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Abstract
In this paper, we propose a two-stage transcription task de-

sign for crowdsourcing with an automatic quality control mech-
anism embedded in each stage. For the first stage, a support
vector machine (SVM) classifier is utilized to quickly filter poor
quality transcripts based on acoustic cues and language patterns
in the transcript. In the second stage, word level confidence
scores are used to estimate a transcription quality and provide
instantaneous feedback to the transcriber. The proposed de-
sign was evaluated using Amazon Mechanical Turk (MTurk)
and tested on seven hours of academic lecture speech, which is
typically conversational in nature and contains technical mate-
rial. Compared to baseline transcripts which were also collected
from MTurk using a ROVER-based method, we observed that
the new method resulted in higher quality transcripts while re-
quiring less transcriber effort.
Index Terms: Transcription, crowdsourcing, quality control

1. Introduction
Transcribing speech data has historically been an expensive and
time-consuming task requiring well-trained experts. Recently
however, crowdsourcing platforms such as Amazon Mechanical
Turk (Mturk), have emerged to supply a relatively inexpensive
labor pool capable of transcribing data. In experimental studies,
researchers have investigated crowdsourcing methods to pro-
duce reasonable transcripts for spoken language data. Many
have reported producing good or near expert-level transcripts
depending on the task [1, 2, 3, 4, 5, 6].

Given the fact that most workers from a crowd-based work-
force are not well-trained experts, task design can have a large
impact on the resulting transcription quality. Previous studies
have examined a variety of crowd-based transcription meth-
ods. For example, in [2], multiple independently collected tran-
scripts were combined using ROVER [9]. In [3], an iterative
corrective approach was proposed to improve the transcription
word error rate (WER). In [6, 7], it was pointed out that by in-
serting utterances with a known “gold standard” reference into
the transcription task, better quality control on the collected
data could be achieved. An unsupervised method was suggested
in [5] to create a “gold standard” by finding a worker who had
the highest agreement with transcripts produced by other work-
ers. This “gold standard” worker’s transcripts could then be
used as a reference to assess future incoming transcripts.

The goal of this work is to find an efficient approach to
generating high-quality transcripts for long audio recordings.
In this paper, we propose a two-stage transcription task with
an automatic quality control embedded in each stage. In the
first stage, an SVM classifier is used to automatically distin-
guish between poor quality transcripts and good quality tran-
scripts. The SVM classifier prevents workers from submitting

poor quality transcripts and allows poor quality transcripts to
be screened out quickly during post-processing. In the second
stage, word level confidence scores are utilized to provide in-
stantaneous feedback to workers regarding their performance
on the transcription task. This two-stage transcription task was
tested on academic lecture speech via Mturk and compared to
transcripts collected by using ROVER with three workers [2, 9].

2. Two-stage Transcription Task
The transcription task we set up has two phases: first, a Short
Transcription stage, and second, a Transcript Refinement stage.
Each stage has an ASR-enabled quality controller that measures
the input quality and makes it easy to filter out poor quality
transcripts. We describe each phase in detail in the following.

2.1. Short Transcription

For the first stage of transcription, we wanted to create a set
of small tasks that would require a consistent amount of effort
from workers. Since the audio data we were transcribing were
on the order of an hour or more, we decided to automatically
chop the data into more reasonable segment lengths. A phonetic
recognizer was used to decide on the presence of speech/non-
speech. The audio, was then automatically partitioned at silence
intervals into short clips that were, on average, about five to six
seconds long [12].

2.1.1. HIT Design

Based on our previous crowdsourcing experience [10], we de-
cided that requiring workers to transcribe five short utterances
was a reasonable unit of labor. We therefore created a human in-
telligence task (HIT) based on this concept.1 In this HIT, work-
ers were required to listen to the short audio clips and then tran-
scribe them. The reward was $0.01 for each short utterance.
Workers were able to listen to the clips as many times as they
desired, but they were not allowed to submit their HITs before
listening to all the audio clips in order. In other words, they
had to wait until all the audio clips finished playing before they
could submit their HIT. Workers were also asked to indicate
background noise, laughter, or any non-speech sounds; there-
fore, no empty transcripts could be submitted. Despite these
requirements however, we observed many poor quality tran-
scripts, which we defined as having a word error rate (WER)
larger than 65%.

Based on these observations we decided to design an au-
tomatic quality detector to try to reduce the number of poor
transcripts that were submitted. We modeled the problem as

1An online demo for design of the first stage can be found at
https://ssls.csail.mit.edu/turks/FirstStage/
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a classification problem and designed a classifier that could dis-
tinguish between good and poor quality transcripts.

