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Introduction

The deformation theory of associative algebras is a guide for developing
the deformation theory of many algebraic structures. Conversely, all the
concepts of what should be the “deformation theory of everything” must be
tested in the case of associative algebras.

An associative algebra is an algebra over an operad. This fact, along with
the observation that in many examples we are dealing with algebras over
operads, “explains” the universality of associative algebras. It also suggests
how to develop the deformation theory of algebras over operads. This theory
is one of the topics of the present paper.

Another remarkable fact is the relationship of the deformation theory
of associative algebras to the geometry of configuration spaces of points on
surfaces. One of its incarnations is Deligne’s conjecture. A brief history of
the conjecture as well as its generalizations can be found in [Ko3]. Deligne’s
conjecture is the second topic of our paper.

The theme, which motivated the whole project, is the Grothendieck-
Teichmüller group (GT for short) and its role in the deformation theory.
The Grothendieck-Teichmüller group can be defined as the automorphism
group of the tower of the pro-nilpotent completions of the pure braid groups
(see [Dr]). The pure braid group of n strings is the fundamental group of the
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configuration space of n points in the plane. Deligne’s conjecture shows its
relation to the Hochschild complex. More evidence for that relation has been
found in deformation quantization. The coefficients in the explicit formulas
for the deformed multiplication given in [Ko1] are periods of algebraic vari-
eties defined over the field of rational numbers. Through the hypothetical
relation to mixed Tate motives this fact leads to some conjectures about the
action of the Grothendieck-Teichmüller group on the moduli space of quan-
tized algebras of functions on a manifold (see [Ko3]). Deligne’s conjecture
says that the Hochschild complex C ·(A,A) of an associative (or more general,
A∞) algebra A carries a structure of 2-algebra (i.e. an algebra over the op-
erad of chains of the little dics operad). It follows from our results that the
Grothendieck-Teichmüller group acts (homotopically) on the moduli space
of structures of 2-algebras on C ·(A,A). This action is closely related to the
action of the motivic Galois group described in [Ko3]. We hope to discuss
this topic in detail elsewhere.

The paper is organized in the following way.
Section 1 is devoted to the review of operads. It includes a brief intro-

duction to operads, language of trees, polynomial functors etc.
The deformation theory of algebras over free operads is discussed in Sec-

tion 2. The “general” deformation theory is based on the notion of a formal
pointed dg-manifold (a formal Z-graded manifold with a vector field d of de-
gree +1 such that [d, d] = 0). We do not use any deep results concerning dg-
manifolds. All necessary facts and definitions can be found in [Ko1] (note that
in [Ko1], [Ko2] formal pointed dg-manifolds were called formal pointed Q-
manifolds). We explain how to construct a formal pointed dg-manifold which
controlls the deformation theory of an algebra over an operad. In traditional
language this corresponds to a construction of the deformation functor as a
functor of the category of local Artinian rings. We explain how this approach
leads to the (homotopy) action of the Grothendieck-Teichmüller group on the
dg-manifold conrolling the deformation theory of the Hochschild complex of
an A∞-algebra.

In Section 3 we outline the strategy and state the theorem (proved in
Section 6) which explain why the GT group appears in the deformation
theory of associative (and more generally A∞) algebras.

Our approach is based on the notion of a free resolution of an operad.
This is the subject of Section 4. We construct canonical free resolutions via
an approach similar to the one developed by Boardman and Vogt in [BV]. We
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use free resolutions of operads instead of the conventional approach which
uses free resolutions of algebras. This approach to the deformation theory of
algebras over operads is not used very often (although see [M]).

In Section 5 we construct an operad M which acts on the Hochschild
complex of an A∞-algebra. It turns out that M is closely related to the
compactifications of configuration spaces of point introduced by Fulton and
Macpherson in [FM].

Section 6 is devoted to the proof of the theorem from Section 3.
Section 7 is devoted to Deligne’s conjecture and its proof. The proof

presented in this paper is based on the general deformation theory developed
in the previous sections. The strategy is explained in detail in Section 7. We
also suggest certain generalizations of the original Deligne’s conjecture as
well as some conjectures about the cell structure of the spaces which appear
in the course of its study. It seems the proof admits a generalization to the
higher-dimensional version of Deligne’s conjecture proposed in [Ko3].

Other approaches to the original Deligne’s conjecture were proposed in
[MS], [T], [V].

The Appendix is devoted to a theory of piecewise algebraic chains. It is
suitable for real semialgebraic manifolds with corners. A typical example is
the compactification of the configuration space of points in the plane (Fulton-
Macpherson compactification). This theory is useful for the proof of formality
of the operad of chains of the little discs operad (in the approach of [Ko3]).
It is also useful (but not necessary) in the proof of Deligne’s conjecture. The
usual techniques of simplicial homology will do the job. At the same time we
feel that the theory of piecewise algebraic chains is appropriate to the nature
of the topic. For this reason we have decided to include it in the paper.

Acknowledgements Second author acknowledges the support from the
Clay Mathematical Institute and IHES. He thanks IHES for hospitality and
stimulating research atmosphere.

1 Generalities on operads

1.1 Polynomial functors, operads, algebras

The material of this subsection is very well-known (see for ex. [GiKa], [GeJ],
[GeKa], [Ma]). We present it here for completeness and in order to fix the
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notation.
Let k be a field of characteristic zero. All vector spaces below will be

k-vector spaces unless we say otherwise.
We fix a category C which is assumed to be k-linear abelian symmetric

monoidal and closed under infinite sums and products. We will also assume
that it has internal Hom′s. Our main examples will be the category of k-
vector spaces, the category V ectZ of Z-graded vector spaces (with Koszul
rule of signs), and the category of complexes of k-vector spaces.

Suppose we have a collection of representations F = (Fn)n≥0 of the sym-
metric groups Sn, n = 0, 1, ... in C (i.e. we have a sequence of objects Fn

together with an action of the group Sn on Fn for each n).

Definition 1 A polynomial functor F : C → C is defined on objects by the
formula

F (V ) = ⊕n≥0(Fn ⊗ V ⊗n)Sn

where for a group H and an H-module W we denote by WH the space of
coinvariants. Functor F is defined on morphisms in an obvious way.

Notice that having a sequence Fn as above we can define FI for any finite
set I using isomorphisms of I with the standard set {1, ..., |I|}, where |I| is
the cardinality of I. Thus F{1,...,n} = Fn. Technically speaking, we consider a
functor Φ from the groupoid of finite sets (morphisms are bijections) to the
symmetric monoidal category C. Then we set FI = Φ(I).

Polynomial functors on C form a category PF if we define morphisms
between two such functors F and G as a vector space of Sn-intertwiners

Hom(F,G) =

∞∏

n=0

HomSn
(Fn, Gn)

There is a composition operation ◦ on polynomial functors such that (F ◦
G)(V ) is naturally isomorphic to F (G(V )) for any V ∈ C. We also have a
polynomial functor 1 such that 11 = 1C and 1n = 0 for all n 6= 1. Here 1C is
the unit object in the monoidal category C. It is easy to see that in this way
we get a monoidal structure on PF .
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Definition 2 An operad in C is a monoid in the monoidal category PF .
In other words it is a polynomial functor R ∈ PF together with morphisms
m : R ◦ R → R and u : 1 → R satisfying the associativity and the unit
axioms.

To shorten the notation we will denote the operad (R,m, u) simply by
R. An operad R gives rise to a triple in the category C. There is the notion
of an algebra over a triple in a category. Hence we can use it in order to
give a definition of an algebra in C over the operad R. It is given by an
object V ∈ C and a morphism R(V ) → V satisfying natural properties
of compatibility with the structure of a triple. Equivalently, V is an R-
algebra iff there is a morphism of operads R → End(V ), where End(V ) is
the endomorphism operad of V defined by (End(V ))n = Hom(V ⊗n, V ), and
Hom denotes the internal Hom in C. The category of R-algebras will be
denoted by R − alg. There are two adjoint functors ForgetR : R− alg → C
and FreeR : C → R− alg such that ForgetR ◦ FreeR = R.

Definition 3 For X ∈ Ob(C) we call FreeR(X) the free R-algebra generated
by X.

We remind to the reader that there are operads As, Lie, Comm such
that the algebras over them in the category of vector spaces are associative,
Lie and commutative algebras correspondingly.

1.2 Colored operads

There is a generalization of the notion of operad. It is useful in order to
describe in operadic terms pairs (associative algebra A, A-module), homo-
morphisms of algebras over operads, etc.

Let I be set. We consider the category CI consisting of families (Vi)i∈I of
objects of C.

A polynomial functor F : CI → CI is defined by the following formula:

(F ((Vi)i∈I))j = ⊕a:I→Z≥0
Fa,j ⊗∏

i Sa(i)
⊗i∈I(V

⊗a(i)
i )

where a : I → Z+ is a map with the finite support, and Fa,j is a representation
in C of the group

∏
i∈I Sa(i).

Polynomial functors in CI form a monoidal category with the tensor prod-
uct given by the composition of functors.
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Definition 4 A colored operad is a monoid in this category.

Similarly to the case of usual operads it defines a triple in the category
CI . Therefore we have the notion of an algebra over a colored operad.

There exists a colored operad OP such that the category of OP-algebras
is equivalent to the category of operads.

Namely, let us consider the forgetful functor Operads → PF . It has
a left adjoint functor. Thus we have a triple in PF . As we have noticed
before, the category PF can be described as a category of sequences (Pn)n≥0

of Sn-modules. Then using the representation theory of symmetric groups,
we conclude that the category PF is equivalent to the category CI0 , where
I0 is the set of all Young diagrams (partitions). Hence a polynomial functor
F : PF → PF can be described as a collection F(mi),n of the representations
of the groups Sn,(mk) := Sn×

∏
k≥0(Smk

⊲Smk

k ), where ⊲ denotes the semidirect
product of groups.

Having these data we can express any polynomial functor F on PF by
the formula:

(F ((Uk)k≥0))n =
⊕

(mk)

F(mk),n ⊗S1,(mk)

⊗

k≥0

(U⊗mk

k )

In particular, one has a functor OP : PF → PF , which is the composi-
tion of the forgetful functor Operads→ PF with its adjoint. It gives rise to
an I0-colored operad OP = (OP (mi),n). We will describe it explicitly in the
subsection devoted to trees.

1.3 Non-linear operads

We remark that operads and algebras over operads can be defined for any
symmetric monoidal category C, not necessarily k-linear. In particular, we
are going to use operads in the categories of sets, topological spaces, etc.

Namely, an operad in C is a collection (Fn)n≥0 of objects in C, each
equipped with an Sn-action, as well as composition maps:

Fn ⊗ Fk1 ⊗ ...⊗ Fkn
→ Fk1+...+kn

for any n ≥ 0, k1, ..., kn ≥ 0. Another datum is the unit, which is a morphism
1C → F1. All the data are required to satisfy certain axioms (see [Ma]).
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Analogously one describes colored operads and algebras over operads. Notice
that in this framework one cannot speak about polynomial functors and free
algebras.

This approach has some advantages and drawbacks (like description of
analytic functions in terms of Taylor series vs their description in terms of
Taylor coefficients).

1.4 Pseudo-tensor categories

The notion of colored operad has been rediscovered many times. In [BD] the
notion of pseudo-tensor category was introduced as a generalization of the no-
tion of symmetric monoidal (=tensor) category. The terminology stresses the
similarity of operads with tensor categories. Similar notion was introduced
in [B] under the name multi-linear category.

This notion is essentially equivalent to the notion of colored operad. We
recall it below, using the name suggested in [BD].

Definition 5 A pseudo-tensor category is given by the following data:
1. A class A called the class of objects, and a symmetric monoidal cate-

gory V called the category of operations.
2. For every finite set I, a family (Xi)i∈I of objects, and an object Y , an

object PI((Xi), Y ) ∈ V called the space of operations from (Xi)i∈I to Y .
3. For any map of finite sets π : J → I , two families of objects

(Yi)i∈I , (Xj)j∈J and an object Z, a morphism in V

PI((Yi), Z) ⊗ (⊗iPπ−1(i)((Xji
), Yi)) → PJ((Xj), Z)

called composition of operations. Here we denote by ⊗ the tensor product in
M.

4. For an 1-element set · and an object X, a unit morphism 1V →
P·((X), X).

These data are required to satisfy natural conditions. In particular, com-
positions of operations are associative with respect to morphisms of finite
sets, and the unit morphisms satisfy the properties analogous to those of the
identity morphisms (see [BD] or [So] for details).

If A is a set, then a pseudo-tensor category is exactly the same as an
A-colored operad in the tensor category V.
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If we take V to be the category of sets, and take I above to be 1-element
sets only, we obtain a category with the class of objects equal to A.

Colored operad with one color gives rise to an ordinary operad. A sym-
metric monoidal category A produces the colored operad with PI((Xi), Y ) =
HomA(⊗iXi, Y ).

The notion of pseudo-tensor category admits a generalization to the case
when no action of symmetric group is assumed. This means that we consider
sequences of objects instead of families (see [So]). The new notion generalizes
monoidal categories. In terms of the next subsection this would mean that
one uses planar trees instead of all trees. One can make one step further
generalizing braided categories. This leads to colored braided operads (or
pseudo-braided categories). In this case trees in R3 should be used. The
deformation theory of such structures can be developed along the lines of
present paper. It will be explained in detail elsewhere.

1.5 Trees

Definition 6 A tree T is defined by the following data:
1) a finite set V (T ) whose elements are called vertices;
2) a distinguished element rootT ∈ V (T ) called root vertex;
3) subsets Vi(T ) and Vt(T ) of V (T ) \ {rootT} called the set of internal

vertices and the set of tails respectively. Their elements are called internal
and tail vertices respectively;

4) a map N = NT : V (T ) → V (T ).
These data are required to satisfy the following properties:
a) V (T ) = {rootT} ⊔ Vi(T ) ⊔ Vt(T );
b) NT (rootT ) = rootT , and Nk

T (v) = rootT for all v ∈ V (T ) and k ≫ 1;
c) NT (V (T )) ∩ Vt(T ) = ∅ ;
d) there exists a unique vertex v ∈ V (T ), v 6= rootT such that NT (v) =

rootT .

