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Traditional Geometries

Line-Geometries:

(i) Euclidean Geometry (Chern)

(ii) Affine Geometry (Chern)

(iii) Projective Geometry (Chern)

Sphere-Geometries:

(i) Hyperbolic Geometry (Chern)

(ii) Möbius Geometry

(iii) Laguerre Geometry

(iv) Lie Sphere Geometry (Chern)
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Chern and Lie sphere geometry

Chern made important contributions in many traditional
geometries, not only the line-geometries and
sphere-geometries mentioned above, but also geometries like
Integral geometry, web geometry, etc.

Surface theory of Lie sphere geometry and its sub-geometries
were well-studied by the geometry group of W. Blaschke, see
the book [1].

Around 1985 Chern focused his interesting in Lie sphere
differential geometry of Dupin hypersurfaces and published two
important papers in this field together with T. Cecil. The works
of U. Pinkall ([4]), Chern and Cecil ([2],[3]) aroused a series of
papers on the study of Dupin hypersurfaces under the Lie
sphere group.
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Lie sphere group

By stereographic projection we have Sm = Rm ∪ {∞}.

A oriented sphere (plane) in USm is the (m-1)-submanifold

Sr(p) = {(x, n) ∈ URm | x − p = −rn};

Pλ(n) = {(x, n) ∈ URm | x · n = λ};

(i) r > 0, Sr(p) is inward oriented;

(ii) r < 0, Sr(p) is outward oriented;

(iii) r = 0, Sr(p) = UpRm, called point sphere at p.

Definition: A diffeomorphism φ : USm → USm preserving
spheres is called a Lie sphere transformation. All Lie sphere
transformations on USm form the Lie sphere group LSG.
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Geometrical interpretation of LSG

Geometrically, LSG is generated by

(i) Möbius transformations on Sm;

(ii) Elliptic flow of spheres on Sm;

(iii) Hyperbolic flow of spheres on Hm;

(iv) Parabolic flow of spheres on Rm;

see: Pinkall [4], Chern and Cecil [2].

Lie sphere group was discovered by Sophus Lie when he
studied the standard contact structure on USm.
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The total space of oriented spheres

Let Rm+3
2 be the Lorentzian space with inner product

< X, Y >= X1Y1 + · · ·+ Xm+1Ym+1 − Xm+2Ym+2 − Xm+3Ym+3.

Qm+1 = {[X] ∈ RPm+2 |< X, X >= 0}.

We define

Sr(p) ↔ [(p, (1 − |p|2 + r2)/2, (1 + |p|2 − r2)/2, r)] ∈ Qm+1;

Pλ(n) ↔ [(n,−λ, λ, 1)] ∈ Qm+1.

The total space of oriented spheres in USm is exactly Qm+1.
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Linearization of the LSG

A point (x, n) ∈ USm determines uniquely a pencil of oriented
contacted spheres, which is a projective line on

Qm+1 = {[X] ∈ RPm+2 |< X, X >= 0}.

Thus

USm = {total space of projective lines on Qm+1} := Λ2m−1.

We note that the Lorentzian group O(m + 1, 2) in Rm+3
2 acts on

Qm+1 and Λ2m−1.

Classical Theorem: The LSG on USm is isomorphic to the
group O(m + 1, 2)/{±1} acting on Λ2m−1.
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Invariants for hypersurfaces under LSG

Let x : Mm−1 → Rm be an oriented hypersurface with the unit
normal n : Mm−1 → Sm. We identify the hypersurafce x with
(x, n) : M → URm.

Two hypersurfaces x and x̃ are Lie equivalent if and only if
(x̃, ñ) = φ ◦ (x, n) for some φ ∈ LSG.

Basic invariants for hypersurfaces under LSG:

(i) Curvature spheres of hypersurface in Rm;

(ii) Principal tangent vectors of hypersurface;

(iii) Lie curvature L =
(ki−k j)(ks−kt)

(ki−ks)(k j−kt)
; (R. Miyaoka 1985)
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Dupin hypersurfaces

Definition: If any curvature sphere of a hypersurface is constant
along its leaf of principal vectors, we call it Dupin hypersurface.

There were many results concerning Dupin hyapersurfaces in
1985-1990.

Isoparameteric hypersurfaces are special Dupin hypersurfaces.

Theorem (G. Thorbergsson): The number of distinct principal
curvatures for any embedded compact Dupin hypersurface can
only take the values {1, 2, 3, 4, 6}.

Question: What is the complete invariant system of
hypersurfaces under LSG?

Up to now there are only partial answers!