2.1.2. Poor Quality Transcript Detection

By examining poor quality transcripts we observed consistent
patterns of transcription behavior that could act as features for a
transcription quality classifier. For example, poor quality tran-
scripts tended to have a limited set of words for each utterance
in a HIT. For example, a poor transcript of the HIT described
in Section 2.1.1 could contain word um for all five utterances.
This observation inspired us to include 1) a similarity measure
among transcripts for utterances in a HIT, Sim(h), and 2) the
vocabulary size used by a worker in a HIT, |V oc(h)|, into the
feature set for classifier training. The two metrics, Sim(h) and
|V oc(h)|, are defined as follows,

Sim(h) =

P
i<j S(i, j)

CN
2

(1)

V oc(h) =
| ∪N

1 {V (i)}|
N

(2)

where V (i) stands for the word vocabulary used in tran-
script for the ith utterance and N stands for the number of ut-
terances in a HIT, which is five for our HIT design. S(i, j)
means the transcript similarity score between the transcript for
utterance i and the transcript for utterance j,

S(i, j) =
|V (i) ∩ V (j)|
|V (i) ∪ V (j)| (3)

Even though these two features capture the poor quality
transcript pattern described before, there are still cases these
features are unable to catch. For example, workers could just
type the first two words of each utterance or type in completely
random words and still get relatively high Sim and V oc scores.
To prevent these type of issues, we utilized an automatic speech
recognizer (ASR) and added two ASR auxiliary features.

The first ASR-enabled feature, WER(h), is defined as fol-
lows: worker HIT transcripts are compared to the n-best hy-
potheses generated by an ASR (e.g., n = 20). For each utter-
ance, the ASR hypothesis that produces the lowest WER when
compared with the transcript is selected to be the reference for
that utterance. The N utterances transcripts are then concate-
nated to form a single transcript, and the corresponding selected
n-best references are also concatenated to form a single refer-
ence. WER(h) is then the WER produced when aligning the
transcript with the reference.

The second ASR-enabled feature, PER(h), has a simi-
lar definition to WER(h), except that instead of comparing
worker transcripts to ASR word hypotheses, worker transcripts
are converted to phoneme sequences and compared to ASR n-
best phoneme hypotheses for each utterance in a similar way.

There are two benefits to embedding a poor transcript qual-
ity detector in a HIT. First, it prevents workers from submitting
poor quality work at the point of origin. Whenever a worker
attempts to submit a poor quality transcript, the worker will be
warned and asked to improve the transcript. If the worker insists
on submitting the HIT, a check-box can be used to automatically
identify problematic transcripts that can subsequently be more
easily screened during post-processing.

2.2. Transcript Refinement

After each utterance was transcribed by one worker, we col-
lected transcripts from the Short Transcription stage. We com-

piled the transcripts and created a larger Transcript Refinement
task for the second stage. Our experiments with the first stage
indicated that we could expect to achieve an approximately 15%
WER after the first stage of short utterance transcription. Many
of the errors that we observed were difficult for workers to cor-
rect because not enough audio context was provided in the ini-
tial HIT. The goal of the second transcription task was to bundle
the first round HITs together to provide a larger context. Since
we knew the approximate WER, and since we provided work-
ers with the initial transcripts, we believed the longer audio se-
quence would not be too onerous for workers to process. In
addition, we designed the HIT to provide an easy interface for
the users to edit the transcript. The following sections describe
this stage in more detail.

2.2.1. HIT Design

In this stage, the short audio clips used in Section 2.1 were
merged to form longer audio segments of about 75 seconds.
Each of these audio segments was published along with the cor-
responding transcripts collected from the Short Transcription
stage, and workers were asked to listen to the audio and cor-
rect transcript errors. The reward was $0.10 for each HIT in
this stage. To help workers follow the audio while examining
the transcripts, we enabled a pointer in our interface, which is
synchronized with the audio and underlines the word that is be-
ing said in the audio. Workers can follow the pointer and click
on words (or click and drag over word sequences) that appear
to be different from what is being said in the audio and make
corrections.2

2.2.2. Confidence Scores for Performance Estimation

Just as in the first stage HIT, workers were able to get live feed-
back on their transcription performance during a HIT, and were
able to improve their work if necessary. For the second stage,
the performance feedback was generated by using ASR word
level confidence scores [8]. Word confidence scores were used
to estimate the number of corrections needed for a HIT, and by
comparing the number of corrections made by a worker to the
estimated number, we were able to inform the worker with an
estimate of the quality of their transcription editing.