We denote by |v| the valency of a vertex v, which we understand as the
cardinality of the set N−1

T (v).
We call the pairs (v,N(v)) edges in the case if v 6= rootT . If both elements

of the pair belong to Vi(T ) we call the corresponding edge internal. The only
edge er defined by the condition d) above is called the root edge. All edges
of the type (v,N(v)), v ∈ Vt(T ) are called tail edges. We use the notation
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Ei(T ) and Et(T ) for the sets of internal and tail edges respectively. We have
a decomposition of the set of all edges E(T ) = Ei(T )⊔ (Et(T )∪{er}). There
is a unique tree Te such that |Vt(Te)| = 1 and |Vi(Te)| = 0. It has the only
tail edge which is also the root edge.

A numbered tree with n tails is by definition a tree T together with a
bijection of sets {1, ..., n} → Vt(T ). We can picture trees as follows

Numbered tree,

er

root

1 2

non-numbered vertices are black

Let R be an operad. Any tree T gives a natural way to compose elements
of R, compT : ⊗i∈Vi(T )RN−1(v) → RVt(T ).

Let us return to the colored operad OP and give its description using the
language of trees.

Namely, OP (mi),n is a k-vector space generated by the isomorphism classes
of trees T such that:

a) T has n tails numbered from 1 to n;
b) T has

∑
imi internal vertices all numbered in such a way that first

m0 vertices have valency 0, and they are numbered from 1 to m0, next m1

internal vertices have valency 1, and they are numbered from 1 to m1, and
so on;

c) for every internal vertex v ∈ Vi(T ) the set of incoming edges N−1
T (v) is

also numbered.
An action of the group S(mk),n is defined naturally: the factor Sn permutes

numbered tails, the factor Smk
permutes numbered internal vertices and the

9



factor Smk

k permutes their incoming edges numbered from 1 to k.
The composition is given by the procedure of inserting of a tree into an

internal vertex of another one. The new numeration is clear. We leave these
details as well as the proof of the following proposition to the reader.

Proposition 1 The category of OP-algebras is equivalent to the category of
k-linear operads.

Let F be a polynomial functor on C (see Section 1.1). Let us consider
a category CF objects of which are pairs (V, φ : F (V ) → V ) where V is an
object of C and φ is a morphism in C. Morphisms of pairs are defined in the
natural way. The following lemma is easy to prove.

Lemma 1 The category CF is equivalent to the category of FreeOP(F )-
algebras.

We call P = FreeOP(F ) the free operad generated by F .
Components Pn of the functor P can be defined explicitly as follows.
Let Tree(n) denotes the groupoid of numbered trees with n tails, |Tree(n)|

denotes the set of classes of isomorphisms of these trees . We denote the class
of isomorphism of T by [T ]. Then we have

Pn = FreeOP(F )n = ⊕[T ]∈|Tree(n)|(⊗v∈Vi(T )FN−1(v))AutT

2 Deformations and differentials in free op-

erads

Let F be a polynomial functor, P = FreeOP(F ) be the corresponding free
operad. Let gP be the Lie algebra (in the symmetric monoidal category C)
of derivations of the operad P . Then, as an object of C:

gP =
∏

n≥0

Hom(Fn, Pn)
Sn

where WH denotes the space of H-invariants of an H-module W and Hom
denotes the internal Hom in C. This observation follows from the fact that
HomPF(F, ForgetOP(G)) = HomOP−alg(FreeOP(F ), G).
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¿From now on we suppose that C is the category V ectZ of Z-graded vector
spaces. Then gP is a graded Lie algebra with the graded components gn

P .

Definition 7 A structure of a differential-graded operad on P which is free
as a graded operad is given by an element dP ∈ g1

P such that [dP , dP ] = 0.

The definition means that P can be considered as an operad in the sym-
metric monoidal category of complexes, and it is free as an operad in the
category V ectZ. Sometimes we will denote the corresponding operad in the
category of complexes by P̂ .

One of our purposes will be to use P̂ for constructing resolutions of dg-
operads, and subsequently the deformation theory of algebras over them.

Definition 8 A dg-algebra over (P, dP ) (or simply over P ) is an algebra

over P̂ in the category of complexes.

Notice that the deformation theory of the pair (P, dP ) is the same as the
deformation theory of dP (since P is free and therefore rigid).

Definition 9 The formal pointed dg-manifold associated with the differential
graded Lie algbera (gP , [dP , ·]) controls the deformation theory of (P, dP ).

Now we are going to describe the deformation theory of dg-algebras over
P (P̂ -algebras). In what follows we will often speak about points of Z-graded
manifolds. It will always mean Λ-points, where Λ is an auxiliary Z-graded
commutative associative algebra (in general without the unit). In the case
of formal manifolds we take Λ to be nilpotent.

Let us describe the formal pointed dg-manifold controlling deformations
of a P -algebra V . We have the following graded vector space

M = M(P, V ) = (Hom(V, V ))[1] ⊕Hom(F (V ), V )

We denote by Mn, n ∈ Z the graded components of M.
The structures of a complex on a graded vector space V and an action

of P on V define a point (dV , ρ) ∈ M0 = HomV ectZ(k,M). We consider
here dV and ρ as morphisms of graded vector spaces. The equation d2

V = 0
and the condition of compatibility of dV and ρ can be written in the form
dM(dV , ρ) = 0, where dM(dV , ρ) = (d2

V , ξ(dV , ρ)) ∈ M1, for some ξ(dV , ρ) ∈
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Hom(F (V ), V ). It is easy to see that the assignment (dV , ρ) 7→ dM(dV , ρ)
defines an odd vector field dM on the “infinite-dimensional graded manifold”
M. A zero of this vector field corresponds to a structure of a complex on
V together with a compatible structure of a dg-algebra over P . This gives a
bijection between the set of zeros and the set of such structures.

It is easy to check that [dM, dM] = 0. Therefore a formal neighborhood
of a fixed point (dV , ρ) of dM becomes a formal pointed dg-manifold.

Definition 10 The deformation theory of a dg-algebra V is controlled by
this formal pointed dg-manifold.

Remark 1 Operads are algebras over the colored operad OP. One can show
that the deformation theories for an OP-algebra P̂ described in the last two
definitions are in fact equivalent.

Let P (0) be an operad in V ectk. In order to define the deformation theory
of P (0)-algebras, one needs to choose a resolution φ : P → P (0), where
P = FreeOP(F ) as a Z-graded operad, and φ is a quasi-isomorphism. One
wants to be sure that the deformation theory does not depend on the choice
of the resolution. This can be achieved by assuming that (see for ex. [M2]) :

a) F admits a filtration (as a polynomial functor) F = ∪j≥1F
(j), F (j) ⊂

F (j+1) such that dP (F (0)) = 0 and dP (F (j)) ⊂ FreeOP(F (j−1)), j ≥ 1;
b) φ : P → P (0) is a an epimorphism.
All resolutions used in the paper will satisfy these properties.

2.1 Example: A∞-operad and A∞-algebras

Let V ∈ V ectZ and mn : V ⊗n → V [n−2], n ≥ 2 be a sequence of morphisms.
It gives rise to an action on V of the free operad P = FreeOP(F ) where

F (V ) = ⊕n≥2V
⊗n[n− 2].

Then Fn = k[Sn]mn ⊗ k[1]⊗(n−2). This notation means that we consider
Fn as a space (with the grading shifted by n−2) of the regular representation
of the group algebra of the symmetric group Sn. This space is generated by
an element which we denote by mn.
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The differential dP ∈ gP (equivalently, a structure of a dg-operad on P )
is defined by the standard formulas:

dP (m2) = 0,

dP (mn)(v1⊗...⊗vn) =
∑

k+l=n

±mk(v1⊗...⊗vi⊗ml(vi+1⊗...⊗vi+l)⊗...⊗vn), n > 2.

We do not specify signs in these well-known formulas. In Section 5 we
propose a general framework allowing to fix signs in the formulas like the one
above.

Definition 11 The dg-operad A∞ = (P, dP ) is called the A∞-operad. Alge-
bras over this dg-operad are called A∞-algebras.

Deformations of anA∞-algebraA are controlled by the truncated Hochschild
complex

C ·
+(A,A) =

∏

n≥1

HomV ectZ(A⊗n, A)[−n]

More precisely, let A be a graded vector space. We define a graded vector
space of all Hochschild cochains of A as

C ·(A,A) =
∏

n≥0

HomV ectZ(A⊗n, A)[−n]

Then C ·(A,A)[1] can be equipped with the structure of a graded Lie algebra
with the Gerstenhaber bracket (the latter appears naturally if we interpret
Hochschild cochains as coderivations of the free coalgebra ⊕n≥0(A[1])⊗n).

Let us consider an element m = (m1, m2...) ∈ C ·
+(A,A)[1] of degree +1

such that [m,m] = 0. Such an element defines a differenitial d = m1 on A,
and the sequence (m2, m3, ...) gives rise to a structure of an A∞-algebra on
(A,m1).

Then we can make C ·(A,A) into a complex (Hochschild complex) with
the differential dm = [m, ·]. It is easy to see that in this way we get a differ-
ential graded Lie algebra (DGLA for short) (C ·(A,A)[1], dm). The truncated
Hochschild complex C ·

+(A,A)[1] is a DGLA subalgebra. According to the
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general theory (see [Ko1]) both DGLAs define formal pointed dg-manifolds,
and therefore give rise to the deformation functors. This is a straightforward
generalization of the well-known deformation theory of associative algebras.

In a sense the full Hochschild complex controls deformations of the A∞-
category with one object, such that its endomorphism space is equal to A.

The deformation theory of A∞-categories is not in the scope of present
paper. It will be explained elsewhere. Nevertheless we will refer to the
formal dg-manifold associated with C ·(A,A)[1] as to the moduli space of A∞-
categories. Similarly, the formal dg-manifold associated with C ·

+(A,A)[1] will
be called the moduli space of A∞-algebras. (All the terminology assumes that
we deform a given A∞-algebra A).

The moduli space of A∞-algebras is the same as M(A∞, A) in the previ-
ous notation. Similarly we will denote the moduli space of A∞-categories by
Mcat(A∞, A). The natural inclusion of DGLAs C ·

+(A,A)[1] → C ·(A,A)[1]
induces a dg-map M(A∞, A) → Mcat(A∞, A) (dg-map is a morphism of
dg-manifolds).

Let us remark that the operad A∞ gives rise to a free resolution of the
operad As. Algebras over the latter are associative algebras without the unit.

Remark 2 It is interesting to describe deformation theories of free resolu-
tions of the classical operads As, Lie, Comm. It seems that for an arbitrary
free resolution P of either of these operads the following is true: H i(gP ) = 0
for i 6= 0, H0(gP ) = k. This one-dimensional vector space gives rise to the
rescaling of operations, like mn 7→ λnmn in the case of A∞-algebras.

2.2 Homotopical actions of Lie algebras

Let g be a Lie algebra acting on a formal dg-manifold (Y, dY ). This means
that we have a homomorphism of Lie algebras g → Der(Y ), γ 7→ γ̂ where
Der(Y ) is the Lie algebra of vector fields on Y preserving Z-grading an dY .

We can make Z = Y × g[1] into a formal dg-manifold introducing an odd
vector field by the following formula

dZ(y, γ) = (dY (y) + γ̂, [γ, γ]/2)

Then [dZ , dZ ] = 0. We can make g[1] into a formal dg-manifold using
the odd vector field dg[1] arising from the Lie bracket. Then the natural
projection (Z, dZ) → (g[1], dg[1]) becomes a dg-bundle (cf. [Ko2]).
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This contsruction of a dg-bundle out of a group or Lie algebra acting on
a dg-manifold motivates the following definition.

Definition 12 Let g be a Lie algebra. Homotopical g-action on a formal
dg-manifold (Y, dY ) is a dg-bundle π : (Z, dZ) → (g[1], dg[1]) together with an
isomorphism of dg-manifolds (π−1(0), dZ) ≃ (Y, dY ).

Remark 3 It was pointed out in [Ko2] that in this case g acts on the coho-
mology of all complexes naturally associated with (Y, dY ) ( like the tangent
space at a zero point of dY , the space of formal functions on Y , etc.).

We remark also that if g is a DGLA then the same definition can be
given. It can be also generalized to the case when the base of a equivariant
dg-bundle is an arbitrary dg-manifold with a marked d-stable point.

Suppose that F is a polynomial functor in the category of Z-graded vector
spaces, P = Free(F ), V ∈ V ectZ. We apply the general scheme outlined
above to the case Y = M(P, V ), g = gP . Obviously g acts on the dg-manifold
Hom(F (V ), V ), equipped with the trivial odd vector field.

Let us consider the graded vector space

N = Hom(V, V )[1] ⊕Hom(F (V ), V ) ⊕ gP [1]

Let dV ∈ Hom(V, V )[1] makes V into a complex, γ = dP ∈ gP [1] satisfies
the equation [dP , dP ] = 0 and ρ ∈ Hom(F (V ), V ) makes V into a dg-algebra
over (P, dP ).

We consider the formal neighborhood of the point (dV , ρ, dP ) in N , and
define an odd vector field by the formula

dN (dV , ρ, dP ) = (d2
V , ξ(dV , ρ) + d̂P , [dP , dP ]/2)

The notation here is compatible with the one for M.
One can check that [dN , dN ] = 0. Thus the formal neighborhood becomes

a formal dg-manifold. It controls deformations of pairs (an operad, an algebra
over this operad).

The natural projection π : N → gP [1] is a morphism of formal dg-
manifolds . Here on gP [1] we use the odd vector field dgP [1] defined by the
Lie bracket. Then the formal scheme of zeros of dgP [1] corresponds to the
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structures of a dg-operad on P . The fiber over a fixed point x ∈ gP [1] is a
dg-manifold with the differential induced from N . Then the formal neigh-
borhood of a fixed point in π−1(x) controls deformations of P̂ -algebras.

We conclude that the Lie algebra of derivations of an operad acts homo-
topically on the moduli space of algebras over this operad.

3 Hochschild complex and operads

This section serves as a sort of a “second introduction”, outlining objectives
and the strategy of the rest of the paper.

One of our aims will be to construct a dg-operad of the type P̂ (i.e. free as
a graded operad) acting naturally on the Hochschild complex of an arbitrary
A∞- algebra.