Lie Sphere geometry - p. 10/23

Möbius group and Laguerre group

Let O(m + 1, 2) be the Lorentzian group in Rm+3
2 . It acts on

USm = Λ2m−1 as the Lie sphere group.

There are two important subgroups of O(m + 1, 2) defined by

MG = {T ∈ O(m + 1, 2) | Te = e}, < e, e >= −1;

LG == {T ∈ O(m + 1, 2) | Te = e}, < e, e >= 0.

The subgroup MG acts on USm = Λ2m−1 as Möbius group.

The subgroup LG acts on USm = Λ2m−1 as Laguerre group.
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Möbius differential geometry

Geometrically, Möbius group is the

(i) the transformation group on Sm preserving (m-1)-spheres;

(ii) the conformal group of the standard metric on Sm;

(iii) the fractional linear group of x̃ = xA+a
xb+c , where

(

A b

a c

)

∈ O+(m + 1, 1) ⊂ O(m + 1, 2);

(iv) the group O+(m + 1, 1) acting on the line-space of
light-cone in Rm+2

1 ;

(v) the subgroup of LSG preserving point spheres.

The purpose of Möbius differential geometry is to study
properties of submanifolds in Sm which are invariant under the
Möbius group.
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Laguerre differential geometry

Geometrically, Laguerre group in URm is the

(i) the subgroup of LSG preserving (m-1)-planes in Rm;

(ii) the group generated by the isometries in Rm, parabolic
flow and hyperbolic flow in URm; (Li-Wang 2006)

(iii) the group of Lorentzian motions in Rm+1
1 .

Remark to (iii): An oriented sphere Sr(p) in Rm corresponds to
a point (p, r) ∈ Rm+1

1 . Laguerre group acting on {Sr(p)} is

exactly the group of Lorentzian motions in Rm+1
1 .

The purpose of Laguerre differential geometry is to study
properties of hypersurafces in Rm which are invariant under
the Laguerre group.



Lie Sphere geometry - p. 13/23

Möbius invariants of submanifolds in Rn

Let x : Mm → Rn be a submanifold of co-dimension k. Then
we have the following Möbius invariants for x:

(i) the mean curvature sphere ξ : Mm → G+
m (Rn+2

1 ) (called
conformal Gauss map);

(ii) the Möbius metric g = ρ2 I, ρ2 = m
m−1‖I I − ~HI‖2;

(iii) the Möbius second fundamental form B = ρ−1(I I − ~HI);

(iv) the normal connection ∇⊥ on the normal bundle of x.

Theorem (Wang 1997): {g, B,∇⊥} is a complete Möbius
invariant system for submanifolds Mm (m ≥ 3) in Rn.
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Willmore Conjecture

For surface x : M2 → R3 we have

W(x) = Volg(x) =
∫

M
(H2 − K) dM.

It is called Willmore functional for surfaces.

Willmore Conjecture: For any torus T2 in R3 we have

W(T2) =
∫

T2
(H2 − K)dT2 ≥ 2π2;

and the equality holds if and only if T2 is Möbius equivalent to
the Clifford torus.

The Willmore conjecture is still open (since 1965).
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Willmore surfaces in R3

Definition: Critical surfaces to the Willmore functional is called
Willmore surfaces (or Möbius minimal surfaces).

Theorem (Thomsen 1923, Bryant 1982): Any Willmore surface
x : M → R3 has a dual Willmore surface x̂ : M → R3, they
share the same mean curvature sphere ξ as a space-like
minimal surface ξ : M → S4

1.

Theorem(Burstall,Ferus, Leschke, Pedit, Pinkall 2001):A
Willmore surface x : M → R4 induces a left dual Willmore
surface L(x) (L(L(x)) = x) and a right dual Willmore surface
R(x) (R(R(x)) = x).
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Willmore surfaces of constant curvature

According to Calabi, Bryant,Kenmotsu if the curvature K of a
minimal surfaces in Rn, Sn and Hn is constant, then K can only
take a discrete values.

Theorem(Ma, Wang 2006): Let M be a Willmore surface in R3

with constant Möbius curvature K, then K = 1 or K = 0 and M
is Möbius equivalent to either a minimal surface in R3 or a
clifford torus in S3.

Theorem(Ma, Wang 2006): Let M be a isotropic Willmore
surface in S4 with constant Möbius curvature K, then K = 2 or
K = 1/2 and M is Möbius equivalent to either a complex curve
in R4 = C2 or the Veronese surface in S4.
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Möbius isoparametric hypersurfaces

Definition: A hypersurface x : Mm−1 → Sm is called Möbius
isoparametric, if all its Möbius principal curvatures are constant
and Möbius form vanishes.