In order to generate the confidence scores, we first gener-
ated ASR hypotheses for an independent lecture training set of
about three hours. We computed confidence scores for the hy-
pothesized words, and divided the range of the scores into M
intervals. We then estimated the probability, pi, that a word
with a confidence score within interval i is incorrect, as defined
as follows,

pi =
W (i)

T (i)
(4)

where W (i) stands for the number of words with confi-
dence score within interval i that were incorrect, while T (i)
stands for the total number of hypothesis words with confidence
scores in interval i.

After collecting short transcripts from the first stage, we
performed forced alignment to align the transcripts with the au-
dio and computed confidence scores for all words in the tran-
scripts. The word confidence scores were then used to predict
the total number of errors in a HIT using pi defined in Eq. 4.

2An online demo for design of the second stage can be found at
https://ssls.csail.mit.edu/turks/contextTrans/
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E(h) =

MX
i=1

T (i)× pi (5)

E(h) is the estimated number of errors for HIT h. With
this estimation, we are able to give workers feedback, F (h),
on their performance for a HIT, which is defined as the total
number changes made by a worker, Cor(h), divided by the es-
timated number of changes needed for the HIT, see Eq. 6. The
correlation between a worker’s performance and the payment
rule for the HIT is also provided to workers, which serves as a
guide for workers to improve their work.

F (h) =
Cor(h)

E(h)
(6)

A submitted HIT from this stage will be accepted if the
number of changes made is more than 80% of the estimated
number for the HIT. If fewer changes are made, heuristic checks
are used to flag low quality transcripts such as metrics based on
worker edit counts over multiple HITs. However, this is clearly
an area for future investigation.

3. Experiment Setup and Results
In this section, we examine the performance of the proposed
two-stage transcription task by 1) investigating how effective
the classifier is for screening out poor quality transcripts, and
2) analyzing the quality of the transcripts collected using the
proposed design by comparing to baseline transcripts collected
using a ROVER-based method with three workers. [2, 9]. In
all cases, performance was measured by word error rate (WER)
between a transcript and a reference transcript that had been
previously generated. A set of 5,870 utterances that cover seven
lectures in biology, computer science, and mathematics were
used for these experiments.

3.1. SVM Classifier

3.1.1. Training and Offline Test

We collected 400 positive and 400 negative examples for train-
ing a support vector machine (SVM) classifier, where positive
examples were defined as HITs with a WER below 40%, while
negative examples were defined as HITs with a WER above
65%. We also explored training the classifier with fewer ex-
amples, as well as training without using ASR-derived features.
Note that the WER of the ASR used to generate features was
approximately 30% for the lecture task. In our experiments, we
used LIBSVM [11] to train the SVM classifiers and tested the
classifiers on 163 good quality and 163 poor quality HITs.

The results are shown in Table 1. From the table, we see
that the performance of the SVM trained without ASR-derived
features degraded about 4% absolute, when just 50 positive and
50 negative examples were used, compared to the best perform-
ing classifier. Even though we did not publish a task embedding
this classifier trained with fewer data and features, according
to the offline test results, we believe the SVM classifier should
still be suitable for new domains, where initial ASRs are not
available, as long as enough samples are collected.

3.1.2. Online Test

We integrated the SVM classifier trained with 400 good quality
and 400 poor quality examples and the full set of features into
our first stage HIT design, and published a transcription task for
the 5,870 utterances. Before publishing the task with the SVM
classifier, we also published another task for these utterances

# training samples (good/bad) # features Accuracy (%)
400 / 400 4 98.2
400 /400 2 94.5
50 / 50 4 97.6
50 / 50 2 93.9
20 / 20 4 97.5
20 / 20 2 90.8

Table 1: Performance of using SVM classifiers to detect poor
quality transcripts for offline tasks.

w/ SVM w/o SVM
Poor quality transcript (%) 3.5 23.9
Classification accuracy (%) 96.6 -

Table 2: Performance of using an SVM classifier to detect bad
transcripts for an online task.

that did not use the transcript classification for the purpose of
comparison. Note that to reduce the effect of rejected/accepted
work in the first published task interfering with the other, the
tasks were published three months apart. Among the 60 unique
workers who submitted to the task without the classifier and the
78 unique workers who worked on the task with the classifier,
only 2 workers did both tasks.

Table 2 shows that the classifier was able to judge 96.6%
of the submitted transcripts correctly. It also shows the per-
centage of poor quality transcripts in the collected data from
the first stage with and without using the classifier. We can see
that by using a classifier, the number of submitted poor quality
transcripts was reduced by over 85% relative, which shows that
a classifier can prevent workers from submitting poor quality
transcripts.