In Section 5 we are going to construct an operad M which acts naturally
on the full Hochschild complex C ·(A,A) of an A∞-algebra A as well as on
C ·

+(A,A). There is a natural free resolution P of the operad M , so that

C := C ·(A,A) becomes a P̂ -algebra. Then we can say that there is a dg-
map of the moduli space of A∞-categories to the moduli space M(P,C) of

structures of P̂ -algebras on the graded vector space C.
¿From the point of view of deformation theory it is not very natural

to make constructions of the type algebraic structure → another algebraic
structure (like our construction A∞ − algebras → M − algebras). It is
more natural to extend them to morphisms between the formal pointed dg-
manifolds controlling the deformation theories of structures.

We will construct an explicit dg-map M(A∞, A) → M(P,C) as well as
a dg-map Mcat(A∞, A) → M(P,C), such that the one is obtained from
another by the restriction from the moduli space of algebras to the moduli
space of categories.

The operad A∞ is augmented, i.e. equipped with a morphism of dg-
operads η : A∞ → Free(0). Here Free(0) is the trivial operad : Free(0)1 =
k, Free(0)(n 6=1) = 0. Since A (as any graded vector space) is an algebra over
Free(0), it becomes also an algebra over A∞. Any structure of an A∞-algebra
on A can be considered as a deformation of this trivial structure. Notice also
that in the previous notation the augmentation morphism defines a point in
the dg-manifold M(A∞, C), where C = C ·(A,A). Therefore it is sufficient
to work in the formal neighborhood of this point.
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Notice that we can consider also the moduli space of structures of a com-
plex on the graded vector space C ·(A,A) where A is an arbitrary graded vec-
tor space. It gives rise to a formal dg-manifold. There are natural morphisms
to it from the formal dg-manifold of the moduli space of A∞-categories and
from the formal dg-manifold of the moduli space of structures of P̂ -algebras
on C ·(A,A). Theorem 1 below combines all three morphisms discussed above
into a commutative diagram. Let us make it more precise.

First we formulate a simple general lemma, which will be applied in the
case V = C[2].

Let V be an arbitrary graded vector space, dV an odd vector field on
V (considered as a graded manifold) such that [dV , dV ] = 0. Thus we get
a dg-manifold. The graded vector space H = H(V ) = Hom(V, V )[1] is a
dg-manifold with dH(γ) = γ2. To every point v ∈ V we assign a point in H

by taking the first Taylor coefficient d
(1)
V (v) of dV at v. In this way we obtain

a map ν : V → H .

Lemma 2 The map ν is a morphism of dg-manifolds.

Proof . Let us write in local coordinates x = (x1, ..., xn) the vector field
dV =

∑
i φi∂i where ∂i denotes the partial derivative with respect to xi, and

φi are functions on V . Then the map ν assigns to a point x the matrix
M = (Mij(x)) with Mij = ∂jφi. Then direct computation shows that the
condition [dV , dV ] = 0 implies that the vector field ẋ = dV (x) is mapped to
the vector field Ṁ = dH(M) = M2. �

Let A be a graded vector space endowed with the trivial A∞-structure,
and C = C ·(A,A) =

∏
n≥0HomV ectZ(A⊗n, A) be the graded space of Hochschild

cochains. Since C[1] carries a structure of a graded Lie algebra (with the Ger-
stenhaber bracket), it gives rise to the structure of a dg-manifold on C[2],
which is the same as Mcat(A∞, A). We will denote it by (X, dX) (or simply
by X for short).

Even for the trivial A∞-algebra structure on A, we get a non-trivial P -
algebra structure on C. The corresponding moduli space M(P,C) will be
denoted by (Y, dY ) (or Y for short).

There is a natural morphism of dg-manifolds p : Y → Hom(C,C)[1] = H
(projection of Y = M(P,C) to the first summand).

The following theorem will be proved later in the paper.
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Theorem 1 There exists a GL(A)-equivariant morphism of dg-manifolds
f : X → Y such that pf = ν.

Moreover we will present an explicit construction of the morphism.
Suppose that A is an A∞-algebra. Geometrically the structure of an A∞-

algebra on the graded vector space A gives rise to a point γ ∈ X = C[2], C =
C ·(A,A) such that dX(γ) = 0. Indeed, the definition can be written as
[γ, γ] = 0. Thus we get a differential in C (commutator with γ) making it
into a complex. The structure of a complex on the graded vector space C
gives rise to a zero of the field dH in the dg-manifold H = Hom(C,C)[1].
Theorem 1 implies that f(γ) is a zero of the vector field dM(P,C). Therefore
the Hochschild complex (C, [γ, ·]) carries a structure of a dg-algebra over P .

Our next aim is to uncover the geometric origin of the operad P . It will
be related to the configuration space of discs inside of the unit discs in the
plane. More precisely, the operad Chains(E2) of chains on the little discs

operad (see [Ko3] and Section 7 below) is quasi-isomorphic to P̂ . Here we
use either usual singular chains or piecewise algebraic chains (see Appendix).

In fact we are going to construct explicitly a morphism P̂ → Chains(E2)
which gives the homotopy equivalence (to be more precise we will do that
for the operad Chains(FM2) which is quasi-isomorphic to E2). Then using
the fact that both dg-operads are free as graded operads, we invert this
quasi-isomorphism. This gives a structure of an Chains(E2)-algebra on the
Hochschild complex of an A∞-algebra. This result is known as Deligne’s
conjecture.

Let us recall that there is a notion of d-algebra, d ∈ Z+ (see for ex.
[Ko3]). Namely, a graded vector space V is called a d-algebra if it is an
algebra over the operad Chains(Ed) (chains of the topological operad of
little d-dimensional discs). Thus the moduli space M(P,C) can be thought
as a moduli space of structures of a 2-algebra on a graded vector space C.
Then our Theorem 1 says that there is a GL(A)-equivariant morphism of
the moduli space of A∞-categories with one object to the moduli space of
2-algebras.

Remark 4 In the unpublished paper [GJ] the name d-algebras was reserved
for algebras over the operad H·(Chains(Ed)). It was proved by Tamarkin
in [T] and by the first author in [Ko3] that there exists a (non-canonical)
quasi-isomorphism between the operad Chains(Ed) and its homology operad
H·(Chains(Ed)) (in other words the operad Chains(Ed) is formal).
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Let gP = DerP means as before the DGLA of derivations of P̂ . Then gP

acts on the moduli space of P̂ -algebras. On the other hand, from the point
of view of deformation theory, we can replace the operad of little discs E2 by
the operad of configurations of points in the plane (properly compactified).
This is the operad FM2 mentioned above. There is a natural action of
the Grothendieck-Tiechmüller groups on the rational homotopy type of the
latter. It gives rise to a morphism of L∞-algebras Lie(GT )[1] → (gP , [dP , ·])
where GT is the Grothendieck-Teichmüller group.

Therefore one has a homotopical action of the Lie algebra Lie(GT ) on

the moduli space of P̂ -algebras.

4 Free resolution of a dg-operad

In this subsection we recall well-known constructions of free resolutions of
operads (see e.g. [GJ]).

Let k be a field as before, R be a dg-operad over k. The aim of this
subsection is to construct canonically a dg-operad PR over k, which is free
as a graded operad, and a quasi-isomorphism PR → R. Then PR will be a
free resolution of R. In this subsection we will assume that R is non-trivial,
which means that the unit operation from R1 is not equal to zero.

4.1 Topological construction

We will mainly follow [BV].
Let O = (On)n≥0 be a topological operad (i.e. all On are Sn-topological

spaces and all operadic morphisms are continuous). We describe (following
[BV]) a construction of a topological operad B(O) = (B(O)n)n≥0 together
with a morphism of topological operads B(O) → O which is homotopy equiv-
alence.

To simplify the exposition we assume that Sn acts freely on On for all n.
Each space B(O)n will be the quotient of

B(O)n =
⊔

[T ],T∈Tree(n)

([0,+∞]Ei(T ) ×
∏

v∈Vi(T )

ON−1(v))/AutT

under the relations described in the following way.
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Let us consider the elements of B(O)n as numbered trees with elements
of O attached to the internal vertices, and the length l(e) ∈ [0,+∞] attached
to every edge e. We require that all external edges (i.e. root edge and the
tail edges) have lengths +∞.

We impose two type of relations.
1) We can delete every vertex v of valency 1 if it contains the unit of

the operad, replacing it and the attached two edges of lengths li, i = 1, 2
by the edge with the length l1 + l2 . We use here the usual assumption:
l + ∞ = ∞ + l = ∞.

2) We can contract every internal edge e = (v1, v2), v2 = N(v1) of the
length 0 and compose in O the operations attached to vi, i = 1, 2.

We depict the trees and relations below.
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Let us describe how B(O) can act naturally on a topological space.
Let X be a topological space, and gt : X → X, t ∈ [0,+∞) a 1-parametric

semigroup of continuous maps acting on X.
We assume that the map [0,+∞) × X → X, (t, x) 7→ gtx extends con-

tinuosly to [0,+∞] × X. We denote by Y the image of g∞ := limt→∞g
t.

Clearly the subspace Y is a homotopy retract of X.
Suppose that a topological operad O acts on X, i.e. that we are given

continuous maps On × Xn → X, n ≥ 0, satisfying the usual properties.
We can construct an action of B(O) on Y as follows. Let γ ∈ On, t, ti ∈
R+ ∪ {+∞}, xi ∈ X, 1 ≤ i ≤ n. Then we assign to these data the point
x = gtγ(gt1x1, ..., g

tnxn) of X. We define the composition of such operations
in the natural way.

We can interpret the parameters t, ti above as lengths of edges of trees .
Putting t = +∞ we obtain an action of B(O) on the homotopy retract Y .

4.2 Free resolutions of linear operads

Let R be a dg-operad over a field k. To describe its free resolution PR we
need a special class of trees described below.
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For every n ≥ 0 we introduce a groupoid T (n) of marked trees with n
tails. An object of T (n) is a numbered tree T ∈ Tree(n) and a map to a
3-element set l = lT : E(T ) → {0, f inite,+∞} such that lT ({er} ∪Et(T )) =
{+∞}. Notice that in the case of topological operads the component B(O)n

is stratified naturally with the strata labeled by equivalence classes |T (n)| of
marked trees. The label of an edge e of the corresponding marked tree is 0
if l(e) = 0, is finite if l(e) ∈ (0,+∞) and is +∞ if l(e) = +∞. According
to this description, we call them zero, finite, infinite edges respectively. We
denote these sets of edges by Ezero, Efinite and Einfinite correspondingly.

We will give three different but equivalent descriptions of the operad
P = PR as a graded operad. Then we define a differential on P .

Description 1.
Let

P̄n =
⊕

[T ],T∈T (n)

(⊗v∈V (T )RN−1(v)[JT ])AutT

where AutT is the group of automorphisms of the tree T , JT = l−1
T (finite),

and for any graded vector space W and a finite set J we use the notation
W [J ] = W ⊗ k[1]⊗J (shift of the grading by J).

Notice that the dimension of the corresponding stratum of T (n) is the
cardinality of the set JT , i.e. the number of finite edges.

Then (P̄n)n≥0 evidently form a graded operad P̄ . It is a k-linear analog
of the operad BO.

The operad P̄ contains a subspace IP generated by the following relations
1) if the length of an edge (w, v) is 0 we contract it and make the com-

position in R of the operations attached to w and v (cf. description for
B(O));

2) if v is a vertex of T ∈ P such that |v| = 1 and 1R ∈ R1 is attached to
v, then T belongs to IP if the following holds: lengths of both edges attached
to v are non-zero edges, and at least one of them is finite. If both edges are
infinite, we remove the vertex and two attached edges, replacing them by an
infinite edge.

One can check easily that IP is a graded ideal in P̄ . We denote by P the
quotient operad P̄ /IP .

Description 2.
We define Pn in the same way, but making the summation over all trees

without edges of zero length. We also drop the relation 1) from the list of
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imposed relations (there are no edges with l = 0 ).
Description 3.
We define an operad R′ such as follows:
R′

n = Rn for n 6= 1, R′
1 is a complement to the subspace k · 1R in R1.

Then we define Pn as in Description 2, but using R′ instead of R and
dropping both relations 1) and 2).

It is clear that this description defines a free graded operad.
Equivalently, it can be described as a free graded operad P such that

P = Free(Cofree′(R′[1]))[−1]

Here Cofree(L) means a dg-cooperad generated by L which is cofree as a
graded co-operad, and ′ denotes the procedure of taking a (non-canonical)
complement to the subspace generated by the unit (or counit in the case of
a co-operad) as described above in the case of R.

In this description the generators of P correspond to such trees T in
T = (T (n))n≥0 that every T has at least one internal vertex, all internal
edges are finite and there are no zero-edges in T .

Proposition 2 All three descriptions give rise to isomorphic graded free op-
erads over k.

Proof . Straitforward. �

We can make P̄ into a dg-operad introducing a differential dP̄ . We use
the Description 1 for this purpose.

The differential dP is naturally decomposed into the sum of two differen-
tials:

dP = d̃R + dT where
a) the differential d̃R arises from the differential dR in R;
b) the differential dT arising from the stratification of T (n): it either

contracts a finite edge or makes it into an infinite edge .
To be more precise, let us consider the following object ∆ in C = V ectZ:

∆−1 = 1C,∆
0 = 1C ⊕ 1C where 1C is the unit object in the monoidal category

C. Then ∆ can be made into a chain complex of the CW complex [0,+∞] =
{0} ∪ (0,+∞) ∪ {+∞}.

We see that as a graded space P̄n is given by the formula

P̄n = ⊕[T ],T∈Tree(n)(⊗v∈Vi(T )RN−1(v) ⊗ ∆⊗Ei(T ))AutT
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Since we have here a tensor product of complexes, we get the correspond-
ing differential dP̄ in P̄ .

Proposition 3 The ideal IP is preserved by dP̄ .

Proof . Straitforward computation. �

Therefore P = PR is a dg-operad which is free as a graded operad.
There is a natural morphism of dg-operads φ : P → R. In terms of the

Description 2 it can be defined as follows:
φ sends to zero all generators of P corresponding to trees with at least

one finite edge. Let T ∈ P be a tree with all infinite edges. Then T gives
rise to a natural rule of composing in R elements of RN−1(v) assigned to the
vertices of T . We define φ(T ) ∈ R as the result of this composition.

It is easy to check that φ is a well-defined morphism of dg-operad.

Proposition 4 The morphism φ is a quasi-isomorphism of dg-operads.

