumption, (iii) qs = 1 for
all s 2 S: Also, (iv) for every i 2 C; there is j 2 C such that ŝi = sj : Then (i), (ii), (iii)
and (iv) imply that DA�i (P̂C ; PI�C ;RS) = DA�i (PI ;RS) for all i 2 C: �

Claim 3: If there exists PI such that the matching '(PI ;RS) dominates the matching
DA� (PI ;RS), then ' is not strategy-proof.

Proof of Claim 3:
Since ' dominates DA� ; there exists a pro�le PI where the matching '(PI ;RS) dom-

inates the matching DA� (PI ;RS). If C is the set of students who strictly prefer match-
ing '(PI ;RS) to DA� (PI ;RS), consider the economy (P̂C ; PI�C). Claim 2 shows that
DA�i (P̂C ; PI�C ;RS) = DA�i (PI ;RS). Dominance implies that:

'i(P̂C ; PI�C ;RS)RiDA
�
i (P̂C ; PI�C ;RS) = DA�i (PI ;RS); 8i 2 C:

Therefore for each i 2 C, 'i(P̂C ; PI�C ;RS) 2 fsi; ŝig:
Pick an arbitrary student i 2 C, and consider the following alternative preference

relation for i : ŝiP 0i i; so that only ŝi is acceptable to i under P
0
i . Let P̂

0
I = (P

0
i ; P̂C�i; PI�C):

By strategy-proofness of DA� ; DA�i (P̂
0
I ;RS) = i: Also, dominance of ' over DA� implies

that 'i(P̂ 0I ;RS) 2 fŝi; ig.
If 'i(P̂ 0I ;RS) = ŝi; then i is unmatched under DA� but matched under ', which

contradicts the �rst claim. Thus, 'i(P̂ 0I ;RS) = i. In the pro�le P̂ 0I , student i could bene�t
from submitting the preference relation: ŝiP̂isiP̂ii, for she will receive ŝi and prefers it to
being unmatched and so ' is not strategy-proof. �

In NYC, where strategy-proofness of the new system was a primary criterion (see the
discussion section), Theorem 2 helps justify the use of the deferred acceptance algorithm,
despite the fact that it does not always produce a student optimal stable match. And
Theorem 1 provides additional support for the choice of a single tie-breaking rule. Note
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that Theorem 2 implies that there is no strategy-proof mechanism (stable or not) which
Pareto dominates DA� . The observations by Erdil and Ergin (forthcoming) and Kesten
(2004) that the e¢ ciency enhancing algorithms they study are not strategy-proof follow
as a corollaries of Theorem 2.

5 Empirical results from NYC
In this section, we investigate empirically the e¢ ciency loss of DA-STB using data from
the main round of the 2003-04 NYC high school match. We work under the assumption
that the preferences we receive in the main round re�ect the true preferences of students.20

The �rst question we address is the comparison between DA-STB and student propos-
ing deferred acceptance with school speci�c tie breaking. The �rst column of Table 1 shows
the number of students who submitted a preference list of a certain length. The table
shows that nearly 75% of students submit a rank order list shorter than the maximal 12
schools. This suggests, for these students, the limit on the length of the preference list did
not a¤ect their preference submission strategy. The next two columns report the expected
distribution of student-proposing deferred acceptance with a single (uniform random) tie
breaker and multiple (school speci�c, independent) tie breaking . The table reports the
distribution for 250 draws of the tie breaker.21 The next column shows that under single
tie breaking approximately 24.82% of students receive their top choice, while under mul-
tiple tie breaking, 23.34% of students receive their top choice, an expected di¤erence of
1,255 students. When we compare the number of students who receive their 6th choice or
higher, DA-STB outperforms school speci�c tie breaking, while if we compare the number
of students who receive their 7th choice or higher, school speci�c tie breaking outperforms

20As noted in our 2005 report, there is a minority of students for whom the NYC mechanism, as implemented,
may not make it a dominant strategy to state true preferences. These include the students who have ranked
12 choices, which is approximately 25% of the entire population. Since the length of the preference list was
capped at 12, this requires that if a student actually prefers more than 12 then she must select which 12 to
rank on her application form. The other type of incentive problem applies to the top 2 percent of students on
the grade 7 English Language Arts exam. These students are guaranteed a seat at certain schools only if they
rank that school as their �rst choice. Finally, since the students in New York had previously been assigned
through a multiple-o¤ers mechanism where the preference revelation game was complex, it is possible that some
students were slow to react to the change in the mechanism, despite the NYCDOE�s e¤orts to communicate the
di¤erence. Laboratory evidence in Kagel and Roth (2000) suggest that learning may require some repetitions,
and Chen and Sönmez (2006) experiments suggest that in one-shot versions, even in strategy-proof mechanisms,
not all students may report the truth.
21With 250 simulations, we �nd that the standard deviation in the fraction of students receiving a certain