3.2. Transcription Quality Analysis for the Two-stage
Method

Transcripts for the 5,870 utterances collected from the first stage
were merged into 311 HITs for the second stage as described in
Section 2.2. We published the 311 HITs on MTurk with the em-
bedded confidence score based performance estimation. Note
that with the estimation mechanism, poor quality transcripts can
be detected by checking whether workers make enough changes
in the HITs they submit. Poor quality transcripts can then be fil-
tered and republished. In this work, we published one HIT at
most three times. For comparison, we also published a task for
these 311 HITs without the automatic performance estimation.
Transcripts of the 5,870 utterances were also collected by using
ROVER [2, 9] with three workers transcribing each utterance.
Table 3 shows the WER of the published 5,870 utterances af-
ter the first stage and after the second stage with different HIT
setups as well as the WER of baseline ROVER task.

Table 3 shows that the two-stage transcription task with
performance feedback to workers and filtering produced the
largest reduction in WER among all the methods being dis-
cussed. The WER improvement was statistically significant
at the 0.001 level. We believe the gain came from providing
workers with their performance estimation and informing work-
ers the correlation between their performance and the payment.
Filtering and republishing also allowed us to exclude poor qual-
ity transcripts. From Table 3, we can tell that there is still a
10% WER difference between the reference and the transcripts
collected using the two-stage transcription task design. In Ta-
ble 4, we show the average difference between the actual num-
ber of changes that need to be made, E∗(h), for each HIT and

3043



WER (%)
Stage1 16.2
ROVER(3) 12.2
Stage2 noconf(h) 13.2
Stage2 conf(h) 11.7
Stage2 conf filter(h) 10.2

Table 3: Word error rate of the 5,870 utterances after the
first stage, Stage1, and after the second stage with differ-
ent HIT setups as well as that of ROVER with 3 independent
transcripts, ROVER(3). Stage2 noconf(h) means the second
stage design without performance estimation. Stage2 conf(h)
stands for the second stage design with performance estimation.
Stage2 conf filter(h) is the second stage design with perfor-
mance estimation and filtering as well as republishing.

Avg Std
E∗(h)− E(h) 1 13
E∗(h)− Enoconf (h) 21 15
E∗(h)− Econf (h) 12 14
E∗(h)− Efilter conf (h) 2 15

Table 4: Average difference between the actual number of
changes needed, E∗(h) for the 311 HITs and the number of
changes estimated E(h) by the confidence score based mech-
anism. Also, average difference between the actual num-
ber of changes needed and number of changes workers made
for different second stage setups is also shown in this Ta-
ble. Enoconf (h) is the number of changes workers made
without performance feedback. Econf (h) represents the num-
ber of changes workers made with performance feedback.
Efilter conf (h) corresponds to the number of changes workers
made with both performance estimation and filtering.

the number of changes estimated by the confidence score based
mechanism E(h) described in Section 2.2.2. The average dif-
ference between the actual number of changes needed and the
number of changes made by workers for different second stage
set ups are also presented in Table 4.

From the table, we see that even though the average number
of changes workers made at the second stage with feedback and
filtering is close to the actual number of changes needed, the
variance of the difference between the two is not as small as
desired. For future work, we plan to improve the estimation
method, and we expect the WER will be reduced further.

4. Discussion
It is interesting to observe that the two stage approach produced
a higher-quality transcript in terms of WER, it also required
approximately half the worker resources. The three worker
ROVER-based approach required over 3K HITs of 5 utterances
each, while the two stage approach required approximately 1K
HITs for stage one, and 311 HITs for stage two. Even when fac-
toring in that we paid workers twice as much for second stage
HITs, the amount of human resources required for the two stage
approach is considerably less than the ROVER-based approach.

Even though the two-stage approach generated the best re-
sult, we believe there is still much room for improvement. For
example, in the second stage, there are no mechanisms embed-
ded to detect what changes workers make. Workers may just
type random changes and successfully game the system. Fortu-
nately, we did not observe this type pattern of behavior from the
data we collected. We suspect it was because workers did not

realize how their performance was being estimated. To prevent
this type of behavior in the future, a quality control mechanism
similar to the SVM classifier for the first stage can be built.

5. Conclusion
A two-stage transcription task designed for crowdsourcing with
automatic quality control has been proposed and tested on lec-
ture speech. The experimental results showed that an SVM
classifier trained with both ASR-enabled features and language
pattern of workers’ input allows poor quality transcripts to be
detected with high accuracy. A confidence score based method
was also shown to provide effective performance feedback to
workers. Compared to a baseline transcription task using a
ROVER-based method with three workers, the two stage task
with embedded ASR-based features ultimately produced higher
quality transcripts with significantly fewer worker resources.

In this paper, the two-stage approach was tested in a domain
where an initial ASR existed. For future work, we are interested
in adapting this design to new domains.
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