Proof . Follows from the spectral sequence arising from the natural strat-
ification of T . To say it differently, let us consider the tautological embedding
ψ of R into P . Then ψ is a right inverse to φ. It gives a splitting of P into
the sum P = ψ(R) ⊕ P (0). Here P (0) is spanned by the operations corre-
sponding to trees with finite edges only. Such a tree can be contracted to a
point which means that P (0) is contractible as a complex. Hence φ defines a
quasi-isomorphism of complexes and dg-operads. �

4.3 Example

Let us discuss an example when R is the operad of associative algebras with-
out the unit. We denote it by As. Then for any n ≥ 1 we have: Asn is
isomorphic to the regular representation of the symmetric group Sn.

In this case the complex Pn from the previous subsection can be identified
with the chain complex of the CW-complex Kn, n ≥ 2 described below.

The cells of Kn are parametrized by planar trees with an additional
structure on edges. By a planar tree here we understand a numbered tree
T such that for any v ∈ Vi(T ) the cardinality of N−1(v) is at least 2 and
this set is completely ordered. The additional structure is a map Ei(T ) →
{finite, infinite}. We call an edge finite or infinite according to its image
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under this map. Dimension of the cell is equal to the number of finite edges
of the corresponding planar tree.

We can either contract a finite edge or make it infinite. This defines an
incidence relation on the set of cells.

We can picture planar trees as follows

root

6 1

2

3

4

5

f
8

8

8

8

8

8

8

8
f

Here the dashed lines show the complete orders on set of incoming edges.
We will not show them on other figures in the text. Instead, we will tacitly
assume that for a given vertex the incoming edges are completely ordered
from the left to the right.

In this way we obtain cubical subdivisons of the Stasheff polyhedra.
We depict the case n = 4 below
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5 Minimal operad

In this subsection we describe a dg-operadM = (Mn)n≥1 which acts naturally
on the Hochschild complex of an A∞-algebra. We call it minimal operad.
Let us describe this operad informally. We treat elements γ ∈ C ·(A,A)
as polylinear operations on A. For given operations γ1, ..., γn ∈ C ·(A,A),
and an A∞-structure m ∈ C ·(A,A) we can make compostions in all possible
ways, reading the arguments from left to right. For example we can make an
expression like this:

γ(a1 ⊗ ...⊗ a5) = γ2(a1 ⊗ a2 ⊗m2(a3 ⊗ γ1(a4)) ⊗ γ3(a5)), etc.
Such compostions can be depicted by planar trees. The operad M is

spanned by operations corresponding to certain trees, which we call admis-
sible (see below).

It seems that the operad M is close to what is described in [MS] as “natu-
ral transformations (C ·(A,A))⊗n → C ·(A,A)” (this terminology is confusing
because the assignement A 7→ C ·(A,A) is not a functor).

In all previous works dealing with Deligne’s conjecture the authors used
operads which act on C ·(A,A) and generated by the operations called braces.
It seems that the braces generate the operad M , but it is not clear what is
the complete list of relations. The advantage of our operad M is that it is
described directly, not as a quotient of a free operad.

The defining properties of a dg-operad (i.e. associativity of the compo-
sition, Leibniz rule for the differential) will become clear later. We will give
two definitions of the operad M . The first one is suitable for the pure al-
gebraic descriptions of the operadic composition and the differential. But
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the signs in the formulas are not very transparent. Second description takes
care about “parity of edges”, so the correct signs come out automatically. In
some formulas related to the first description we will write ± having in mind
that the correct sign follows from the second description.

5.1 Basis of M

Definition 13 For a finite set I we define an I-labeled planar tree as a triple
(T, lab, ord) where T is a tree in the sense of Section 1.2, lab : I →֒ Vi(T ) is
an embedding, and ord is a complete order on the sets N−1(v), v ∈ Vi(T ).

We call labeled a vertex from the image of the map lab. All other internal
vertices are called non-labeled.

Definition 14 We will call an I-labeled tree admissible if it has no tail ver-
tices, and for every non-labeled internal vertex v we have |v| ≥ 2.

We denote the set of isomorphism classes of I-labeled planar trees by
Tree(p)(I), where the upper script p stays for “planar”. Notice that the
automorphism group of an I-labeled planar tree is trivial. For I = {1, ..., n}
we will use the notation Tree(p)(n).

We are going to use admissible trees unless we say otherwise. If it will
not lead to a confusion, we will simply call them trees. Slightly abusing the
notation we will denote an I-labeled tree by T , skipping lab and ord. Notice
that terminology here is different from the one in Section 1.5. In particular,
we label here internal vertices, not tails. Since we do not consider here
numbered trees (in the terminology of Section 1.5), this change of terminology
should not lead to a confusion.

We can depict trees from Tree(p) = (Tree(p)(n))n≥1 as follows
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Labeled vertices are depicted as circles with numbers inscribed, non-
labeled vertices are depicted as black vertices.

We define MI to be a k-vector space spanned by all elements of Tree(p)(I).
For I = {1, ..., n} we will use the notation Mn. The symmetric group Sn acts
on Mn permuting labeled vertices.

Abusing the notation further, we will denote the element of Mn cor-
responding to a tree T simply by T . Thus we have: M0 = 0 and M1 is a
1-dimensional vector space generated by Te, the first tree on the figure above.
In fact Te corresponds to the unit 1M ∈M1 of the operad M .

The operadic composition in M and the differential will be described
below.

The degree of the basis element corresponding to a tree T is equal to

deg(T ) =
∑

v∈Vlab(T )

(−|v|) +
∑

v∈Vnonl(T )

(2 − |v|)

where Vlab(T ) and Vnonl(T ) denote the sets of labeled and non-labeled vertices
respectively , and |v| is the cardinality of the set N−1(v).

5.2 Composition in M

We need to define an element of M which corresponds to a tree T2 glued to
a tree T1 at a labeled vertex v ∈ Vlab(T1). The trees Ti, i = 1, 2 correspond
to some elements of M . The resulting element will be by definition their
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operadic composition. It is given by the sum

T1 ◦v T2 =
∑

β

±(T1 ◦v T2)β

where the trees (T1 ◦v T2)β are defined below.
First, with the tree T2 we associate a set A(T2) =

⊔
v∈Vi(T2){0, ..., |v|}. We

call it the set of angles of T2. Obviously there is a natural map κ : A(T2) →
Vi(T2). The path in R2 which goes from the left to the right and surrounds
T2 defines a complete order on A(T2). On the following figure angles are
marked by asteriscs.

* * *

* *

**

*
*

2

3

1

4

root

The datum β above is a (non-strictly) monotonic map β : N−1(v) →
A(T2). We will think of this map as about the way to insert a vertex w ∈
N−1(v) and the edge (w, v) inside of an angle formed by two edges incoming
to β(v).

Schematically it is shown on the figure below.
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Let Tβ = (T1 ◦v T2)β. Then we define the set of vertices V (Tβ) as (V (T1)\
{v})

⊔
(V (T2) \ {root}). The map N = NTβ

is defined such as follows: for
all w ∈ V (T1) \ {v} such that NT1(w) 6= v we put N(w) = NT1(w) in
the self-explained notation. Similarly if w ∈ V (T2), NT2(w) = root we put
N(w) = NT1(v). If w ∈ V (T2), NT2(w) 6= rootT2 then we put N(w) = NT2(w).
Let us suppose that w ∈ N−1

T1
(v). Then we define N(w) as κ(β(w)). The

root vertex of Tβ is the same as for T1. The labeling and complete orders
on the sets N−1(x) are defined in the natural way. Informally speaking, Tβ

is obtained by removing from T1 the vertex v together with all incoming
edges and vertices, and gluing T2 to v. Then we use the map β in order to
“insert” removed vertices. With such a composition we obtain the structure
of a graded operad on M .
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We depict an example of the composition in M below
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5.3 Differential in M

For a generator T we define dM(T ) =
∑

v∈Vi(T ) dv(T ) where each dv(T ) will
be of the form

dv(T ) =
∑

i,j

±dv,i,j(T ).

We need to explain the set of indices of summation and each summand.
Let us recall that for every vertex v ∈ Vi(T ), |v| = k there is a bijection of
sets {1, ..., k} → N−1(v) which defines a complete order on the set N−1(v).
We will identify an element of N−1(v) with the corresponding number. The
indices i, j in the sum above will be half-integers: 1/2 ≤ i ≤ j ≤ k + 1/2.
For a pair i, j, we define dv,i,j(T ) to be a tree T ′ such that:

a) V (T ′) = (V (T )\{v})∪{vup, vdown} where {vup, vdown} are new vertices;
b) rootT ′ = rootT ;
We put

NT ′(vdown) = vup,

NT ′(l) = vdown,

if i < l < j;
NT ′(l) = vup,

if l < i or l > j.
For all other vertices u we put NT ′(u) = NT (u).
Complete orders on the sets N−1

T ′ (u) are defined in the natural way. The
tree T ′ has one new edge (vdown, vup) which we denote in pictures as “new”.

We can depict these definitions as follows
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The range of summation is defined differently in the case of labeled and
non-labeled vertices v. The idea is to keep admissible graphs only.

1) If v is non-labeled then we take sum over 1/2 ≤ i ≤ j ≤ k + 1/2 such
that 2 ≤ j− i and 1 ≤ k− (j− i), in dv,i,j(T ) both vertices vup and vdown are
non-labeled.

2) If v is labeled, then dv(T ) = d
(1)
v (T )+d

(2)
v (T ) where the first summand

d
(1)
v (T ) is the sum of dv,i,j(T ) with 1 ≤ k − (j − i) and with the vertex vdown

appearing with the old label of v, and vup being non-labeled. The second
summand d

(2)
v (T ) is the sum of dv,i,j(T ) with 2 ≤ j − i, the vertex vdown is

non-labeled, and vup has the same label as v in T . Labeling of all vertices
different from vup and vdown remains the same.

5.4 Action of M on the Hochschild complex

Let (A,m) be an A∞-algebra. Our next step is to define an action of a
dg-operad M on C ·(A,A) so the latter becomes a dg-algebra over M .

Let T ∈ Mn, γi ∈ C ·(A,A), 1 ≤ i ≤ n. We need to define an element
T (γ1, ..., γn) ∈ C ·(A,A). It can be expressed as a sequence of morphisms of
graded vector spaces T (γ1, ..., γn)N : A⊗k → A, k = 0, 1, ...

Let T(k) be a unique (non-admissible) planar tree with only one internal
vertex v, which is labeled, and k tails, numbered from the left to the right.

Then we have the composition
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T(k) ◦v T =
∑

β

±(T(k) ◦v T )β

defined in the same way as for admissible trees. Here as before β : {1, ..., k} →
A(T(k) ◦v T ) is a monotonic map.

Every tree (T(k) ◦v T )β has k tails. For every v ∈ Vi((T(k) ◦v T )β) we define
a polylinear map γv : A⊗|v| → A in the following way:

1) if v is labeled by j, 1 ≤ j ≤ n, we define γv as the component of γj

which belongs to HomV ectZ(A⊗|v|, A);
2) if v is non-labeled we define γv = m|v|.
The tree (T(k) ◦v T )β defines the way to compose operations γv into an

operation γβ : A⊗k → A. We define T (γ1, ..., γn) to be equal to the sum∑
β ±γβ.
We claim that in this way we get on C ·(A,A) a structure of a dg-algebra

over M .
This can be checked by a straightforward computation. It is more or less

clear from the definitions that C ·(A,A) is an algebra over the graded operad
M . Hence the question is about the compatibility with differentials. The
latter follows from a more general result (the Theorem 1), and will be proved
in Section 6.

5.5 Signs in the minimal operad

Now we would like to discuss the second description of the operad M . It is
based on the following result from the theory of Strebel’s differentials (see
[St]).

Theorem 2 Let I = {z1, ..., zn} be a finite non-empty subset of the complex
line C. Then there exists a unique quadratic differential α = f(z)(dz)2 with
f(z) =

∑
i

ai

z−zi
, ai ∈ C, i = 1, ..., n ,

∑
i ai = 1, satisfying the following

property:
There exists a unique tree T ∈ Tree(p)(I) and an embedding j : T → CP1,

{root} 7→ {+i∞} such that the pair (CP1 \ j(T ), α) is equivalent (as a
complex curve with quadratic differential) to the lower half-plane Im(z) < 0
equipped with the quadratic differential i(dz)2.
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We will call such α = f(z)(dz)2 the Strebel differential associated with
the finite set I ⊂ C.

To every Strebel differential α we can assign canonically the {1, ..., n}-
labeled planar tree T . Conversely, having a tree T ∈ Tree(p)(n) we can look
for sequences of pairwise distinct points (z1, ..., zn) in C which can appear as
the sets of possible poles of the Strebel differential from the Theorem. We
remark that the set of all possible (z1, ..., zn) ∈ Cn \ {diag} form an open
cell StrT . This follows from the fact that this space is a vector bundle of
rank 2 over a cell. The latter cell is defined by the lengths of internal edges
(lengths are taken with respect to the metric |α| which is well-defined on
C \ I). Then the embedding of T is fixed up to parallel traslations. The
latter span the fiber of a vector bundle. The total space of this bundle is the
cell StrT ⊂ Cn \ {diag}. It is easy to see that codim(StrT ) = −deg(T ) =
−(|Ei(T )| + 2 − 2|Vlab(T )|).

One can show that there is a finite CW-complex Σ(n) ⊂ Cn \ {diag} with
the cells ΣT labeled by T ∈ Tree(p)(n), and such that ΣT intersects StrT

transversally and at exactly one point.
Now we can give the second definition of the operad M :
For n ≥ 2 the complex Mn is defined as the chain complex of Σ(n).
Using our agreement about degrees of homological complexes, one can

check again that every complex Mn is a finite-dimensional complex concen-
trated in degrees {−(n− 1), ..., 0}.

We use the second definition of in order to derive the following combina-
torial description of the operad M .

One associates to a tree T ∈ Tree(p)(n) a one-dimensional vector space
(in fact an abelian group, so everything can be done over integers). It is

defined by the formula UT = ((H̃·(R))∗)Ei(T ) ⊗ ((H̃·(R
2)∗)⊗ ((H̃·(R

2))Vlab(T ).

In the formula H̃·(X) denotes the reduced homology of the one-point
compactification of X (Borel-Moore homology).

The graded vector space Mn coincides with the sum of UT over all trees
belonging to Tree(p)(n).

Next step is to interpret various shifts in complexes as tensor products
with the reduced homology of vector spaces. For example the shift by 1 is
the tensor product with the reduced homology of R.