Theorem (Li-Liu-Wang-Zhao 2002): Any Möbius isoparametric
hypersurface is Dupin. Thus the number γ of distinct principal
curvatures of compact Möbius isoparametric hypersurface can
only take the value in {2, 3, 4, 6}.

Conjecture (Wang): Any compact Moebius isoparameteric
hypersurface in Sm is Moebius equivalent to an (Euclidean)
isoparameteric hypersurface in Sm.

Many results are obtained by Z. Hu, H. Li, X. Li, etc.

Theorem (Hu-Zhai 2010): The conjecture is true if γ = 3.
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Hypersurfaces with constant curvatutre

Theorem (Guo-Li-Lin-Ma-Wang 2011): Let x : Mm−1 → Sm

(m ≥ 5) be a hypersurface with constant Möbius curvature K.
Then x is Möbius equivalent to either (i) Γ × Rm−2 ⊂ Rm; or (ii)
C(Γ) × Rm−3 ⊂ Rm; or (iii) Γ × Sm−2 ⊂ Rm; where Γ is the
curve in R2, S2 or H2, whose curvature k(s) satisfies

(

d

ds

(

1

k

))2

+ ε

(

1

k

)2

= −K, ε = 0,±1.

Theorem (Li-Ma-Wang 2011): Let x : M3 → S4 be a
hypersurface with constant Möbius curvature. Then x is either
Möbius equivalent to one of the hypersurfaces given above, or
to the cone over a standard flat torus in S3.
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Möbius Deformable Hypersurfaces

Definition: A hypersurface x : Mm−1 → Sm is called Möbius
deformable, if there exists hypersurface x̃ : Mm−1 → Sm such
that their Möbius metric g = g̃, but x and x̃ are not Möbius
equivalent.

Theorem (Li-Ma-Wang 2010): Let x : Mm−1 → Sm (m ≥ 5) be
a Möbius deformable hypersurface. Then x is Möbius
equivalent to

(i) a cylinder in Rm over a Bonnet surface F in R3;

(ii) a cone-cylinder C(F)× Rm−4 in Rm for a Bonnet surface in
S3;

(iii) Rotation hypersurface in Rm generated by a Bonnet
surface in H3.
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Laguerre invariants for hypersurfaces in Rm

Let x : Mm−1 → Rm be a hypersurface with non-degenerate
third fundamental form. Then we have the following Laguerre
invariants:

(i) The center sphere of x;

(ii) Li,jk =
ri−rj

ri−rk
, where ri = 1/ki is the principal radius.

(iii) g =< dY, dY >= (∑i(ri − r)2)I I I = ρ2 I I I, where
r = 1

m−1 ∑i ri.

Theorem (Li-Wang 2006): Two umbilical free oriented
hypersurfaces in n (n > 3) with non-degenerate third
fundamental form are Laguerre equivalent if and only if they
have the same Laguerre metric g and Laguerre second
fundamental form B = ρ−1(S−1 − r id).
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Laguerre minimal surfaces in R3

Laguerre minimal surfaces are critical surfaces to

Lg(x) =
∫

M

H2 − K

K
dM.

The Euler-Lagrange equation for L(x) (Weingarten 1888):

∆I I I(r1 + r2) = 0.

Special examples: minimal surfaces in a 3-hyperplane in R4
1.

Classification theorem (Wang 2008): Given two meomrophic
functions φ, ψ and a holomorphic 1-form f (z)dz on a Riemann
surface M we can define a space-like minimal surface

ξ = Re
∫

f (z)(φ + ψ,−i(φ − ψ), 1 − φψ, 1 + φψ)dz

in R4
1, and ξ determines two dual Laguerre minimal surfaces

x, x̂ : M → R3.
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Lie Sphere Differential Geometry

Let x : Mm−1 → Rm be a hypersurface. Then Wi,jl =
ki−k j

ki−kl
are

Moebius invariants, and Li,jl =
ri−rj

ri−rl
are Laguerre invariants.

Thus the Lie invariants (Lie curvatures) defined by R. Miyaoka

Mij,ln =
ki − kl

ki − kn
/

k j − kl

k j − kn
=

ri − rl

ri − rn
/

rj − rl

rj − rn

are both Möbius invariants and Laguerre invariants.

Again the Question: What is a complete invariant system for
hypersurfaces in Rm under the Lie sphere group?

It is a natural question following the works of Pinkall, Cecil and
Chern.
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