choice from either DA-STB or DA-MTB is less than 0.07% (Table 1), while the standard deviation in the number
of students improving in a student optimal matching is less than 0.07% (Table 2). This suggests that even with
a limited number of simulations, the numbers we report in the table are not due to simulation variance.
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DA-STB. (Note in particular that neither distribution stochastically dominates the other.)
Table 2 shows the distribution of allocations resulting from a DA-STB followed by sta-

ble improvement cycles (SIC), the algorithm proposed by Erdil and Ergin (forthcoming).22

An expected 63,795 students are matched across 250 draws of the random tie-breaker.23

Only these students can improve their matching under stable improvement cycles, for the
unassigned students cannot be part of a cycle. We �nd that about 6,854, or 10.5% of
students assigned at this stage can improve their matching, with the largest di¤erence in
the number of students who receive their top choice. Under student proposing deferred
acceptance with a single tie breaker, 24.82% receive their top choice, while in a student-
optimal matching, approximately 28.00% of students receive their top choice. The last
two columns of Table 2 report how much the students who receive a di¤erent assignment
under a student optimal matching improve relative to their assignment from DA-STB.
More than 30% of the students who improve (2,091 out of 6,854) receive a school that is
one position higher on their rank order list than the school they receive from DA-STB.
However a substantial number of students could move much further up their preference
lists, including about 50 who could move from their twelfth to their �rst choice.
In the Boston data, in contrast, preliminary simulations show that in 250 di¤erent

single lottery outcomes of student proposing deferred acceptance in Boston Public School�s
choice plan 2005-06, each matching is student optimal (Abdulkadiro¼glu, Pathak, Roth and
Sönmez 2006). That is, there are no stable improvement cycles in each of the matchings for
250 di¤erent single lottery draws for grades K0, K1, K2, 01, 06, and 09. One reason for the
di¤erence is that there is a signi�cantly larger percentage of students who receive their top
choice in 2005-06 in Boston than New York, and while in Boston there are indi¤erences
within the priority classes (sibling-walk, sibling, walk and random), the magnitude of
indi¤erences is smaller than New York where many schools like the formerly zoned schools
are indi¤erent between all applicants.

6 Discussion and Conclusions
It is tempting to try to capture some of the e¢ ciency loss we observe in the data from
New York. However it is not clear either how feasible this is, or how high would be the
costs from the loss of strategy proofness.

22The SIC procedure identi�es cycles among students on the way to computing a student optimal matching,
but it does not specify which cycle to process when there are multiple cycles. At each step of the procedure,
our implementation arbitrarily selects a cycle when there are many cycles.
23This would correspond roughly to the �main round� of the NYC high school match. In NYC, students

left unmatched after the main round are informed of which schools still have places, and asked to submit new
preferences, which are used to match remaining schools to remaining students.
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On the feasibility front, the e¢ ciency losses are only identi�able because we have
preferences that we can take as a reasonable approximation of true preferences, since they
were elicited from an algorithm that is strategy proof for the large majority of students. As
Theorem 2 makes clear, any algorithm that would improve on DA-STB from an e¢ ciency
point of view would not be strategy-proof. Nothing is yet known about what kinds of
preferences one could expect to be strategically submitted to such a mechanism, or what
their welfare consequences would be.
On the cost front, strategy-proofness, which would be lost in any attempt to improve

e¢ ciency, is important in its own right. Economists and social planners like it because it
yields valuable preference data. (And in New York City, schools revealed to be unpopular
have been closed.24) Market designers and school policy-makers like it because it allows
simple advice to be given to families about how to participate in the matching system.
For instance, NYC School Chancellor Joel Klein stated (NYT 10/24/03) that the