It is more convenient to use a different notation for the same spaces of
reduced homology.
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Let L1 := H̃·(R) and L2 := H̃·(R
2). These are 1-dimensional graded

vector spaces of pure degrees −1 and −2 correspondingly. For a finite set I
we define a vector space

MI := ⊕T∈Tree(p)(I)(L
∗
1)

Ei(T ) ⊗ L∗
2 ⊗ L⊗I

2 = ⊕T∈Tree(p)(I)UT .
Geometrically the new notation is related to the picture with the Strebel

differentials. We think about R2 as about direct sum of two lines R2 =
Rhor ⊕Rvert (horizontal and vertical lines). The vertical line is the y-axis in
C = R2. The vertical line corresponds to L1 in the notation above, and the
horizontal line corresponds to L∗

1 ⊗ L2 (we think of it as about R2/Rvert).
There is a natural structure of a complex on MI . We define a linear map

dI : MI →MI ⊗ L1 as a sum

dI =
∑

T1→T

dT1,T .

Here T1 → T means that T1 is obtained from T by adding an internal edge.
The summand dT1,T is a linear map from UT to UT1 ⊗ L1 = (UT ⊗ L∗

1) ⊗ L1.
It is given by idUT

⊗ εL1 where εL1 : 1 → L∗
1 ⊗ L1 is the canonical morphism

in the symmetric monoidal category V ectZ.

Lemma 3 The linear map dI defines a differential in MI .

Proof. We need to prove that (dI ⊗ idL1)◦dI = 0. This can be checked di-
rectly using the fact that L1 has degree −1 , so the commutativity constraint
acts on L1 ⊗ L1 as −σ where σ is the permutation map. �

The compostion maps for the operad M can be naturally described in
the new notation. We remark that in order to glue a tree T2 to a tree T1 at a
vertex v first we need to define a sequence of trees {(T1◦vT2)β} (they were also
denoted by Tβ in the previous description of the gluing). For every (T1◦vT2)β

the set of internal edges is the disjoint union of the corresponding sets for T1

and T2. The set of labeled vertices for (T1 ◦v T2)β is (Vlab(T1)∪Vlab(T2))\{v}.
Then we need to define a morphism of vector spaces UT1 ⊗UT2 → U(T1◦vT2)β

.
Equivalently we need to define a morphism of the graded vector space
(L∗

1)
⊗Ei(T1)⊗L∗

2⊗L
⊗I1
2 ⊗(L∗

1)
⊗Ei(T2)⊗L∗

2⊗L
⊗I2
2 to the graded vector space

(L∗
1)

⊗(Ei(T1)⊔Ei(T2)) ⊗ L∗
2 ⊗ L

⊗((I1\{v})⊔I2)
2 . (The notation is self-explained).

We define the morphism to be the identity on the tensor factors marked
by same edges or same elements of the sets Ik, k = 1, 2.

For example (L∗
1)

⊗Ei(T1)⊗(L∗
1)

⊗Ei(T2) is identically mapped to (L∗
1)

⊗(Ei(T1)⊔Ei(T2)).
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Hence it is enough to define a morphism L∗
2⊗L

∗
2⊗L2 → L∗

2, where first and
third tensor factors in the LHS correspond to the tree T1, middle tensor factor
corresponds to the tree T2 and the space L∗

2 in the RHS corresponds to the
tree (T1◦vT2)β. Then one uses the canonical evaluation map ev : L∗

2⊗L2 → 1

in the symmetric monoidal category V ectZ.

5.6 Signs in the Hochschild complex

In this subsection we are going to reformulate the definition of the Hochschild
complex using the reduced homology spaces L1 and L2. Then one gets the
sign agreement with the computations in the previous subsection.

For a graded vector space A we define

C = C ·(A,A) = ⊕IHom(A⊗I , A) ⊗ (L∗
2 ⊗ L1)

⊗I

where the sum is taken over all non-empty completly ordered finite sets, and
Hom is the internal Hom in the tensor category V ectZ.

Let us demonstrate how the structures in C can be reformulated by means
of this language.

The Gerstenhaber bracket is a map C ⊗ C → C ⊗ (L∗
2 ⊗ L1). Now the

multiplication m can be described as a point of a dg-manifold: m ∈ C ⊗ L2.
The bracket [m,m] defines a point of the dg-manifold C⊗L∗

2⊗L1⊗L2⊗L2 =
(C ⊗ L2) ⊗ L1. If [m,m] = 0 then we have a differential dm = [m, ·] : C →
C ⊗ L1.

The corresponding structure of DGLA on C can be reformulated such as
follows.

Consider the class F of simple forests. A simple forest F is a finite
collection of planar trees F = {Tα}α∈Ω with no internal edges. For every
F ∈ F we define the graded vector space

WF := ⊗α∈ΩHom(A⊗Vt(Tα), A) ⊗ (L∗
2 ⊗ L1)

⊗Vt(Tα) ⊗ L2.

We have the natural groupoid structure on F . The correspondence F 7→
WF defines a functor from this groupoid to the category V ectZ. The free
cocommutative coalgebra cogenerated by C⊗L2 can be described as a colimit
of this functor: Coalg(C ⊗ L2) = colimF∈FWF = ⊕F/iso(WF )AutF .

The coalgebra structure on Coalg(C⊗L2) can be described in these terms.
Namely ∆ ◦ pr =

∑
F1⊂F (pr ⊗ pr) ◦ i(F1, F2).
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Let us explain the notation.
Here ∆ is the coproduct on the free cocommutative coalgebra cogenerated

by C⊗L2, pr is the projection to the coinvariants. The sum is taken over all
subforests F1 (unions of some connected components of F ), and we fix the
splitting i(F1, F2) : WF ≃WF1 ⊗WF2 , where F2 is the complementary forest.
We leave to the reader straightforward reformulations of other structures on
the Hochschild complex and checking the signs.

Remark 5 For an A∞-algebra A one can define the opposite algebra Aop.
In the geometric language of this section it corresponds to the antipodal in-
volution on Rhor.

6 Morphism of dg-manifolds

6.1 Generators of the free operad

The main purpose of this section is to prove the Theorem 1. It will be done
in subsection 6.2. This subsection is devoted to some technical preparatory
material.

Applying the general theory of Section 4 to the case of the operad M
we obtain its free resolution P . It is a dg-operad which is free as a graded
operad. Its graded components Pn can be described explicitly in terms of the
operad M . We know that P0 = 0 and P1 = k · 1P . One can easily describe
the space Gn = (Free′(M ′[1])[−1])n of generators of Pn, n ≥ 2.

Namely, Gn is a direct sum of 1-dimensional graded vector spaces WT.
The sum is taken over the set of equivalence classes of collections T =
(T, {Tv}v∈Vi(T )) where:

a) T ∈ Tree(n), n ≥ 2 such that for every v ∈ Vi(T ) we have |v| ≥ 2;
b) Tv ∈ Tree(p)(N−1

T (v)).
In order to be consistent with the notation of Section 7, we should also

label all internal edges of T by an additional label finite. We omit the labeling
since it will not be used in this section.

Clearly the automorphism group of any such T is trivial. The symmetric
group Sn acts freely on Gn permuting the tails of T . Any T gives rise to the
1-dimensional vector space WT = L

⊗Ei(T )
1 ⊗ UTv

, where the space UT ′ was
defined in 5.5. In what follows we will identify T with the corresponding (up
to a sign) generator of Gn.
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Notice that if Ei(T ) = ∅ then T has the only internal vertex v and
WT = UTv

. Moreover, the set N−1(v) is naturally identified with the set
{1, ..., n}, so that we can write Tv ∈ Tree(p)(n).

There is a natural morphism of Sn-modules prn : Gn → Mn, such that
prn(WT) = 0 if Ei(T ) = ∅, otherwise prn(WT) = idTv

where v is the only
internal vertex of T .

A generator T is pictured by a tree T with n numbered tails, and with
generators of M inscribed into all internal vertices of T . If Tv ∈ M is
inscribed into a vertex v ∈ Vi(T ) then the cardinality of Vlab(Tv) is equal
to the cardinality of N−1(v).

Now we can return to the Theorem 1. We have constructed the minimal
operad M . The Hochschild complex C ·(A,A) of an A∞-algebra A is an
algebra over M (if we forget the differentials). Then the free resolution P of
M acts on C ·(A,A), so the latter becomes an algebra over the graded operad
P (again we forget the differentials).

On the other hand, let A be a graded vector space and m ∈ C = C ·(A,A),
but not necessarily [m,m] = 0. Then the constructions of the Section 5 give
rise to a sequence of elements ρ(m) = (ρ(m)n)n≥1 of Hom(Mn ⊗Sn

C⊗n, C)
(no conditions onm were imposed by the construction). The following lemma
is easy to prove

Lemma 4 The sequence ρ(m) defines a structure of a graded M-operad on
C.

Compositions γ(m)n = ρ(m)n ◦ prn for n ≥ 2 give rise to a sequence of
Sn-equivariant maps Gn ⊗Sn

C → C. Since the graded operad P is freely
generated by G = (Gn)n≥2, these compositions define a point in M(P,C).
We denote the sequence (γ(m)n)n≥2 by γ(m). Thus we can write γ(m) =
ρ(m) · pr where pr = (prn)n≥2.

We can define an element dm ∈ Hom(C,C)[1] in the natural way: dm =
[m, ·]. In general d2

m 6= 0. In any case it can be naturally extended to a map
f : Mcat(A∞, A) → M(P,C) such that f(m) = (dm, γ(m)).

We claim that this map is a morphism of dg-manifolds and it satisfies the
condition p ·f = ν of the Theorem 1. It will be proved in the next subsection.
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6.2 Proof of the theorem

In the course of the proof we will not pay much attention to the signs. The
reason for that was explained in the previous section. Namely, our second
description of the operad M (with reduced homology) gives automatically
the agreement of signs.

Proof of the theorem will occupy the rest of this subsection. We start
with some general considerations.

Let us recall that points of the moduli space Y = M(P,C) parametrize
pairs (dC , γ) where dC : C → C ⊗ L1 is a morphism in V ectZ, and γ is
an action of the space of generators G = (Gn)n≥2 on C. Having the action
γ(m) = ρ(m) ·pr of P on C we would like to compute the odd vector field dY

at the point (dm, γ(m)). Clearly dY (dC, γ) = (d2
C , γ̄) where γ̄ = (γ̄2, γ̄3, ...)

and γ̄n ∈ Hom(Gn ⊗Sn
C⊗n, C ⊗ L1).

We need to compute γ̄. One can extend dC to Hom(C⊗n, C) using the

Leibniz rule. We denote this extension by d
(n)
C . To write down γ̄ we need

to know the images of the generators of P under all γn. We know that the
maps prn send to zero all of them except of the trees with one non-labeled
vertex and n numbered tail vertices. The latter is depicted below

...

root

1 2 n

Then the direct computation together the previous lemma show that the
following result holds

Lemma 5 The component γ̄n of dY (f(m)) is equal to

(d(n)
m · ρ(m)n + ρ(m)n · dMn

) · prn

where dMn
is the differential dM being restricted to Mn.
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Proof. We sketch the proof. First we observe that all components of γ̄n,
which corresponds to the generators of Gn with more than two internal edges,
vanish. Using the previous lemma one can show that the generators with one
internal edge give no input as well. After that one can make computations
with elements of the operad M only. Then the direct computation proves
the lemma. �

We would like to prove that the map f : X = Mcat(A∞, A) → Y =
M(P,C) is a dg-map, i.e. it transforms the odd vector field dX into the odd
vector field dY . Vector field on X is given by ṁ = dX(m) = 1

2
[m,m].

The image of the map f belongs to the vector subspace Hom(C,C)[1]⊕
Hom(M ′(C), C) of Y . Therefore the image ḟ(m) = f∗(dX(m)) of the tangent
vector dX(m) belongs to the same vector space. Thus, we have to show that
the second component γ̇ of ḟ(m) is equal to γ.

Its first component is equal to 1
2
[ṁ, ·] which is the same as 1

2
[[m,m], ·] =

d2
m. Notice that γ− γ̇ can be considered as an action of an action of M ′ on C.

We decompose it into the sum of terms corresponding to planar trees from
Tree(p). For such a tree T the component of γ − γ̇ is a sum of four terms
described below.

A. These terms correspond to the differential dM of the operad M . We
can schematically write them as (dMT )((ci), m). We are inserting ci ∈ C in
labeled vertices and m in non-labeled vertices.

B. These terms can be schematically written as
∑

i T ([m, ci], (cj)j 6=i, m).
We are inserting m in non-labeled vertices, elements cj and [m, ci] in the
corresponding labeled vertices.

C. These terms can be schematically written as [m,T ((ci), m)] in the no-
tation above. These terms appear when we apply the differential (= commu-
tator with m) to the tree with ci inserted in labeled vertices and m inserted
in non-labeled vertices.

D. These terms correspond to −γ̇. Each of them consists of the re-
placement of m in one non-labeled vertex v by ṁ. The latter can be in
turn replaced by 1

2
[m,m]. We can schematically write the resulting sum

as
∑

v∈Vnonl(T ) T ((ci),
1
2
[m,m]). We are inserting the element m in all non-

labeled vertices of T except v, the element 1
2
[m,m] in the non-labeled vertex

v and ci to all labeled vertices.
Notice that although a tree T is always admissible, planar trees appearing

in the decomposition of γ̇ are not necessarily admissible. This means that
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valencies of some non-labeled vertices can be either 0 or 1.
In order to depict all four cases we use the following notation: composition

of an operation α sitting in a vertex v with m produces a new tree with a new
non-labeled vertex w, as well as a new edge (w, v) where N(w) = v. Similarly,
a composition of m with α produces a new tree with a non-labeled vertex w,
as well as a new edge (v, w) such that N(v) = w. The commutator [α,m]
corresponds to the difference of the above-mentioned trees. This agreement
will be used also in the case when α = m thus giving the way to depict
trees with 1

2
[m,m] inserted. In the pictures below we show neighborhoods of

vertices where the original tree changes.

_ +_ +_+ +

Case A

Σ ΣΣ val>1

val>1

val>1+

val>1

_ +_

Case B

+Σ + Σ
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_ +_

root

root

root

Σ+ +

root

Case C

Σ +_ +_ Σ ΣΣ ++

Case D

+Σ _

Then we split these terms in the following way:
A = A1 + A2 + A3, where:
a) the terms A1 correspond to the two adjoint non-labeled vertices of

valency ≥ 2 with m inserted in each;
b) the terms A2 correspond to the labeled vertex adjoint to a non-labeled

one of valency ≥ 2 with m inserted in the latter;
c) the terms A3 correspond to the non-labeled vertex of valency ≥ 2 with

m inserted in it adjoint to a labeled vertex.
These cases can be depicted as follows

_ +_ +_
1 2 3Σ ΣΣ val>1

val>1 val>1

+
val>1

A A A= = =
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Similarly we split the terms B such as follows: B = B+,1 +B+,2 +B−,0 +
B−,1 +B−,2, where individual summands are depicted below.

_ +_

+_+_

+_

B =
val=1

Σ Σ

ΣΣ

Σ

val>1

val>1

,0 ,1

,2

_ _

+

_

B =
+,2B

+,1
=

val=1

B =

val=0

B =

We split the terms C such as follows: C = C ′
root +C ′′

root +C◦ +C• where
individual summands are depicted below.

+
root

_+

root

C =
root Σ +_+_Σ_ =C =

root Σ
root

root

=C ΣC

We split the terms D such as follows: D = D0 +D1,A +D1,B +D2 where
individual summands are depicted below.
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_ +_

+_+_

D

=
val=1

Σ val>1
1,B

D=
val=1ΣD

1,A

+

val>1

=

val=0

ΣD 0

val>1 = Σ val>1

val>1

2

We see that A1 +D2 = 0, A2 +B+,2 = 0, A3 + B−,2 = 0, B−,0 + C◦ = 0,
D0 + C• = 0.

Furthermore we can split each of the remaining terms into summands
B+,1 = B′

+,1 + B′′
+,1 + B′′′

+,1, B−,1 = B′
−,1 + B′′

−,1, D1,A = D′
1,A +D′′

1,A +D′′′
1,A,

D1,B = D′
1,B +D′′

1,B. This splitting is depicted below.
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+,1
B :

root root

+,1
B :

D
1,A

+,1
B

D
1,A

D
1,A

rootroot
C:

root root

C

:
root root

:

:
root root

1,B1,B
D

 ,1_  ,1_

D ::

:

:

:B:B

We combine these summands into six groups corresponding to the six
types of edges depicted below

C
root

+,1
B C

root

D
1,A

+,1
B

 ,1_B D
1,B

rootroot

+,1
B D

1,A ,1_B

D
1,A

D
1,B

We see that B′
+,1 + C ′

root = 0, C ′′
root + D′

1,A = 0, B′′
+,1 + B′

−,1 = 0, B′′
−,1 +

D′′
1,A = 0, B′′′

+,1 +D′
1,B = 0, D′′′

1,A +D′′
1,B = 0.

Then we conclude that B+,1 + C ′
root + C ′′

root + D1,A + B−,1 + D1,B = 0.
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Thus A+B+C+D = 0. This means that the map f : X → Y is a dg-map.
Obviously it is GL(A)-equivariant and satisfies the condition pf = ν.

This concludes the proof of the Theorem 1.

6.3 Remark about a generalization

Let A be an A∞-algebra, and C = C ·(A,A) be its Hochschild complex.
Admissible planar trees with n labeled vertices give rise to operations C⊗n →
C, n ≥ 1. Analogously, planar trees with n labeled vertices and m tails,
n ≥ 0, m ≥ 1 give rise to operations C⊗n ⊗A⊗m → A.

Let us restrict ourselves to such trees that |v| ≥ 2 for all non-labeled
internal vertices v. Thus we obtain a colored operad M (2) with two colors
(Alg, Hoch) acting on the set of pairs (A,C ·(A,A)), where A is an A∞-
algebra. Clearly M (2) contains as suboperads both A∞ and M . Presumably
a result analogous to the Theorem 1 holds for the colored operad M (2).

7 Deligne’s conjecture

7.1 Preliminaries

We are going to prove the following result.

Theorem 3 Let P be the free resolution of the minimal operad M con-
structed in Section 6. Then there is a homomorphism of dg-operads P →
Chains(FM2) which induces an isomorphism on cohomology (i.e. it is a
quasi-isomorphism of dg-operads). Here Chains(FM2) is the chain operad
for the Fulton-Macpherson operad of configurations of points in R2 (see Sec-
tion 7.2 below).

We will construct a homomorphism of the dg-operads which induces a
quasi-isomorphism of the chain complexes. Such a homomorphism is not
defined canonically. Different choices are naturally parametrized by a con-
tractible topological space.

Using the fact that the operad Chains(FM2) is free as an operad (not
as dg-operad), one can invert the quasi-isomorphism mentioned in the theo-
rem. Since the Hochschild complex is a P -algebra, we obtain the following
Corollary known as Deligne’s conjecture (see for example [Ko3], [V], [MS]).
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Corollary 1 a) The Hochschild complex C ·(A,A) of an A∞-algebra A can
be equipped with a structure of an algebra over the operad Chains(FM2).

b) The corresponding structure of a H ·(Chains(FM2))-algebra on the
Hochschild cohomology H ·(A,A) coincides with the standard structure of a
Gerstenhaber algebra on the Hochschild cohomology of an A∞-algebra.

Same results remain true with Chains(FM2) being replaced by the operad
Chains(E2) of chains on the little disc operad E2 (see Section 7.2 for the
definition).

Remark 6 It is easy to see that the operad P can be defined over Z. It
follows that such an operad acts on the Hochschild complex of an A∞-algebra
defined over a field of arbitrary characteristic. The quasi-isomorphism P →
Chains(FM2) can be also defined over the ring of integers (see also [MS]).

The proof of the Theorem and the Corollary will occupy the rest of the
section.

We are going to use the following strategy.
Let T be a “meta-tree” corresponding to a generator of P (see Section 6

and Definition 17 below).
1) To every T we are going to associate a contractible closed subspace

XT in the Fulton-Macpherson compactification of the configuration space of
points in R2 modulo shifts and dilations.

2) The collection of subspaces (X)T will satisfy the following properties:
a) The correspondence T 7→ XT is Sn-equivariant;
b) if a tree T′ appears as a summand in the formula for dP (T) then

XT′ ⊂ XT;
c) if a composition of trees T1 ◦ T2 ∈ P appears as a summand in the

formula for dP (T) then the operadic composition XT1 ◦XT2 belongs to the
stratum XT. The latter composition of the strata has meaning because the
Fulton-Macpherson compactifications form a topological operad.

3) For any generator T of the operad P we will choose inductively chains
γT ∈ Chains(FM2) such that Supp(γT) ⊂ XT, where Supp means the
support of a chain. In this way we obtain a homomorphism of dg-operads
P → Chains(FM2).

4) This homomorphism is a quasi-isomorphism. This will follow from the
fact that P is quasi-isomorphc to the minimal operad M , and on the level of
chain complexes (not operads) everyMn is quasi-isomorphic to Chains(FM2(n)).
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Remark 7 The theorem and its proof seem to admit a generalization to the
case of higher dimensions.

7.2 Little discs operad and Fulton-Macpherson operad

We recall here the definitions of both operads following [Ko3].
We fix the dimension d ≥ 1. Let us denote by Gd the (d+1)-dimensional

Lie group acting on Rd by affine transformations u 7→ λu + v, where λ > 0
is a real number and v ∈ Rd is a vector. This group acts simply transitively
on the space of closed discs in Rd (in the usual Euclidean metric). The disc
with center v and with radius λ is obtained from the standard disc

D0 := {(x1, . . . , xd) ∈ Rd| x2
1 + . . .+ x2

d ≤ 1}

by a transformation from Gd with parameters (λ, v).

Definition 15 The little discs operad Ed = {Ed(n)}n≥0 is a topological op-
erad defined such as follows:
1) Ed(0) = ∅,
2) Ed(1) = point = {idEd

},
3) for n ≥ 2 the space Ed(n) is the space of configurations of n disjoint discs
(Di)1≤i≤n inside the standard disc D0.

The composition Ed(k) × Ed(n1) × . . . × Ed(nk) → Ed(n1 + . . . + nk)
is obtained by applying elements from Gd associated with discs (Di)1≤i≤k in
the configuration in Ed(k) to configurations in all Ed(ni), i = 1, . . . , k and
putting the resulting configurations together. The action of the symmetric
group Sn on Ed(n) is given by renumeration of indices of discs (Di)1≤i≤n.

The space Ed(n) is homotopy equivalent to the configuration space of n
pairwise distinct points in Rd.

There is an obvious continuous map Ed(n) → Confn(Int(D0)) which as-
sociates to a collection of disjoint discs the collection of their centers. This
map induces a homotopy equivalence because its fibers are contractible.

The little discs operad and homotopy equivalent little cubes operad were
introduced in topology by J. P. May in order to describe homotopy types of
iterated loop spaces.

The Fulton-Macpherson operad defined below is homotopy equivalent to
the little discs operad.
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For n ≥ 2 we denote by Ẽd(n) the quotient space of the configuration
space of n points in Rd

Confn(R
d) := {(x1, . . . , xn) ∈ (Rd)n| xi 6= xj for any i 6= j}

by the action of the group Gd. The space Ẽd(n) is a smooth manifold of
dimension d(n − 1) − 1. For n = 2, the space Ẽd(n) coincides with the
(d − 1)-dimensional sphere Sd−1. There is an obvious free action of Sn on
Ẽd(n). We define the spaces Ẽd(0) and Ẽd(1) to be empty. The collection of
spaces Ẽd(n) does not form an operad because there is no identity element,
and compositions are not defined.

Now we are ready to define the operad FMd = {FMd(n)}n≥0

The components of the operad FMd are
1) FMd(0) := ∅,
2) FMd(1) =point,
3) FMd(2) = Ẽd(2) = Sd−1,
4) for n ≥ 3 the space FMd(n) is a manifold with corners, its interior is

Ẽd(n), and all boundary strata are certain products of copies of Ẽd(n
′) for

n′ < n.
The spaces FMd(n), n ≥ 2 can be defined explicitly.

Definition 16 For n ≥ 2, the manifold with corners FMd(n) is the closure

of the image of Ẽd(n) in the compact manifold
(
Sd−1

)n(n−1)/2
×[0,+∞]n(n−1)(n−2)

under the map Gd · (x1, . . . , xn) 7→ (
(

xj−xi

|xj−xi|

)
1≤i<j≤n

,
|xi−xj |
|xi−xk|

) where i, j, k are

pairwise distinct indices.

One can define the natural structure of operad on the collection of spaces
FMd(n). We skip here the obvious definition.

It is easy to check that in this way we obtain a topological operad (in fact
an operad in the category of real compact piecewise algebraic sets defined in
Appendix). We call it the Fulton-Macpherson operad and denote by FMd.

Set-theoretically, the operad FMd is the same as the free operad generated
by the collection of sets (Ẽd(n))n≥0 endowed with the Sn-actions discribed
above.

Using piecewise algebraic chains from Appendix we define dg-operads
Chains(Ed) and Chains(FMd) (they are operads in the symmetric monoidal
category of complexes of abelian groups). Since we are working over the
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ground field k of characteristic zero, the dg-operads will be complexes of
k-vector spaces.

Notice that when we write Chains(Z) we mean the cohomological com-
plex with graded components Chainsi(Z)[i], i ≥ 0 concentrated in negative
degrees.

The complex Pn, n ≥ 2 is concentrated in degrees [−2n − 3, ..., 0]. The
same is true for the complex Chains(FM2(n)) (we use piecewise algebraic
chains) because dimRFM2(n) = 2n− 3.

For every n ≥ 2 the space Pn has a canonical (up to signs) basis, called
the standard basis, with elements labeled by certain combinatorial objects,
which we will call meta-trees.

Definition 17 A meta-tree T with n tails is given by the following data:
a) an abstract tree T ∈ Tree(n) together with a marking Ei(T ) → {finite, infinite};
b) for every internal vertex v of T we have: |v| ≥ 2;
c) to every v ∈ Vi(T ) we assign an admissible labeled tree Tv together with

a bijection Vlab(Tv) → N−1
Tv

(v).

We denote by MT (n) the set of isomorphism classes of meta-trees with
n tails.

Conjecture 1 There is a piecewise algebraic (see Appendix) cell decompo-
sition of the spaces FM2(n), n ≥ 2, with the cells σT labeled by MT (n) such
that:

1) the correspondence T → σT is Sn-equivariant;
2) the operadic composition of any two cells is again a cell;
3) there is a morphism of dg-operads Chains(σT)(FM2) → P such that

every cell σT is mapped (up to a sign) to the corresponding element of the
standard basis of P . Here Chains(σT)(FM2) denotes the chain subcomplex
of Chains(FM2) formed by k-linear combinations of cells σT;

4) for any n ≥ 2 the cell decomposition of FM2(n) formed by cells
(σT),T ∈ MT (n) is regular, i.e. the closure of every cell is homeomorphic
to a closed ball.

This conjecture implies Deligne’s conjecture.
Let us now introduce a partial order on the set MT (n), n ≥ 2.
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Definition 18 Let T,T′ be meta-trees with n tails. We say that T < T′ if
there exists a sequence of meta-trees (T0, ...,Tm) such that T0 = T,Tm = T′

and for any i such that 0 ≤ i ≤ m − 1 we have: Ti appears as a summand
in the decomposition of dPTi+1 with respect to the standard basis of Pn.

It follows from the condition 4) of the Conjecture above, that the nerve
of the partially ordered set (MT (n), <) is homeomorphic to FM2(n). The
following conjecture also follows from the Conjecture 1.

Conjecture 2 The nerve of (MT (n), <) is a PL-manifold with the bound-
ary. The above-mentioned homemorphism with FM2(n) is a homeomorphism
of PL-manifolds with boundaries.

We checked this Conjecture for small n.

7.3 Partial orders induced by trees

We recall here the structure of the space Gn of generators of the components
Pn, n ≥ 1 of the free operad P (see Section 6).

There is a basis of Gn elements of which are (up to signs) parametrized
by meta-trees T = (T, {Tv}v∈Vi(T )) such that all internal edges of T are finite.
The degree of the generator T = (T, {Tv}v∈Vi(T )) is equal to

deg(T) =
∑

v∈Vi(T )

deg(Tv) − |Ei(T )|

Let T be a generator of Pn. We are going to introduce on the set
{1, 2, ..., n} two partial orders <h,T and <v,T (called horizontal and vertical).
Although these orders will depend on T, we will skip T from the notation if
it does not lead to a confusion.