�changes are intended to reduce the strategizing parents have been doing to navigate
a system that has a shortage of good high schools.� Furthermore, Peter Kerr, another
NYCDOE o¢ cial, wrote (NYT 11/3/03): �The new process is a vast improvement... For
example, for the �rst time, students will be able to list preferences as true preferences,
limiting the need to game the system. This means that students will be able to rank schools
without the risk that naming a competitive school as their �rst choice will adversely a¤ect
their ability to get into the school they rank lower.�In every year since 2003-04, the High
School directory makes a point to advise families to express their preferences truthfully.
In Boston, too, strategy-proofness was a major factor in deciding to move to a new school
choice system (cf Abdulkadiro¼glu, Pathak, Roth, and Sönmez 2006).
Consequently, there is room for more work on both these fronts, to further illuminate

the tradeo¤ between e¢ ciency and strategy-proofness. In particular, for what kinds of
preferences will there be substantial e¢ ciency loss with DA-STB (as in New York but
not in Boston)? Can these e¢ ciency losses in fact be reduced by non-strategy-proof
mechanisms? To put it another way, how much of the potential e¢ ciency gains can be
actually achieved by a non-strategy-proof mechanism, and how should we formulate the
issues associated with gauging �how much�strategy-proofness we can trade for how much
e¢ ciency?25

We have concentrated here on the welfare considerations that arise in school choice
because of the fact that many students are regarded by schools as equivalent. This is
an issue of importance whether or not the schools are active strategic players, and we

24See e.g. Gootman (2006) for a report that cites demand data in the match as a reason for the closing of
South Shore high school.
25Erdil and Ergin (forthcoming) take some preliminary steps in this direction when they analyze strategic

behavior when students have symmetric beliefs in the manner of Roth and Rothblum (1999). Symmetric beliefs
are, however, a very strong assumption (cf. Ehlers 2006).
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have concentrated on the welfare and incentives for students. In the particular problem
confronting New York City, where some schools are active players, there are also welfare
and strategic considerations that apply to schools. While we have not emphasized it here,
some of these are addressed through the stability of the DA-STB mechanism adopted in
New York, and some are ameliorated by the size of the system (cf. Kojima and Pathak
2006).26

In summary, this paper �lls in some of the new theory demanded by the design of
school choice mechanisms, and shows empirically that the e¢ ciency costs of strategy-
proofness need not be small. As economists are more often asked to design practical
markets and allocation mechanisms, we will increasingly see two-way feedback between
theory and design. When we began the design of the NYC high school match in 2003,
we had a lot of highly relevant theory to draw on, but as we looked into the particular
requirements of the NYC school match, we found ourselves running into problems beyond
the available theory, and using simulations and examples to make design decisions for
which no reliable theory yet existed. In the present paper, we develop some of the theory
we would have liked to have in 2003, and provide support for some of the design decisions
made in a more timely way on the basis of those early simulations and examples. In doing
so, we raise some new theoretical questions, to which it would be helpful to have answers
before the next major design (or redesign) of school matching systems.

26Under the old NYC system, which produced unstable outcomes, schools had an incentive not to reveal their
full capacity so that they could match afterwards with preferred students. This motivation is addressed by the
stability of the current system, but no stable mechanism completely eliminates the possibility of manipulation
by withholding capacity (Sönmez 1997, 1999). However Kojima and Pathak (2006) show that these incentives
become small as the market becomes large in an appropriate way.
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Table 1� Tie-breaking in Student-Proposing
Deferred Acceptance in the Main Round

Number Single Multiple
Choice Ranking Tie-Breaking Tie-Breaking

(250 draws) (250 draws)

1 5,797 (6.7%) 21,038 (24.82%) 19,783 (23.34%)
2 4,315 (5.0%) 10,686 (12.61%) 10,831 (12.78%)
3 5,643 (6.6%) 8,031 (9.48%) 8,525 (10.06%)
4 6,158 (7.2%) 6,238 (7.36%) 6,633 (7.83%)
5 6,354 (7.4%) 4,857 (5.73%) 5,108 (6.03%)
6 6,068 (7.1%) 3,586 (4.23%) 3,861 (4.56%)
7 5,215 (6.1%) 2,721 (3.21%) 2,935 (3.46%)
8 4,971 (5.8%) 2,030 (2.40%) 2,141 (2.53%)
9 4,505 (5.2%) 1,550 (1.83%) 1,617 (1.91%)
10 5,736 (6.7%) 1,232 (1.45%) 1,253 (1.48%)
11 9,048 (10.5%) 1,016 (1.20%) 894 (1.05%)
12 22,239 (25.8%) 810 (0.96%) 372 (0.44%)

unassigned - 20,952 (24.72%) 20,795 (24.54%)

Notes: The table is based on data from the main round in 2003-04 provided by the New York