Let i, j ∈ {1, ..., n}, i 6= j. We have two tail vertices of T labeled by i and
j respectively. Then there exists a unique internal vertex v of T satisfying
the following properties:

a) Nk
T (i) = N l

T (j) = v where k, l are positive integers;
b) the vertex v is minimal among those satisfying a) (which means that

k, l are both minimal in a).
Then there exist unique labeled vertices x, y ∈ Tv such that Nk−1

T (i) =
x,N l−1

T (j) = y. Since Tv is a planar tree, we can compare x and y with
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respect to exactly one of the following partial orders: “x is to the left of y in
Tv” or “x is above y in Tv”. We will call them the “horizonal” and “vertical”
order respectively.

Let us describe the orders in Tv more precisely. We say that x is above y
(or y is below x) in Tv if there exists a positive integer a such that Na

Tv
(y) = x.

We say that x is to the left of y (or y is to the right of x) if there exist
positive integers a, b such thatNa

Tv
(x) = N b

Tv
(y) = w, but Na−1

Tv
(x) 6= N b−1

Tv
(y)

and Na−1
Tv

(x) preceeds N b−1
Tv

(y) in N−1
Tv

(w) with respect to the order on the
latter set given by the planar structure on Tv.

Thus, we have defined two partial orders on vertices of (Tv)v∈Vi(T ). They
induce partial orders<h,T (horizontal) and<v,T (vertical) on the set {1, ..., n}.
We have identified the latter with the set of tails of T . Namely, we say that
i <h,T j if (in the above notation) the vertex x is to the left of y. We say
that i <v,T j if y is above x (equivalently we say that x is below y).

The following lemma is easy to prove.

Lemma 6 Both horizontal and vertical orders are indeed partial orders (i.e.
they satisfy all the axioms of orders).

Definition 19 Let S be a set, <1 and <2 be partial orders on S. We will call
them complementary if any two elements of S can be compared with respect
to exactly one of them. This means that for any two elements i, j ∈ S, i 6= j
exactly one of the following properties holds: i <1 j , j <1 i, i <2 j, j <2 i.

Suppose that we have two partial orders as in the Definition. We define
on S two new pre-orders <1+2 and <1−2 such as follows:

(i) x <1+2 y if x <1 y or x <2 y;
(ii) x <1−2 y if x <1 y or y <2 x.
Notice that we can reconstruct <1 and <2 from these new orders. For

example x <1 y is equivalent to the conjunction: (x <1+2 y) and (x <1−2 y).

Proposition 5 Formulas (i) and (ii) define complete orders on the set S.

Proof. Straightforward.�
Using this result one can easily prove the following one.

53



Proposition 6 Let <1 and <2 be a pair of two complementary orders given
on a finite set S. Then there exists a unique element s0 ∈ S such that for
any i ∈ S, i 6= s0 we have: either s0 <1 i or s0 <2 i.

Proof . The element s0 is minimal with respect to the complete order
<1+2.�

Summarizing, we can say that on the set of tails of a generator of Pn we
have defined two complementary partial orders (or, equivalently, two com-
plete orders). These orders will be used below when we will construct the
closed sets XT.

7.4 Closed sets XT

Let us recall that for any n ≥ 2, 1 ≤ i, j ≤ n, i 6= j we have a natural pro-
jection pi,j : FM2(n) → FM2(2) (forgetting all points in (x1, ..., xn) except
xi and xj). As a topological space FM2(2) is identified to the unit circle
S1 ⊂ R2 via the map G2 · (x1, x2) 7→

x2−x1

|x2−x1|
.

We denote by S1
+,v ⊂ FM2 the closed upper-half circle, and by S1

+,h ⊂ S1

the one-element subset consisting of the point {(1, 0)}. Then S1
+,v cor-

responds to the configurations (x1, x2) ∈ Conf2(R
2) such that if we put

x2 − x1 = reiα, 0 ≤ α < 2π then α ∈ [0, π]. Similarly the subset S1
+,h

corresponds to the configurations (x1, x2) such that both xj , j = 1, 2 belong
to the same horizontal line, and x1 is positioned to the left of x2.

Suppose that we are given two complementary orders <h and <v on the
set {1, ..., n}, n ≥ 2. Then we define the following subset of FM2(n):

X<h,<v
= {x ∈ FM2(n)|i <h j ⇒ pi,j(x) ∈ S1

+,h, i <v j ⇒ pi,j(x) ∈ S1
+,v}.

For a generator T ∈ Pn we define XT as X<h,T,<v,T
.

First of all we would like to prove that XT is contractible. This is a
special case of a more general statement.

Proposition 7 For any pair of complementary orders <h and <v given on
the set {1, ..., n}, n ≥ 2 the subspace X<h,<v

is non-empty and contractible.

Proof. It can be done by induction. For n = 2 the result is clear, since
subsets S1

+,v and S1
+,h are contractible. Suppose that the Proposition is true

for n−1 points. Let us take the element i0 which is minimal in In = {1, ..., n}
with respect to <h+v. We have already proved that it exists. Let us consider
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the induced complementary partial orders <h′, <v′ on the set In \ {i0}. They
define the subset X<h′ ,<v′

⊂ FM2(n−1) which is non-empty and contractible
by induction. Then the result is a corollary of the following observation:
the fibers of the natural projection π : X<h,<v

→ X<h′ ,<v′
are contractible.

Basically it follows from the fact that the point xi0 is either left or below of
all the points xi, 1 ≤ i ≤ n, i 6= i0. Let us prove that the fibers of π are non-
empty. Indeed, for any x′ ∈ X<h′ ,<v′

the operadic composition (−1, 0) ◦j x
′

belongs to the fiber π−1(x′). Here (−1, 0) ∈ S1 is considered as a point in
FM2({i0, j}), and j is an auxiliary index.

We leave to the reader the proof of contractibility of the fibers of π. �

Remark 8 a) One can prove that all homotopies can be taken in the category
of piecewise algebraic sets.

b) It follows from the construction that the map T 7→ XT is Sn-equivariant.

Now we would like to explain the Property 2 of XT stated in Section 7.1.
First of all, the Sn-equivariance is obvious.

Let T ∈ G be a generator of P . We recall that the differential in P can
be written schematically (up to signs) as

dP (T) =
∑

v∈Vi(T ),l

Tv,l +
∑

α∈Einfinite(T )

T′
α ◦ T′′

α +
∑

α∈Efinite(T ),j

Tα,j .

Here meta-trees Tv,l ∈ G arise from the application of the differential of
M to the tree Tv inscribed into the vertex v ∈ Vi(T ). This differential was
described in Section 5. Index l runs over all possible insertions of a new edge.

The second summand corresponds to the tree, obtained from T by making
a finite edge α into an infinite edge. The result is a composition of two
generators of P which we denote by T′

α and T′′
α.

The last sum corresponds to the operation “contract a finite edge α” in T .
Then the planar trees from M inscribed into the vertices which are endpoints
of α must be composed and inscribed into the new vertex. The result is a
sum of generators Tα,j of P .

Proposition 8 In the above notation we have: XTv,l
, XT′

α
◦XT′′

α
, XTα,j

be-
long to XT.

Proof. Straightforward check which uses the fact that S1
+,h ∈ S1

+,v. �
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7.5 Morphism P → Chains(FM2)

We would like to consctruct the chains γT ∈ Chains(FM2) where T runs
through the set of generators of P . Let us explain the idea.

We will construct γT by induction in the degree of T.
a) Let us assume that deg(T) = 0. Then T has the only internal vertex

v and the corresponding planar tree Tv is a binary tree. The corresponding
element of the operad P is defined up to a sign. We make the following
choice: it is just the composition of several copies of the operation m2 ∈M2.

The corresponding chain γT should have the dimension zero. Therefore it
must be a linear combination of points with integer coefficients. We choose
γT to be just one point in XT with the multiplicity equal to +1.

b) Let us assume that deg(T) = −1. Then the formula for dP (T) con-
tains two summands T′,T′′ corresponding to the two binary planar trees.
It is not difficult to check that they appear with the opposite coefficients
±1. According to a) these summands define 0-dimensional chains γT′, γT′′.
We define γT to be the only (up to a boundary) 1-chain having γT′ − γT′′

as the boundary. This 1-chain exists because of the condition imposed on
multiplicities of 0-chains.

c) Suppose that we have a generator T, deg(T) = −k, k ≥ 2.
Then we can find a chain γT of degree −k such that

∂(γT) =
∑

v,l

γTv,l
+

∑

α

γT′
α◦T

′′
α

+
∑

α,j

γTα,j

where ∂ is the boundary operator in the chain complex for FM2, and rest of
the notation is self-explained.

Indeed, the RHS of this formula is known by the induction assumption.
We also know that it is a closed chain because d2

P = 0. Then one can always
find a chain γT with the given boundary. Indeed, XT is contractible, and
we consider chains of negative degrees (zero degree case was considered in
a)). The space parametrizing all different choices of γT is contractible, so
our choice is unique in a given homology class.

The map T → γT extends to a homomorphism Φ : P → Chains(FM2)
of graded operads in such a way that Φ(T) = γT. We have checked that
Φ is compatible with the differentials. Therefore it is a homomorphism of
dg-operads.

Theorem 4 The morphism Φ is a quasi-isomorphism of complexes.
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Proof. We will give only a sketch of the proof. The idea is to consider a
subcomplex L of the complex P spanned by the trees without internal edges.
This subcomplex is isomorphic to the complex of the minimal dg-operad
M . Indeed, P can be decomposed into a direct sum of L and a contractible
complex (see Proposition 4 in Section 4). Therefore it is enough to prove that
the restriction Φ|L : L→ Chains(FM2) is a quasi-isomorphism of complexes.

In order to do that we need to describe chains from the subcomplex
Φ(L). Our constructions were based on certain non-canonical choices of
chains γT,T ∈ G. Now, for T ∈ L we will make specific choices of γT.

Let T ∈ L corresponds to a labeled tree Tv ∈M . We will denote it simply
by Tv, where Tv is a labeled planar tree inscribed in the only internal vertex
v of T.

We associate with Tv an abstract tree T̂v such that Vt(T̂v) = Vi(Tv), and

the valency of each internal vertex of T̂v is at least 2. Internal vertices of T̂v

correspond to subsets T≤x0 described below.
Let us choose an internal vertex x0 ∈ Vi(Tv) and consider the set of such

x ∈ Vi(Tv) that N j
Tv

(x) = x0 for some j ≥ 0. Then internal vertices of T̂v

correspond to such sets T≤x0 for which the cardinality |T≤x0| ≥ 2. Moreover,

there is a path in T̂v from a tail vertex v ∈ Vt(T̂v) to an internal vertex T≤x0

iff v ∈ T≤x0.

It is well-known that any abstract tree T̂ with valencies of internal vertices
at least 2 gives rise to a stratum J(T̂ ) ∈ FM2(|Vt(T̂ )|) (see [FM]). It is the

operadic composition of FM2(N
−1

T̂v
(u)), u ∈ Vi(T̂v).

We are going to construct a subspace XT̂ ⊂ J(T̂v) The space XT̂ will be
constructed as the operadic composition of certain subspaces

Xu ⊂ FM2(|N
−1

T̂v
(u)|), u ∈ Vi(T̂v).

Let u = T≤x0 be an internal vertex of T̂ . The set of edges having u as
an endpoint is in one-to-one correspondence with the set {x0} ⊔ N−1

Tv
(x0).

The subspace Xu consists of configurations of points G2 · (px0 , (py)y∈N−1
T

(x0)
)

such that px0 = (0, 1) ∈ R2, all points py belong to the horizontal line
{(x, 0)|x ∈ R} ⊂ R2, and their order on this line is the same as their order
in N−1

Tv
(x0).

One can check that:
a) XT̂v

is an open cell.
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b) The natural projection (forgetting map) FM2(|Vi(Tv)|) → FM2(|Vlab(Tv)|)
maps XT̂v

onto an open cell XTv
⊂ XT.

c) the closure XTv
is a manifold with corners (more precisely, a real piece-

wise algebraic manifold).
d) the boundary of XTv

is the union of cells of the same type .
Using a)-d) one checks that the construction above gives rise to a homo-

morphism of complexes χ : L → Chains(FM2), and moreover, it coincides
with the homomorphism Φ|L. To be more precise, one observes that the
construction of Φ was not canonical. We made certain choices when con-
structed a chain with the prescribed boundary. The point is that one can
choose inductively the chains in such a way that the restriction Φ|L of the
homomorphism Φ : P → Chains(FM2) coincides with χ.

We claim that χ induces a homotopy equivalence. This follows from the

Lemma 7 Let MT1(n) denotes the subset of MT (n) consisting of meta-
trees with only one internal vertex v. Then the natural embedding of the
CW-complex Xn = ∪T∈MT1(n)XTv

into FM2(n) is a homotopy equivalence
for all n ≥ 2.

Proof. It is not difficult to show thatXn is isomorphic to the CW-complex
Σ(n) constructed in Section 5.5 via Strebel differentials. It follows from the
fact that both are regular complexes and posets of their cells are isomorphic.
Moreover, both complexes are K(π, 1) spaces, classifying spaces for the pure
braid group of n-strings. Moreover, the map Φ induces an equivalence of the
fundamental groupoids. Hence it is a homotopy equivalence. �

This Lemma conludes the proof of the Theorem 2.�

7.6 Proof of Deligne’s conjecture

The results of the previous subsection establish the Theorem 2. In this sub-
section we will prove the Corollary (Deligne’s conjecture). First of all, we
remark that both P and Chains(FM2) are dg-operads which are free as
graded operads. Therefore the quasi-isomorphism morphism of graded oper-
ads Φ : P → Chains(FM2) admits a homotopy inverse Ψ : Chains(FM2) →
P (see for ex. [M2]).

We have already proved that the Hochschild complex of an A∞-algebra
is an algebra over the operad P . Indeed, P is a free resolution of M ,
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and the latter dg-operad acts on the Hochschild complex. Using the mor-
phism Ψ we make the Hochschild complex into an algebra over the dg-operad
Chains(FM2). This concludes the proof of Deligne’s conjecture.

8 Appendix: Singular chains and differential

forms

In the Appendix we are going to describe a theory of singular chains which
is suitable for work with manifolds with corners. This formalism is helpful
in the proof of formality of the operad of chains on the little disc operad (see
[Ko3]). We used it in the proof of Deligne’s conjecture.

The idea of the theory of singular chains developed below is the follow-
ing: one can construct chains which produce complexes quasi-isomorphic to
the standard complexes of singular chains, and built out of some kind of
“piecewise algebraic spaces”.

8.1 Spaces

We recall that real semialgebraic sets in Rn are subsets defined by a finite
number of polynomial equations and inequalities. Constructible sets are
obtained from semialgebraic ones by boolean operations.

We define the category P of compact piecewise algebraic spaces (compact
PA-spaces for short) in the following way.

Objects of P are pairs (X, n), n = 1, 2, ... such that X ⊂ Rn is a compact
constructible set (it is the same as a compact real semialgebraic set).

For two objects (X, n) and (Y,m) the space of morphismsHom((X, n), (Y,m))
is formed by continuous maps f : X → Y such that graph(f) ⊂ Rn ×Rm is
constructible.

In the future we will skip the index n in the notation (X, n) if it will not
lead to a confusion.

Obviously we have a functor from P to the category of compact Haus-
dorff topological spaces. An isomorphism in P is a morphism which is a
homeomorphism of topological spaces.

Let X ∈ P. Then one can define a sheaf OX of piecewise algebraic func-
tions on X. To do this we note first that one can speak about constructible
subsets of X. By definition they are constructible sets in the bigger space
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Rn. Then for any open U ⊂ X we define OX to be an R-algebra of contin-
uous functions f on U such that for any compact constructible V ⊂ U we
have: graph(f |V ) is constructible. It is easy to see that we get a sheaf OX

of algebras.

Lemma 8 Morphisms from X to Y in the category P are in one-to-one
correspondence with homomorphisms of algebras O(Y ) → O(X).

Proof. Exercise. �

Similarly, we can consider non-compact case.

Definition 20 Piecewise algebraic space (PA-space for short) is a locally
compact Hausdorff topological space X, equipped with the sheaf OX of R-
algebras which is locally isomorphic to OX′ for some compact X ′ ⊂ P.

Clearly PA-spaces form a category. Compact PA-spaces are exactly ob-
jects of P.

We define a d-dimensional PA-manifold with boundary as a PA-space X
which is modeled locally by the closed half-space Rd

+.

8.2 Singular chains

We would like to define an appropriate version of singular chains for PA-
spaces. We will give two equivalent descriptions.

First description.
Let X be a PA-space. We define the group of n-chains Chainsn(X) :=

Cn(X,Z) as an abelian group generated by equivalence classes of triples
(M, or, f) such that:

i) M is a compact PA-manifold of dimension n;
ii) f : M → X is a morphism in P;
iii) or is an orientation of M .
We need to define an equivalence relation. It is the same as to say when

a finite linear combination
∑

i ni(Mi, ori, fi) is equal to zero in Cn(X,Z).
Notice that Y = ∪ifi(Mi) carries the structure of a compact PA-space, of

the dimension ≤ n. Then there exists a constructible subset Y0 ⊂ Y such that
dim(Y \ Y0) ≤ n− 1, and for any point y ∈ Y0, any i and xi,α ∈ f−1

i (y) there
exists a neighborhood Ui,α of xi,α such that Y0 ∩ fi(Ui,α) is a PA-manifold
and the morphism fi|Ui,α

is a homeomorphism of Ui,α onto its image.
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We choose an orientation ory of Y0 near the point y. Then the above-
mentioned linear combination is declared to be zero iff for every point y ∈ Y0

we have
∑

i,α nisgn(i, α, y) = 0 where sgn(i, α, y) is defined as fi∗|Ui,α
(ori) =

sgn(i, α, y)ory, and sum is taken over all points xi,α such that fi(xi,α) = y.
Notice that sgn(i, α, y) always takes values ±1.

Second description.
We will define Cn(X) = Cn(X,Z) as a quotient by certain equivalence

relation of the set of quadruples (Y, Y0, or,mult) such that:
a) Y ⊂ X is a compact PA-subspace, dimY ≤ n, which contains an open

dense constructible subset Y0 without boundary which is a PA-manifold of
dimension n;

b) or is an orientation of Y0;
c) mult : Y0 → {1, 2, ..., } is a locally constant map (multiplicity).
The equivalence relation is defined such as follows.
We say that (Y, Y0, or,mult) is equivalent to (Y ′, Y ′

0 , or
′, mult′) iff

(i) Y = Y ′ and there exists an open contsructible Y ′′
0 ⊂ Y ′

0 ∩Y
′′
0 such that

Y is equal to the closure of Y ′′
0 ;

(ii) restrictions of orientations and multiplicity functions of Y0 and Y ′
0 to

Y ′′
0 coincide.

Using the pairing between chains and differential forms (see 8.3), one can
show that the first and the second descriptions give canonically isomorphic
sets of chains.

One can also check the following properties of singular chains:
1) there is a naturally defined differential ∂ : Cn(X,Z) → Cn−1(X,Z), ∂2 =

0 (in the Description 1 it is well-defined by the formula ∂(M, or, f) = (∂M, ∂(or), f |∂M)).
2) the correspondence X → C·(X,Z) is a functor from the category of

PA-spaces to the category of abelian groups;
3) Ci(X,Z) vanishes for i < 0 and i > dimX;
4) if X is a compact oriented PA-manifold, then there exists a canonically

defined chain [X] ∈ Cn(X,Z). In the Description 1 it is defined by the
formula [X] = (X, or, 1);

5) for any finite collection of PA-spaces (Xi)i∈I there is a natural homo-
morphism of complexes of abelian groups ⊗i∈IC·(Xi,Z) → C·(

∏
i∈I Xi,Z);

6) there is a naturally defined soft sheaf of complexes Cclosed
· on X such

that for a compact X the abelian group Γ(X,Cclosed
· ) coincides with C·(X,Z).

7) the homology of C·(X,Z) is naturally isomorphic to the usual singular
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homology H·(X,Z).
For non-compact PA-spaces we define locally finite chains as global sec-

tions of the sheaf Cclosed
· . Then the homology of Cclosed

· (X,Z) is isomorphic
to the usual singular homology with locally compact support Hclosed

· (X,Z).

Remark 9 a) Mayer-Vietoris sequence trivializes for PA chains: if X =
Y1 ∪Y2 is a union of locally closed constructible subsets, then the correspond-
ing short sequence of abelian groups 0 → Cn(Y1 ∩ Y2,Z) → Cn(Y1,Z) ⊕
Cn(Y2,Z) → Cn(X,Z) → 0 is exact.

b) The Property 5 is very convenient in order to formulate Deligne’s con-
jecture. It allows to avoid Eilenberg-Zilber theorem.

c) Property 4 seems to be useful for the higher-dimensional generalization
of Deligne’s conjecture (see [Ko3]). Namely, if A is a d-algebra (i.e. an
algebra over the dg-operad Chains(FMd)), then A[d − 1] carries a natural
structure of an L∞-algebra. More precisely, for any n ≥ 2 the fundamental
cycle [FMd(n)] gives the n-th higher bracket on A[d− 1].

8.3 Differential forms: first approximation

Let X be a PA-space. We would like to define an appropriate notion of
differential form on X. In this subsection we construct a first approximation
to the future algebra of differential forms.

Definition 21 Sheaf Ωk
X,min is locally defined as a vector subsubspace in

Hom(Ck(X,Z),R) generated by functionals l = (f0, f1, ..., fk), fi ∈ OX such
that

l(M, or, φ) =

∫

M0

φ∗(f0df1 ∧ df2... ∧ dfk).

Here M0 = M is a dense open constructible subset. We can assume that
M is a subspace of some RN , and all functions fi are smooth on a smooth
dense open submanifold M0 ⊂M .

Proposition 9 Functional l from the definition above is well-defined (i.e.
the integral absolutely converges).
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Proof. We can use a sequence of functions (f0, f1, ..., fk) in order to map
M to Rk+1. Then we obtain a singular chain γ ∈ Ck(R

k+1). The support
of γ is a compact constructible subset of dimension ≤ k. Moreover, the
volume of γ with respect to the induced metric is finite. It follows that∫

γ
ω absolutely converges for an arbitrary smooth differential k-form ω. In

particular converges the integral in question.�
It is easy to check that the differential d : Ωk

X,min → Ωk+1
X,min is well-

defined (as the adjoint to the boundary operator on the chains). Moreover
the following Stokes formula holds.

Lemma 9 In the previous notation we have:

(1, f0, ..., fk)(M, or, φ) = (f0, ..., fk)(∂M, or|∂M , φ|∂M)

Hence we obtain a complex of sheaves Ωk
X,min for every k ≥ 0. Our

(first approximation to) k-forms are sections of these sheaves. One can take
pull-backs of forms.

Moreover, we can introduce wedge product of forms. Indeed the space
of k-forms Ωk

min(X) is naturally embedded into the direct limit of spaces of
smooth k-forms Ωk

C∞(Xα). Here Xα ⊂ X are open dense locally constructible
subspaces, Xα = ⊔iXi,α, where Xi,α is a PA-manifold. Moreover, it is as-
sumed that we have fixed an embedding Xi,α → RNi,α identifying Xi,α with
a C∞-submanifolds in RNi,α. Using the embeddings we define Ωk

C∞(Xα).
Therefore the wedge product given by the formula (f0, ..., fk) ∧ (g0, ..., gn) =
(f0g0, f1, ..., fk, g1, ..., gn) is well-defined.

The above-defined forms are sections of soft sheaves because one can use
piecewise algebraic functions to produce a partition of unity, so the standard
proofs work. One can show that Mayer-Vietoris sequence degenerates as
in the case with chains above: if X = Y1 ∪ Y2 is a union of locally-closed
piece-wise algebraic subspaces then one has a short exact sequence

0 → Ωk
min(X) → Ωk

min(Y1) ⊕ Ωk
min(Y2) → Ωk

min(Y1 ∩ Y2) → 0

In the next subsection we will extend algebras Ω∗
min(X) adding push-

forwards of such forms. The following example illustrates one of the reasons
for that.

Example 1 Let Y = [0, 1] × [0, 1], X = [0, 1] and f : Y → X be the map
(x, y) 7→ t = xy. Then, outside of t = 1, we have a bundle in the category
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P (i.e. base, fibers and total space are objects, projection is a morphism in
P). Take the form ω = xdy. Then f∗ω = t(logt) is a continuous function,
but does not belong to O(X).

8.4 Full algebra of forms

We are going to define a dg-algebra Ω·
PA(X) which contains Ω·

min(X), sat-
isfies Poincare lemma, etc. Elements of Ω·

PA(X) will be called PA-forms,
although their coefficients are not PA-functions (see the previous Example).
It is interesting that only 0-forms will be forms with continuous coefficients.
Higher order forms can have coefficients in Lloc

1 (X). But they are still closed
under the wedge product.

We start with some preliminaries. Let f : Y → X be a proper PA-map of
PA-spaces. For simplicity we will give the definition below in the case when
X is compact.

Definition 22 Continuous family of PA k-cycles (PA-family of cycles for
short) is defined as an element of the abelian group Ck(Y → X) described
below.

The group Ck(Y → X) consists of maps Φ : X → Ck(X) such that:
a) For any x ∈ X the set SuppΦ(x) belongs to f−1(x).
b) The set Z = ∪x∈XSuppΦ(x) is constructible with the compact closure

Z ⊂ Y .
c) There exists a dense constructible Z0 ⊂ Z such that for any x ∈ X

the intersection Z0 ∩ f−1(x) is a PA-manifold without boundary, dense in
Z ∩ f−1(x). Moreover, the chain Φ(x) is obtained from some orientation of
Z0 ∩ f−1(x) and locally constant multiplicity map Z0 ∩ f−1(x) → Z as in the
second description of PA-chains.

d) For any x ∈ X and z ∈ f−1(x) ∩ Z0, and any sequence (xi), xi → x
the multiplicity at the point z is the “natural limit” of the multiplicities of
f−1(xi) ∩ Z0.

In the example below X not compact. It easy to make necessary modifi-
cations of our definition, so it will be valid in the non-compact case. In that
case we get a sheaf on X.

Example 2 Let Y = R2, X = R and f : Y → X is the projection (x1, x2) 7→
x1. Let us define Φ(x1) to be equal {x1} + {−x1} for x1 > 0 and equal to
2{0} otherwise. Then this map gives an element of C0(Y → X).
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We will briefly describe some properties of PA-families of cycles below.
1) PA-families C·(Y → X) = {Ck(Y → X)}k≥0 form a complex of sheaves

(abelian groups in the case when X is compact).
2) There are natural operations Ck(Y → X) ⊗ Cl(X) → Ck+l(Y ). Infor-

mally we will denote them by (γ, α) 7→ γ × α.
3) For any Cartesian square

Y ′ → Y
↓ ↓
X ′ → X

one has the natural morphisms

Ck(Y → X) → Ck(Y
′ → X ′)

and
Ck(Y → X) ⊗ Cl(X

′ → X) → Ck+l(Y
′ → X).

Now we are ready to define piecewise PA-forms.

Definition 23 PA-forms of degree k are sections of soft sheaves which are
locally given by functionals l : Ck(X) → R such that

l(α) =

∫

γ×α

ω

where γ ∈ Cl(Y → X), l ≥ 0 for some proper Y → X, and ω ∈ Ωk+l(Y )min.

We will denote the space of PA-forms on X by Ω·
PA(X).

Similarly to the case of Ω·
min(X) one can see that at the “generic point”

the space Ω·
PA(X) can be naturally embedded into the space of differential

forms. In fact we obtain a soft sheaf of dg-algebras. It is closed under
pushforwards f∗ where f : Y → X is a locally trivial bundle in the category
P with fibers which are compact oriented PA-manifolds.

The latter fact can be generalized further. One can consider a family
f : Y → X where Y and X are oriented compact PA-manifolds, and all
fibers of f have the same dimension dim(Y ) − dim(X). Then one get a
continuous family of cycles (“fundamental cycle” of f−1(x), x ∈ X) over X.
This gives a pushforward of PA-forms for certain maps (“flat morphisms”)
which are not necessarily fibrations.
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Notice that the Poincare lemma holds for piecewise forms. One can im-
itate the usual proof based on the integration over rays (x, t) 7→ xt, where
x ∈ U ⊂ Rn, U is a convex domain containing 0 ∈ Rn, and t ∈ [0, 1].
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