City Department of Education�s O¢ ce of High School Admissions. The column Number Ranking

reports the distribution of the length of student preference lists in the main round. The next two

columns report the expected distribution of choices from 250 draws of the single tie breaker and

multiple school-speci�c tie breakers, respectively.
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Table 2� Student Optimal Matchings in the Main Round
Choice Deferred Student Optimal Improvement Number of
received Acceptance Matching in Choice Students

(250 draws) (250 draws) (250 draws)

1 21,038 (24.82%) 23,729 (28.00%) +1 2,091
2 10,686 (12.61%) 11,352 (13.40%) +2 1,373
3 8,031 (9.48%) 8,005 (9.45%) +3 934
4 6,238 (7.36%) 5,917 (6.98%) +4 705
5 4,857 (5.73%) 4,378 (5.17%) +5 544
6 3,586 (4.23%) 3,151 (3.72%) +6 412
7 2,721 (3.21%) 2,271 (2.68%) +7 280
8 2,030 (2.40%) 1,647 (1.94%) +8 208
9 1,550 (1.83%) 1,170 (1.38%) +9 154
10 1,232 (1.45%) 905 (1.07%) +10 101
11 1,016 (1.20%) 723 (0.85%) +11 52
12 810 (0.96%) 548 (0.65%)

unassigned 20,952 (24.72%) 20,952 (24.72%) total 6,854

Notes: The table is based on author�s calculations using data from the main round in 2003-04

provided by the New York City Department of Education�s O¢ ce of High School Admissions.

The column Deferred Acceptance reports the expected distribution of choices from 250 di¤erent

single tie breakers in the main round, and the next column reports the expected distribution when

each of these matchings is improved to a student optimal matching using the procedure described

in Erdil and Ergin (forthcoming). The last column reports the expected improvement in choice

obtained by students in a student optimal matching.
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Appendix 1: NYC Schools
In New York City, there are three main types of high schools: 1) schools that are active
players who explicitly rank students in order of preference, 2) schools that are passive
players who order students based on priorities, which are set centrally by the Department
of Education, and 3) schools where a fraction of seats are determined by active ranking
and the remaining fraction are based on priorities. Table A summarizes the number of
schools in each group by borough and by capacity. The screened, audition, and special-
ized high schools are strategic players, who explicitly rank students in order of preference.
For example, Townsend Harris is a screened high school in Flushing, NY which evaluates
students based on their test scores, attendance and punctuality. At Towsend Harris, all
students are required to have a minimum 90th percentile on Math and Reading standard-
ized tests as well as a minimum grade point average of 90 in June of 7th grade when
being considered for a 9th grade seat. Various other criteria are used at screened and
audition schools. The unscreened schools are passive players, and use priorities based on
geographic location, current middle school, or other criteria. The academic comprehen-
sive program at Forest Hills High School in Queens, for instance, places students who
live in an attendance zone near the school in a higher priority class than students from
outside the priority zone. Finally, Educational option (Ed-opt) schools are permitted to
rank students for half of their positions, and are required to admit students according to
priorities for the other half. Table 1 shows that nearly half of all schools are Educational
option, and more than half of total district capacity is at schools who use priorities to
order students.
When priorities are used at unscreened and Educational option programs in New York

City, many students fall into the same priority class. For instance, at Forest Hills where
were 474 seats in 2003-04, 352 (10.7%) of student applicants are from the assignment zone
while the remaining 2,937 are from outside.
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Table A� Number and Capacities of Programs
Panel A: Number of Programs by Borough

Screened and Educational
Unscreened Auditioned Specialized Option Total

Brooklyn 21 49 1 70 141 (26.5%)
Bronx 36 33 2 45 116 (21.8%)
Manhattan 5 53 2 79 139 (26.1%)
Queens 19 47 1 52 119 (22.4%)
Staten Island 5 6 0 6 17 (3.2%)

Total 86 (16.2%) 188 (35.3%) 5 (1.1%) 252 (47.4%) 532

Panel B: Total Capacity by Borough

Screened and Educational
Unscreened Auditioned Specialized Option Total

Brooklyn 7,260 5,385 1,000 10,238 23,833 (27.1%)
Bronx 8,632 4,388 908 5,163 19,091 (21,6%)
Manhattan 1,410 7,400 888 6,859 16,557 (18.5%)
Queens 9,390 7,463 150 8,121 25,124 (28.5%)
Staten Island 2,860 526 0 185 3,571 (4.0%)

Total 29,552 (33.5%) 25,162 (28.5%) 2,946 (3.3%) 30,566 (34.5%) 88,226

Notes: Constructed from data provided by the New York City Department of Education O¢ ce
of High School Admissions.
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